Department Seminars & Colloquia




2025-05
Sun Mon Tue Wed Thu Fri Sat
        1 1 2 1 3
4 5 6 7 8 1 9 2 10
11 12 1 13 1 14 15 3 16 1 17
18 19 2 20 3 21 2 22 1 23 1 24
25 26 1 27 1 28 29 30 4 31
2025-06
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 1 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

When you're logged in, you can subscribe seminars via e-mail

I will discuss how to study the mod p non-vanishing problem for Dirichlet L-values with characters whose kernels are unbounded as the conductors grow. Main ingredients are a dynamical reformulation of the problem using a variant of trace defined by Poisson kernel and a study on the spectral properties of transfer operators related to p-Bernoulli map on the interval. This is ongoing research joint with A. Burungale.
Host: 김완수     To be announced     2025-05-09 15:05:01
A knot bounds an oriented compact connected surface in the 3-sphere, and consequently in the 4-ball. The 4-genus of a knot is the minimal genus among all such surfaces in the 4-ball, and the 4-genus of a link is defined analogously. In this talk, I will discuss lower bounds on the 4-genus derived from Cheeger-Gromov-von Neumann rho-invariants. This is joint work with Jae Choon Cha and Min Hoon Kim.
Host: 박정환     English     2025-03-17 12:53:07
Arithmetic of Elliptic curves, one of fundamental research themes in modern number theory, is encoded in the special values of elliptic L-functions. For example, Mazur-Rubin heuristics on the distribution of the special L-values predict the behavior of ranks of elliptic curves. The average version of the heuristics was proved by several researchers including myself several years ago. In the talk, I will present how to use the dynamics of continued fractions to study the problem and introduce an approach to study the original problem, i.e., non-average version, after introducing a classical result, so-called Lochs' theorem, which compares entropies of two distinct dynamical systems.
PPT Slide: English
Host: 김완수     Korean     2025-02-25 14:33:52
(This is part of the reading seminar given by the undergrad student Mr. Naing Zaw Lu for his Individual Study project.) This is an introductory talk on homotopy theory in model categories. Over the course of three lectures, we will familiarize ourselves with model categories, see how powerful cofibrant/fibrant objects can be, and build up the tools necessary to define the (Quillen) homotopy category of a model category.
Host: 박진현     Contact: 박진현 (2734)     English     2025-04-24 12:26:24
If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In my minicourse and in my colloquium talk, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures.
Host: 백형렬     Contact: 백주헌 (01051093475)     English     2025-05-12 18:07:02
Abstract: In this talk, we discuss the global-in-time existence of strong solutions to the one-dimensional compressible Navier-Stokes system. Classical results establish only local-in-time existence under the assumption that the initial data are smooth and the initial density remains uniformly positive. These results can be extended to global-in-time existence using the relative entropy and Bresch-Desjardins entropy under the same hypotheses. This approach allows for possibly different end states and degenerate viscosity. Reference: A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 39(4):1344–1365, 2007/08.
Host: 권순식     Contact: 김송이 (0423502786)     To be announced     2025-03-13 10:10:22
If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In my minicourse and in my colloquium talk, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures.
Host: 백형렬     Contact: 백주헌 (01051093475)     English     2025-05-12 18:07:05

