Department Seminars and Colloquium
Danny Calegari (University of Chicago)Topology Seminar
Universal Circles (Minicourse I)
Danny Calegari (University of Chicago)Topology Seminar
Universal Circles (Minicourse II)
김태규 (KAIST)PH.D Defence
Blow-up dynamics to the Calogero-Moser derivative nonlinear Schrödinger equation
Danny Calegari (University of Chicago)Topology Seminar
Universal Circles (Minicourse III)
Danny Calegari (University of Chicago (Department of Mathematics))Colloquium
Zippers
Graduate Seminars
SAARC Seminars
PDE Seminars
IBS-KAIST Seminars
Conferences and Workshops
Student News
Bookmarks
Research Highlights
Bulletin Boards
Problem of the week
For given \(a, b \in \mathbb{R}\) and \(c \in \mathbb{Z}\), find all function \(f: \mathbb{R} \to \mathbb{R}\) which is continuous at 0 and satisfies
\[
f(ax) = f(bx) + x^c \quad \forall x\in \mathbb{R}\setminus \{0\}.
\]
KAIST Compass Biannual Research Webzine
For given \(a, b \in \mathbb{R}\) and \(c \in \mathbb{Z}\), find all function \(f: \mathbb{R} \to \mathbb{R}\) which is continuous at 0 and satisfies
\[
f(ax) = f(bx) + x^c \quad \forall x\in \mathbb{R}\setminus \{0\}.
\]