Department Seminars & Colloquia




2024-03
Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 1 9
10 11 12 2 13 14 15 16
17 18 19 20 21 22 1 23
24 25 26 1 27 28 29 1 30
31            
2024-04
Sun Mon Tue Wed Thu Fri Sat
  1 2 1 3 4 5 1 6
7 8 9 1 10 11 12 1 13
14 15 16 1 17 18 19 1 20
21 22 23 1 24 25 26 1 27
28 29 30 1        

When you're logged in, you can subscribe seminars via e-mail

A family $\mathcal F$ of (di)graphs is said to have the half- or quarter-integral Erdős-Pósa property if, for any integer $k$ and any (di)graph $G$, there either exist $k$ copies of graphs in $\mathcal F$ within $G$ such that any vertex of $G$ is contained in at most 2, respectively at most 4, of these copies, or there exists a vertex set $A$ of size at most $f(k)$ such that $G - A$ contains no copies of graphs in $\mathcal F$. Very recently we showed that even dicycles have the quarter-integral Erdős-Pósa property [STOC'24] via the proof of a structure theorem for digraphs without large packings of even dicycles. In this talk we discuss our current effort to improve this approach towards the half-integral Erdős-Pósa property, which would be best possible, as even dicycles do not have the integral Erdős-Pósa property. Complementing the talk given by Sebastian Wiederrecht in this seminar regarding our initial result, we also shine a light on some of the particulars of the embedding we use in lieu of flatness and how this helps us to move even dicycles through the digraph. In the process of this, we highlight the parts of the proof that initially caused the result to be quarter-integral. (This is joint work with Ken-ichi Kawarabayashi, Stephan Kreutzer, and Sebastian Wiederrecht.)
Host: Sang-il Oum     English     2024-03-27 21:01:18
"An improved rhythmicity analysis method using Gaussian Processes detects cell-density dependent circadian oscillations in stem cells", ArXiv. (2023) will be discussed in this Journal Club. Detecting oscillations in time series remains a challenging problem even after decades of research. In chronobiology, rhythms in time series (for instance gene expression, eclosion, egg-laying and feeding) datasets tend to be low amplitude, display large variations amongst replicates, and often exhibit varying peak-to-peak distances (non-stationarity). Most currently available rhythm detection methods are not specifically designed to handle such datasets. Here we introduce a new method, ODeGP (Oscillation Detection using Gaussian Processes), which combines Gaussian Process (GP) regression with Bayesian inference to provide a flexible approach to the problem. Besides naturally incorporating measurement errors and non-uniformly sampled data, ODeGP uses a recently developed kernel to improve detection of non-stationary waveforms. An additional advantage is that by using Bayes factors instead of p-values, ODeGP models both the null (non-rhythmic) and the alternative (rhythmic) hypotheses. Using a variety of synthetic datasets we first demonstrate that ODeGP almost always outperforms eight commonly used methods in detecting stationary as well as non-stationary oscillations. Next, on analyzing existing qPCR datasets that exhibit low amplitude and noisy oscillations, we demonstrate that our method is more sensitive compared to the existing methods at detecting weak oscillations. Finally, we generate new qPCR time-series datasets on pluripotent mouse embryonic stem cells, which are expected to exhibit no oscillations of the core circadian clock genes. Surprisingly, we discover using ODeGP that increasing cell density can result in the rapid generation of oscillations in the Bmal1 gene, thus highlighting our method’s ability to discover unexpected patterns. In its current implementation, ODeGP (available as an R package) is meant only for analyzing single or a few time-trajectories, not genome-wide datasets. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Host: Jae Kyoung Kim     English     2024-03-26 23:55:21
We say that two functors Λ and Γ between thin categories of relational structures are adjoint if for all structures A and B, we have that Λ(A) maps homomorphically to B if and only if A maps homomorphically to Γ(B). If this is the case Λ is called the left adjoint to Γ and Γ the right adjoint to Λ. In 2015, Foniok and Tardif described some functors on the category of digraphs that allow both left and right adjoints. The main contribution of Foniok and Tardif is a construction of right adjoints to some of the functors identified as right adjoints by Pultr in 1970. We shall present several recent advances in this direction including a new approach based on the notion of Datalog Program borrowed from logic.
Host: Sang-il Oum     English     2024-03-27 20:59:36
"Phenotypic switching in gene regulatory networks", PNAS. (2014) will be discussed in this Journal Club. Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Host: Jae Kyoung Kim     English     2024-03-26 23:51:17
Delta-matroids are a generalization of matroids with connections to many parts of graph theory and combinatorics (such as matching theory and the structure of topological graph embeddings). Formally, a delta-matroid is a pair $D=(V,\mathcal F)$ where $\mathcal F$ is a collection of subsets of V known as "feasible sets." (They can be thought of as generalizing the set of bases of a matroid, while relaxing the condition that all bases must have the same cardinality.) Like with matroids, an important class of delta-matroids are linear delta-matroids, where the feasible sets are represented via a skew-symmetric matrix. Prominent examples of linear delta-matroids include linear matroids and matching delta-matroids (where the latter are represented via the famous Tutte matrix). However, the study of algorithms over delta-matroids seems to have been much less developed than over matroids. In this talk, we review recent results on representations of and algorithms over linear delta-matroids. We first focus on classical polynomial-time aspects. We present a new (equivalent) representation of linear delta-matroids that is more suitable for algorithmic purposes, and we show that so-called delta-sums and unions of linear delta-matroids are linear. As a result, we get faster (randomized) algorithms for Linear Delta-matroid Parity and Linear Delta-matroid Intersection, improving results from Geelen et al. (2004). We then move on to parameterized complexity aspects of linear delta-matroids. We find that many results regarding linear matroids which have had applications in FPT algorithms and kernelization directly generalize to linear delta-matroids of bounded rank. On the other hand, unlike with matroids, there is a significant difference between the "rank" and "cardinality" parameters - the structure of bounded-cardinality feasible sets in a delta-matroid of unbounded rank is significantly harder to deal with than feasible sets in a bounded-rank delta-matroid.
Host: Sang-il Oum     English     2024-04-01 21:52:21

