## Seminars and Colloquium

#### Hwajong Yu (IBS-CGP)Number Theory Seminar

On the component groups of modular Jacobian varieties

#### Xavier Goaoc (Université Paris-Est, Marne-la-Vallée, France)Discrete Math

Shatter functions of (geometric) hypergraphs

#### Jeon, Kiwan (NIMS)Computational Math Seminar

Coronary Artery Image Reconstruction

#### Adrian Langer (Univ. of Warsaw)Algebraic Geometry

Non-abelian Hodge theory in positive characteristic, I

#### Ye Sle Cha (Free University of Berlin)Topology Seminar

Geometric inequalities and quasi-local mass for axially symmetric initial data in general relativity (2)

#### Sergio Cabello (University of Ljubljana, Ljubljana, Slovenia)Discrete Math

Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs

#### 김수정 (카이스트)PDE Seminar

Freedericksz transition in nematic liquid crystal flows in dimension two

## Conferences and Workshops

## Bookmarks

## Bulletin Boards

고페이 수학강사 모십니다. | 08. 11 | |

중3 수학 과외 선생님 모십니다. | 04. 06 | |

여학생 과외 원합니다. | 03. 07 | |

고교2학년생입니다. 수학선생님 원해요 | 11. 11 | |

대학원 입시 설명회 자료 좀 올려주시겠어요? | 06. 22 | |

모듈 형식과 타원 방정식에 대해서 질문합니다 | 11. 13 | |

모듈 형식과 타원 방정식에 대해서 질문합니다 | 11. 13 |

## Alumni News

## Problem of the week

For \( x \in (1, 2) \), prove that there exists a unique sequence of positive integers \( \{ x_i \} \) such that \( x_{i+1} \geq x_i^2 \) and
\[
x = \prod_{i=1}^{\infty} (1 + \frac{1}{x_i}).
\]