## Seminars and Colloquium

#### Gunhee Kim (KAIST)Ph.D. Defense

Analysis of the Limit Order Using Process Models

#### Donggyun Seo (Seoul National University)Topology Seminar

Surface groups and their normalizers on the dual cube complexes

#### 이의웅 (NYU, New York, USA)Discrete Math

Faster Exact and Approximate Algorithms for k-Cut

#### Charles M. Newman (NYU Courant)Distinguished Scholar Lecture Series

Remarks on the Riemann Hypothesis

#### Jihee Kim (School of Business and Technology Management, KAIS)Colloquium

Pareto distributions in economics

#### Kathryn Mann (Department of Mathematics, Brown University)Colloquium

Orderable groups in topology and dynamics

## Conferences and Workshops

## Bookmarks

## Bulletin Boards

고페이 수학강사 모십니다. | 08. 11 | |

중3 수학 과외 선생님 모십니다. | 04. 06 | |

여학생 과외 원합니다. | 03. 07 | |

고교2학년생입니다. 수학선생님 원해요 | 11. 11 | |

대학원 입시 설명회 자료 좀 올려주시겠어요? | 06. 22 | |

모듈 형식과 타원 방정식에 대해서 질문합니다 | 11. 13 | |

모듈 형식과 타원 방정식에 대해서 질문합니다 | 11. 13 |

## Alumni News

## Problem of the week

Does there exist a (possibly \(n\)-dependent) constant \( C \) such that
\[
\frac{C}{a_n} \sum_{1 \leq i < j \leq n} (a_i-a_j)^2 \leq \frac{a_1+ \dots + a_n}{n} - \sqrt[n]{a_1 \dots a_n} \leq \frac{C}{a_1} \sum_{1 \leq i < j \leq n} (a_i-a_j)^2
\]
for any \( 0 < a_1 \leq a_2 \leq \dots \leq a_n \)?