ZOOM ID: 997 8258 4700(pw: 1234)
Host: 김재경 교수     Contact: 채송지 (042-878-8244)     English     2024-02-29 11:18:50
The positive discrepancy of a graph $G$ of edge density $p$ is defined as the maximum of $e(U) - p|U|(|U|-1)/2$, where the maximum is taken over subsets of vertices in G. In 1993 Alon proved that if G is a $d$-regular graph on $n$ vertices and $d = O(n^{1/9})$, then the positive discrepancy of $G$ is at least $c d^{1/2}n$ for some constant $c$. We extend this result by proving lower bounds for the positive discrepancy with average degree d when $d < (1/2 - \epsilon)n$. We prove that the same lower bound remains true when $d < n^(2/3)$, while in the ranges $n^{2/3} < d < n^{4/5}$ and $n^{4/5} < d < (1/2 - \epsilon)n$ we prove that the positive discrepancy is at least $n^2/d$ and $d^{1/4}n/log(n)$ respectively. Our proofs are based on semidefinite programming and linear algebraic techniques. Our results are tight when $d < n^{3/4}$, thus demonstrating a change in the behaviour around $d = n^{2/3}$ when a random graph no longer minimises the positive discrepancy. As a by-product, we also present lower bounds for the second largest eigenvalue of a $d$-regular graph when $d < (1/2 - \epsilon)n$, thus extending the celebrated Alon-Boppana theorem. This is joint work with Benjamin Sudakov and István Tomon.
Host: Hong Liu / Sang-il Oum     English     2024-03-27 20:58:19

