학과 세미나 및 콜로퀴엄

대학원생 세미나

SAARC 세미나

편미분방정식 통합연구실 세미나

IBS-KAIST 세미나

학술회의 및 워크샵

학생 뉴스

북마크

Research Highlights

게시판

동문 뉴스

Problem of the week

There are \(n+1\) hats, each labeled with a number from \(1\) to \(n+1\), and \(n\) people. Each person is randomly assigned exactly one hat, and each hat is assigned to at most one person (i.e., the assignment is injective). A person can see all other assigned hats but cannot see their own hat and the unassigned hat. Each person must independently guess the number on their own hat.

If everyone correctly guesses their own hat's number, they win; otherwise, they lose. They may discuss a strategy before the hats are assigned, but no communication is allowed afterward.

Determine a strategy that maximizes their probability of winning.

KAIST Compass
Biannual Research Webzine