Let M>0 be a real number. Prove that there exists N so that if n>N, then all the roots of \(f_n(z)=1+\frac{1}{z}+\frac1{{2!}z^2}+\cdots+\frac{1}{n!z^n}\) are in the disk |z|<M on the complex plane.
GD Star Rating
loading...
loading...
Let M>0 be a real number. Prove that there exists N so that if n>N, then all the roots of \(f_n(z)=1+\frac{1}{z}+\frac1{{2!}z^2}+\cdots+\frac{1}{n!z^n}\) are in the disk |z|<M on the complex plane.