Let \(a_1=0\), \(a_{2n+1}=a_{2n}=n-a_n\). Prove that there exists k such that \(\lvert a_k- \frac{k}{3}\rvert >2010\) and yet \(\lim_{n\to \infty} \frac{a_n}{n}=\frac13\).
GD Star Rating
loading...
loading...
Let \(a_1=0\), \(a_{2n+1}=a_{2n}=n-a_n\). Prove that there exists k such that \(\lvert a_k- \frac{k}{3}\rvert >2010\) and yet \(\lim_{n\to \infty} \frac{a_n}{n}=\frac13\).