Department Seminars & Colloquia




2025-05
Sun Mon Tue Wed Thu Fri Sat
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 1 20 21 22 23 24
25 26 1 27 28 29 30 31
2025-06
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

When you're logged in, you can subscribe seminars via e-mail

Abstract: In this talk, we discuss the global-in-time existence of strong solutions to the one-dimensional compressible Navier-Stokes system. Classical results establish only local-in-time existence under the assumption that the initial data are smooth and the initial density remains uniformly positive. These results can be extended to global-in-time existence using the relative entropy and Bresch-Desjardins entropy under the same hypotheses. This approach allows for possibly different end states and degenerate viscosity. Reference: A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 39(4):1344–1365, 2007/08.
Host: 권순식     Contact: 김송이 (0423502786)     To be announced     2025-03-13 10:10:22
Abstract : When a plane shock hits a wedge head on, it experiences a reflection diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In particular, the C^{1,1}-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock where the wedge has large-angle. Also, one can obtain the C^{2,\alpha} regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. Reference : Myoungjean Bae, Gui-Qiang Chen, and Mikhail Feldman. "Regularity of solutions to regular shock reflection for potential flow." (2008) Gui-Qiang Chen and Mikhail Feldman. "Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow"
Host: 권순식     Contact: 김송이 (0423502786)     To be announced     2025-03-13 10:11:49