심사위원장: 권순식, 심사위원: 김용정, 변재형, 배명진, 패트릭 제라드(Paris-Saclay)
To be announced     2025-04-16 13:15:26
In this talk, we will discuss the current state and future prospects of multimodal AI. In particular, we will focus on the key challenges in ensuring reliability and efficiency in multimodal AI, explaining why addressing these factors is crucial for the successful real-world deployment of next-generation intelligent systems.
Host: 이지운     Contact: saarc (042-350-8111)     To be announced     2025-03-14 15:26:18
If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In my minicourse and in my colloquium talk, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures.
Host: 백형렬     Contact: 백주헌 (01051093475)     English     2025-05-12 18:07:11
Many natural systems exhibit oscillations that show sizeable fluctuations in frequency and amplitude. This variability can arise from a wide variety of physical mechanisms. Phase descriptions that work for deterministic oscillators have a limited applicability for stochastic oscillators. In my talk I review attempts to generalize the phase concept to stochastic oscillations, specifically, the mean-return-time phase and the asymptotic phase. For stochastic systems described by Fokker-Planck and Kolmogorov-backward equations, I introduce a mapping of the system’s variables to a complex pointer (instead of a real-valued phase) that is based on the eigenfunction of the Kolmogorov equation. Under the new (complex-valued) description, the statistics of the oscillator’s spontaneous activity, of its response to external perturbations, and of the coordinated activity of (weakly) coupled oscillators, is brought into a universal and greatly simplified form. The theory is tested for three theoretical models of noisy oscillators arising from fundamentally different mechanisms: a damped harmonic oscillator with dynamical noise, a fluctuation-perturbed limit-cycle system, and an excitable system in which oscillations require noise to occur.
Host: 김재경 교수     Contact: 채송지 (042-878-8244)     English     2025-02-24 11:07:03
This is a reading seminar presented by the graduate student, Mr. Taeyoon Woo. Following the lecture note of Yuri Manin, he will study K_0 of schemes, and its essential properties, such as functoriality, projective bundle formula, filtrations, relationship to Picard group, blow-up squares, Chern classes, Todd classes and the Grothendieck-Riemann-Roch theorem.
Host: 박진현     Contact: 박진현 (2734)     To be announced     2025-04-25 11:56:43
Abstract : When a plane shock hits a wedge head on, it experiences a reflection diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In particular, the C^{1,1}-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock where the wedge has large-angle. Also, one can obtain the C^{2,\alpha} regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. Reference : Myoungjean Bae, Gui-Qiang Chen, and Mikhail Feldman. "Regularity of solutions to regular shock reflection for potential flow." (2008) Gui-Qiang Chen and Mikhail Feldman. "Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow"
Host: 권순식     Contact: 김송이 (0423502786)     To be announced     2025-03-13 10:11:49
This talk concerns the classification problem of long-term dynamics for critical evolutionary PDEs. I will first discuss critical PDEs and soliton resolution for these equations. Building upon soliton resolution, I will further introduce the classification problem. Finally, I will also touch on a potential instability mechanism of finite-time singularities for some critical PDEs, suggesting the global existence of generic solutions.
Host: 이지운     Contact: saarc (042-350-8111)     To be announced     2025-03-14 15:29:11
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.
Host: 김재경 교수     Contact: 채송지 (042-878-8244)     To be announced     2025-02-24 11:08:33
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.
Host: 김재경 교수     Contact: 채송지 (042-878-8244)     To be announced     2025-02-24 11:08:33
(This is part of the reading seminar given by the undergrad student Mr. Naing Zaw Lu for his Individual Study project.) This is an introductory talk on homotopy theory in model categories. Over the course of three lectures, we will familiarize ourselves with model categories, see how powerful cofibrant/fibrant objects can be, and build up the tools necessary to define the (Quillen) homotopy category of a model category.
Host: 박진현     Contact: 박진현 (2734)     English     2025-04-24 12:28:04
A seminal result of Tutte asserts that every 4-connected planar graph is hamiltonian. By Wagner’s theorem, Tutte’s result can be restated as: every 4-connected graph with no $K_{3,3}$ minor is hamiltonian. In 2018, Ding and Marshall posed the problem of characterizing the minor-minimal 3-connected non-hamiltonian graphs. They conjectured that every 3-connected non-hamiltonian graph contains a minor of $K_{3,4}$, $\mathfrak{Q}^+$, or the Herschel graph, where $\mathfrak{Q}^+$ is obtained from the cube by adding a new vertex and connecting it to three vertices that share a common neighbor in the cube. We recently resolved this conjecture along with some related problems. In this talk, we review the background and discuss the proof.
Host: Sang-il Oum     English     2025-04-15 14:44:00
Given a tournament $S$, a tournament is $S$-free if it has no subtournament isomorphic to $S$. Until now, there have been only a small number of tournaments $S$ such that the complete structure of $S$-free tournaments is known. Let $\triangle(1, 2, 2)$ be a tournament obtained from the cyclic triangle by substituting two-vertex tournaments for two of its vertices. In this talk, we present a structure theorem for $\triangle(1, 2, 2)$-free tournaments, which was previously unknown. As an application, we provide tight bounds for the chromatic number as well as the size of the largest transitive subtournament for such tournaments. This talk is based on joint work with Taite LaGrange, Mathieu Rundström, Arpan Sadhukhan, and Sophie Spirkl.
Host: Sang-il Oum     English     2025-03-10 11:38:11
We prove global well-posedness and scattering for the massive Dirac-Klein-Gordon system with small and low regularity initial data in dimension two, under non-resonance condition. We introduce new resolutions spaces which act as an effective replacement of the normal form transformation.
Host: 권순식     Contact: 김송이 (042-350-2786)     To be announced     2025-04-07 13:25:06
This is a reading seminar presented by the graduate student, Mr. Taeyoon Woo. Following the lecture note of Yuri Manin, he will study K_0 of schemes, and its essential properties, such as functoriality, projective bundle formula, filtrations, relationship to Picard group, blow-up squares, Chern classes, Todd classes and the Grothendieck-Riemann-Roch theorem.
Host: 박진현     Contact: 박진현 (2734)     To be announced     2025-03-25 19:47:15
De novo mutations provide a powerful source of information for identifying risk genes associated with phenotypes under selection, such as autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), congenital heart disease, and schizophrenia (SCZ). However, identifying de novo variants is costly, as it requires trio-based sequencing to obtain parental genotypes. To address this limitation, we propose a method to infer inheritance class using only offspring genetic data. In our new integrated model, we evaluate variation in case and control samples, attempt to distinguish de novo mutations from inherited variation, and incorporate this information into a gene-based association framework. We validate our method through ASD gene identification, demonstrating that it provides a robust and powerful approach for identifying risk genes.
Host: 박철우     To be announced     2025-02-25 14:13:21
(This is part of the reading seminar given by the undergrad student Mr. Naing Zaw Lu for his Individual Study project.) This is an introductory talk on homotopy theory in model categories. Over the course of three lectures, we will familiarize ourselves with model categories, see how powerful cofibrant/fibrant objects can be, and build up the tools necessary to define the (Quillen) homotopy category of a model category.
Host: 박진현     Contact: 박진현 (2734)     English     2025-04-24 12:25:13
In undergraduate PDE course, one may have learned that the (classical) diffusion equation can be expressed as $u_t=D \Delta u$, where $D$ is a constant diffusivity. This is true for homogeneous environment. However, for (spatially) heterogeneous environment, $D$ is no longer a constant, and diffusion phenomena in those environments such as fractionation, or Soret effect, cannot be explained with the classical diffusion equation. In this talk, I will first discuss how to model and derive some of the diffusion equations in heterogeneous environment by using basic random walk theory. We will see that the heterogeneity of components, such as speed, walk length, sojourn time, etc, can explain the diffusion phenomena. Then, I will give some specific examples how such models can be applied in science, based on my recent works.