학과 세미나 및 콜로퀴엄
Ken'ichi Ohshika (Gakushuin University)위상수학 세미나
Thurston’s asymmetric metric on Teichmüller space (Part I)
Ken'ichi Ohshika (Gakushuin University)위상수학 세미나
Thurston’s asymmetric metric on Teichmüller space (Part II)
Ken'ichi Ohshika (Gakushuin University)위상수학 세미나
Thurston’s asymmetric metric on Teichmüller space (Part III)
한주영 (Czech Technical University in Prague, 소프트웨어 공학과)Topology, Geometry, and Data Analysis
Topological Data Analysis with two applications: Tumor Microenvironment and D Chromatography with High-Resolution Mass Spectrometry
대학원생 세미나
SAARC 세미나
편미분방정식 통합연구실 세미나
IBS-KAIST 세미나
AI수학대학원 세미나
학술회의 및 워크샵
학생 뉴스
북마크
Research Highlights
게시판
동문 뉴스
Problem of the week
Let \( X_1, X_2, \ldots \) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant \( C \) such that \(\mathbb{E} \left[ \max_i \frac{|X_i|}{\sqrt{1 + \log i}} \right] \leq C\).