Department Seminars & Colloquia




2024-11
Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 1 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
2024-12
Sun Mon Tue Wed Thu Fri Sat
1 2 1 3 1 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

When you're logged in, you can subscribe seminars via e-mail

In this talk, we will discuss Leray-Hopf solutions to the two-dimensional Navier-Stokes equations with vanishing viscosity. We aim to demonstrate that when the initial vorticity is only integrable, the Leray-Hopf solutions in the vanishing viscosity limit do not exhibit anomalous dissipation. Moreover, we extend this result to the case where the initial vorticity is merely a Radon measure, assuming its singular part maintains a fixed sign. Our proof draws on several key observations from the work of J. Delort (1991) on constructing global weak solutions to the Euler equation. This is a joint work with Luigi De Rosa (University of Basel).
Host: 권순식     Contact: 김송이 (042-350-2786)     To be announced     2024-09-09 09:37:15
Ist lecture: Understanding material microstructure Abstract Under temperature changes or loading, alloys can form beautiful patterns of microstructure that largely determine their macroscopic behaviour. These patterns result from phase transformations involving a change of shape of the underlying crystal lattice, together with the requirement that such changes in different parts of the crystal fit together geometrically. Similar considerations apply to plastic slip. The lecture will explain both successes in explaining such microstructure mathematically, and how resolving deep open questions of the calculus of variations could lead to a better understanding. 2nd lecture: Monodromy and nondegeneracy conditions in viscoelasticity Abstract For certain models of one-dimensional viscoelasticity, there are infinitely many equilibria representing phase mixtures. In order to prove convergence as time tends to infinity of solutions to a single equilibrium, it is necessary to impose a nondegeneracy condition on the constitutive equation for the stress, which has been shown in interesting recent work of Park and Pego to be necessary. The talk will explain this, and show how in some cases the nondegeneracy condition can be proved using the monodromy group of a holomorphic function. This is joint work with Inna Capdeboscq and Yasemin Şengül.
Host: 변재형     English     2024-11-04 17:10:03
In this talk, we consider the self-dual O(3) Maxwell–Chern–Simons-Higgs equation, a semilinear elliptic system, defined on a flat two torus. We discuss about pointwise convergence behavior, which represents the Chern-Simons limit behavior of our system. Building upon this observation, we study the existence, stability, and asymptomatic behavior of solutions.
Host: 권순식     Contact: 김송이 (0423502786)     To be announced     2024-11-04 16:32:26