Department Seminars & Colloquia

Sun Mon Tue Wed Thu Fri Sat
        1 2 2 3
4 5 6 1 7 8 1 9 1 10
11 12 4 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

You can get notification if you subscribe the calendar in Google Calendar or iPhone calendar etc.

심사위원장: 엄상일, 심사위원: 안드레아스 홈슨, 김재훈, 권오정(한양대학교), Hong Liu(기초과학연구원)
To be announced     2022-11-21 15:02:56
This study is concerned with multivariate approximation by non-polynomial functions with internal shape parameters. The main topics of this presentation are two folds. First, interpolation by radial basis function (RBF) is considered. We especially discuss the convergence behavior of the RBF interpolants when the basis function is scaled to be increasingly flat. Moreover, we investigate the advantages of interpolation methods based on exponential polynomials. The second topic of this presentation is the approximation method based on sparse grids in $[0,1]^d \subset \RR^d$. The goal of sparse grid methods is to approximate high dimensional functions with good accuracy using as few grid points as possible. In this study, we present a new class of quasi-interpolation schemes for the approximation of multivariate functions on sparse grids. Each scheme in this class is based on shifts of kernels constructed from one-dimensional RBFs such as multiquadrics. The kernels are modified near the boundaries to prevent deterioration of the fidelity of the approximation. We show that our methods provide significantly better rates of approximation, compared to another quasi-interpolation scheme in the literature based on the Gaussian kernel using the multilevel technique. Some numerical results are presented to demonstrate the performance of the proposed schemes.
Host: Chang Ock Lee     To be announced     2022-08-19 10:55:48

심사위원장: 안드레아스 홈슨, 심사위원: 김동수, 김재훈, 엄상일, 김민기(광주과학기술원)
To be announced     2022-11-24 08:57:12

심사위원장: 백형렬, 심사위원: 남경식, 최서영, Kasra Rafi(University of Toronto), Giulio Tiozzo(University of Toronto)
To be announced     2022-11-29 15:22:15

심사위원장: 이창옥, 심사위원: 김동환, 임미경, 예종철(겸임교수), 한송희(삼성전자)
To be announced     2022-11-23 13:30:48

심사위원장: 김재경, 심사위원: 김용정, 정연승, 황강욱, 이승규(경상대학교)
To be announced     2022-11-23 13:29:02

심사위원장: 김용정, 심사위원: 권순식, 강문진, 김재경, 윤창욱(충남대학교)
To be announced     2022-11-29 15:25:47
Metal artifact reduction has become a challenging issue for practical X-ray CT applications since metal artifacts severely cause contrast degradation and the misinterpretation of information about the property and structure of a scanned object. In this talk, we propose a methodology to reduce metal artifacts by extending the method proposed by Jeon and Lee (2018) to a three-dimensional industrial cone beam CT system. We develop a registration technique managing the three dimensional data in order to find accurate segmentation regions needed for the proposed algorithm. Through various simulations and experiments, we verify that the proposed algorithm reduces metal artifacts successfully.
(Online participation) Zoom Link:
In a region closer to the boundary compared to Prandtl layer, an inviscid disturbance can be manifested by the interaction with viscous mode via the no-slip boundary condition due to resonance. In some unstable range of parameters, this leads to instability in the transition regime from laminar flow to turbulence. This instability phenomenon was observed by physicists long time ago, such as Heisenberg, Tollmien and C.C. Lin, etc. And it was justified rigorously in mathematics by Grenier-Guo-Nguyen using the incompressible Navier-Stokes equation. In this talk, we will present some results on this phenomenon in some other physical situations in which the governing system is either MHD or compressible Navier-Stokes equation. The talk is based on some recent joint work with Chengjie Liu and Zhu Zhang.
Contact: 강문진 ()     To be announced     2022-10-29 00:12:54