ZOOM ID: 997 8258 4700(pw: 1234)
Host: 김재경 교수     Contact: 채송지 (042-878-8244)     English     2024-02-29 11:15:36
Bollobás proved that for every $k$ and $\ell$ such that $k\mathbb{Z}+\ell$ contains an even number, an $n$-vertex graph containing no cycle of length $\ell \bmod k$ can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs $\ell$ and $k$. We precisely determine the maximum number of edges in a graph containing no cycle of length $0 \bmod 4$. This is joint work with Ervin Győri, Binlong Li, Nika Salia, Kitti Varga and Manran Zhu.
Host: Sang-il Oum     English     2024-01-08 14:52:31
"Anti-Windup Protection Circuits for Biomolecular Integral Controllers", bioRxaiv. (2023) will be discussed in this Journal Club. In this study, we obtain an exact time-dependent solution of the chemical master equation (CME) of an extension of the two-state telegraph model describing bursty or non-bursty protein expression in the presence of positive or negative autoregulation. Using the method of spectral decomposition, we show that the eigenfunctions of the generating function solution of the CME are Heun functions, while the eigenvalues can be determined by solving a continued fraction equation. Our solution generalizes and corrects a previous time-dependent solution for the CME of a gene circuit describing non-bursty protein expression in the presence of negative autoregulation [Ramos et al., Phys. Rev. E 83, 062902 (2011)]. In particular, we clarify that the eigenvalues are generally not real as previously claimed. We also investigate the relationship between different types of dynamic behavior and the type of feedback, the protein burst size, and the gene switching rate. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Host: Jae Kyoung Kim     English     2024-03-04 13:48:08
Let $\mathcal{G}$ and $\mathcal{H}$ be minor-closed graphs classes. The class $\mathcal{H}$ has the Erdős-Pósa property in $\mathcal{G}$ if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that every graph $G$ in $\mathcal{G}$ either contains (a packing of) $k$ disjoint copies of some subgraph minimal graph $H \not\in \mathcal{H}$ or contains (a covering of) $f(k)$ vertices, whose removal creates a graph in $\mathcal{H}$. A class $\mathcal{G}$ is a minimal EP-counterexample for $\mathcal{H}$ if $\mathcal{H}$ does not have the Erdős-Pósa property in $\mathcal{G}$, however it does have this property for every minor-closed graph class that is properly contained in $\mathcal{G}$. The set $\frak{C}_{\mathcal{H}}$ of the subset-minimal EP-counterexamples, for every $\mathcal{H}$, can be seen as a way to consider all possible Erdős-Pósa dualities that can be proven for minor-closed classes. We prove that, for every $\mathcal{H}$, $\frak{C}_{\mathcal{H}}$ is finite and we give a complete characterization of it. In particular, we prove that $|\frak{C}_{\mathcal{H}}| = 2^{\operatorname{poly}(\ell(h))}$, where $h$ is the maximum size of a minor-obstruction of $\mathcal{H}$ and $\ell(\cdot)$ is the unique linkage function. As a corollary of this, we obtain a constructive proof of Thomas' conjecture claiming that every minor-closed graph class has the half-integral Erdős-Pósa property in all graphs. This is joint work with Christophe Paul, Dimitrios Thilikos, and Sebastian Wiederrecht.
Host: Sang-il Oum     English     2024-03-05 22:57:39
“Transcriptome-wide analysis of cell cycle-dependent bursty gene expression from single-cell RNA-seq data using mechanistic model-based inference”, bioRxiv (2024) will be discussed in this Journal Club. Bursty gene expression is quantified by two intuitive parameters: the burst frequency and the burst size. While these parameters are known to be cell-cycle dependent for some genes, a transcriptome-wide picture remains missing. Here we address this question by fitting a suite of mechanistic models of gene expression to mRNA count data for thousands of mouse genes, obtained by sequencing of single cells for which the cell-cycle position has been inferred using a deep-learning approach. This leads to the estimation of the burst frequency and size per allele in the G1 and G2/M cell-cycle phases, hence providing insight into the global patterns of transcriptional regulation. In particular, we identify an interesting balancing mechanism: on average, upon DNA replication, the burst frequency decreases by ≈ 50%, while the burst size increases by the same amount. We also show that for accurate estimation of the ratio of burst parameters in the G1 and G2/M phases, mechanistic models must explicitly account for gene copy number differences between cells but, surprisingly, additional corrections for extrinsic noise due to the coupling of transcription to cell age within the cell cycle or technical noise due to imperfect capture of RNA molecules in sequencing experiments are unnecessary. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Host: Jae Kyoung Kim     English     2024-03-04 13:38:19
"Reduced model for female endocrine dynamics: Validation and functional variations", Mathematical Biosciences (2023) will be discussed in this Journal Club. A normally functioning menstrual cycle requires significant crosstalk between hormones originating in ovarian and brain tissues. Reproductive hormone dysregulation may cause abnormal function and sometimes infertility. The inherent complexity in this endocrine system is a challenge to identifying mechanisms of cycle disruption, particularly given the large number of unknown parameters in existing mathematical models. We develop a new endocrine model to limit model complexity and use simulated distributions of unknown parameters for model analysis. By employing a comprehensive model evaluation, we identify a collection of mechanisms that differentiate normal and abnormal phenotypes. We also discover an intermediate phenotype—displaying relatively normal hormone levels and cycle dynamics—that is grouped statistically with the irregular phenotype. Results provide insight into how clinical symptoms associated with ovulatory disruption may not be detected through hormone measurements alone. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Host: Jae Kyoung Kim     English     2024-03-04 13:15:43
We prove a conjecture of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and Walczak, that for every graph $H$, there is a polynomial $p$ such that for every positive integer $s$, every graph of average degree at least $p(s)$ contains either $K_{s,s}$ as a subgraph or contains an induced subdivision of $H$. This improves upon a result of Kühn and Osthus from 2004 who proved it for graphs whose average degree is at least triply exponential in $s$ and a recent result of Du, Girão, Hunter, McCarty and Scott for graphs with average degree at least singly exponential in $s$. As an application, we prove that the class of graphs that do not contain an induced subdivision of $K_{s,t}$ is polynomially $\chi$-bounded. In the case of $K_{2,3}$, this is the class of theta-free graphs, and answers a question of Davies. Along the way, we also answer a recent question of McCarty, by showing that if $\mathcal{G}$ is a hereditary class of graphs for which there is a polynomial $p$ such that every bipartite $K_{s,s}$-free graph in $\mathcal{G}$ has average degree at most $p(s)$, then more generally, there is a polynomial $p'$ such that every $K_{s,s}$-free graph in $\mathcal{G}$ has average degree at most $p'(s)$. Our main new tool is an induced variant of the Kővári-Sós-Turán theorem, which we find to be of independent interest. This is joint work with Romain Bourneuf (ENS de Lyon), Matija Bucić (Princeton), and James Davies (Cambridge),
Host: Sang-il Oum     English     2024-02-15 17:31:02