Department Seminars & Colloquia
When you're logged in, you can subscribe seminars via e-mail
De novo mutations provide a powerful source of information for identifying risk genes associated with phenotypes under selection, such as autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), congenital heart disease, and schizophrenia (SCZ). However, identifying de novo variants is costly, as it requires trio-based sequencing to obtain parental genotypes. To address this limitation, we propose a method to infer inheritance class using only offspring genetic data. In our new integrated model, we evaluate variation in case and control samples, attempt to distinguish de novo mutations from inherited variation, and incorporate this information into a gene-based association framework. We validate our method through ASD gene identification, demonstrating that it provides a robust and powerful approach for identifying risk genes.
This is a reading seminar presented by the graduate student, Mr. Taeyoon Woo. Following the lecture note of Yuri Manin, he will study K_0 of schemes, and its essential properties, such as functoriality, projective bundle formula, filtrations, relationship to Picard group, blow-up squares, Chern classes, Todd classes and the Grothendieck-Riemann-Roch theorem.
Room B332, IBS (기초과학연구원)
Discrete Mathematics
Seokbeom Kim (KAIST & IBS Discrete Mathematics Group)
The structure of △(1, 2, 2)-free tournaments
Room B332, IBS (기초과학연구원)
Discrete Mathematics
Given a tournament $S$, a tournament is $S$-free if it has no subtournament isomorphic to $S$. Until now, there have been only a small number of tournaments $S$ such that the complete structure of $S$-free tournaments is known.
Let $\triangle(1, 2, 2)$ be a tournament obtained from the cyclic triangle by substituting two-vertex tournaments for two of its vertices. In this talk, we present a structure theorem for $\triangle(1, 2, 2)$-free tournaments, which was previously unknown. As an application, we provide tight bounds for the chromatic number as well as the size of the largest transitive subtournament for such tournaments.
This talk is based on joint work with Taite LaGrange, Mathieu Rundström, Arpan Sadhukhan, and Sophie Spirkl.
A knot bounds an oriented compact connected surface in the 3-sphere, and consequently in the 4-ball. The 4-genus of a knot is the minimal genus among all such surfaces in the 4-ball, and the 4-genus of a link is defined analogously. In this talk, I will discuss lower bounds on the 4-genus derived from Cheeger-Gromov-von Neumann rho-invariants. This is joint work with Jae Choon Cha and Min Hoon Kim.
Abstract: In this talk, we discuss the global-in-time existence of strong solutions to the one-dimensional compressible Navier-Stokes system. Classical results establish only local-in-time existence under the assumption that the initial data are smooth and the initial density remains uniformly positive. These results can be extended to global-in-time existence using the relative entropy and Bresch-Desjardins entropy under the same hypotheses. This approach allows for possibly different end states and degenerate viscosity.
Reference: A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 39(4):1344–1365, 2007/08.
In this talk, we will discuss the current state and future prospects of multimodal AI. In particular, we will focus on the key challenges in ensuring reliability and efficiency in multimodal AI, explaining why addressing these factors is crucial for the successful real-world deployment of next-generation intelligent systems.
ZOOM ID: 997 8258 4700(pw: 1234)
IBS-KAIST Seminar
Benjamin Lindner (Humboldt University Berlin)
Simplified descriptions of stochastic oscillators
ZOOM ID: 997 8258 4700(pw: 1234)
IBS-KAIST Seminar
Many natural systems exhibit oscillations that show sizeable fluctuations in frequency and amplitude. This variability can arise from a wide variety of physical mechanisms. Phase descriptions that work for deterministic oscillators have a limited applicability for stochastic oscillators. In my talk I review attempts to generalize the phase concept to stochastic oscillations, specifically, the mean-return-time phase and the asymptotic phase.
For stochastic systems described by Fokker-Planck and Kolmogorov-backward equations, I introduce a mapping of the system’s variables to a complex pointer (instead of a real-valued phase) that is based on the eigenfunction of the Kolmogorov equation. Under the new (complex-valued) description, the statistics of the oscillator’s spontaneous activity, of its response to external perturbations, and of the coordinated activity of (weakly) coupled oscillators, is brought into a universal and greatly simplified form. The theory is tested for three theoretical models of noisy oscillators arising from fundamentally different mechanisms: a damped harmonic oscillator with dynamical noise, a fluctuation-perturbed limit-cycle system, and an excitable system in which oscillations require noise to occur.
Abstract :
When a plane shock hits a wedge head on, it experiences a reflection diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In particular, the C^{1,1}-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock where the wedge has large-angle. Also, one can obtain the C^{2,\alpha} regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region.
Reference :
Myoungjean Bae, Gui-Qiang Chen, and Mikhail Feldman. "Regularity of solutions to regular shock reflection for potential flow." (2008)
Gui-Qiang Chen and Mikhail Feldman. "Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow"
This talk concerns the classification problem of long-term dynamics for critical evolutionary PDEs. I will first discuss critical PDEs and soliton resolution for these equations. Building upon soliton resolution, I will further introduce the classification problem. Finally, I will also touch on a potential instability mechanism of finite-time singularities for some critical PDEs, suggesting the global existence of generic solutions.
ZOOM ID: 997 8258 4700(pw: 1234)
IBS-KAIST Seminar
Hiroya Nakao (Institute of Science Tokyo)
Koopman operator approach to complex rhythmic systems
ZOOM ID: 997 8258 4700(pw: 1234)
IBS-KAIST Seminar
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.