Department Seminars & Colloquia




2024-08
Sun Mon Tue Wed Thu Fri Sat
        1 1 2 1 3
4 5 6 1 7 1 8 9 10
11 12 13 1 14 2 15 16 17
18 19 20 21 2 22 23 24
25 26 27 1 28 29 30 31
2024-09
Sun Mon Tue Wed Thu Fri Sat
1 2 3 1 4 5 6 1 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

When you're logged in, you can subscribe seminars via e-mail

Kahn-Sujatha's birational motive is a variant of Chow motive that synthesis the ideas of birational geometry and motives. We explain our result saying that the unramified cohomology is a universal invariant for torsion motives of surfaces. We also exhibit examples of complex varieties violating the integral Hodge conjecture. If time permits, we discuss a pathology in positive characteristic. (Joint work with Kanetomo Sato.)
Host: 박진현     Contact: 박진현 (2734)     English     2024-07-19 18:26:10
Mr. Saqib Mushtaq Shah, a KAIX visiting graduate student from ISI Bangalore who will stay at KAIST for 8 weeks, is going to give a series of weekly talks on the Milnor K-theory from the beginning. It is part of his KAIX summer internship works.
Host: 박진현     Contact: 박진현 (2734)     English     2024-07-26 15:44:39
Depth and width parameters of graphs, e.g., tree-width, path-width and tree-depth, play a crucial role in algorithmic and structural graph theory. These notions are of fundamental importance in the theory of graph minors, fixed parameter complexity and the theory of sparsity. In this talk, we will survey structural and algorithmic results that concern width and depth parameters of matroids. We will particularly focus on matroid depth parameters and discuss the relation of the presented concepts to discrete optimization. As an application, we will present matroid based algorithms that uncover a hidden Dantzig-Wolfe-like structure of an input instance (if such structure is present) and transform instances of integer programming to equivalent ones, which are amenable to the existing tools in integer programming. The most recent results presented in the talk are based on joint work with Marcin Briański, Jacob Cooper, Timothy F. N. Chan, Martin Koutecký, Ander Lamaison, Kristýna Pekárková and Felix Schröder.
Host: Sang-il Oum     English     2024-07-11 05:50:18
For motivational purposes, we begin by explaining the classical Satake isomorphism from which we deduce the unramified local Langlands correspondence. Then we explain a geometric interpretation of the Satake isomorphism. More precisely, we explain how one can view Hecke operators as global functions on the moduli space of unramified L-parameters. This viewpoint arises from the categorical local Langlands correspondence. The main content of the talk is p-adic and mod p analogues of this interpretation, where the space of unramified L-parameters is replaced by certain loci in the moduli stack of p-adic Galois representations (so-called the Emerton-Gee stack). We will also discuss their relationship with the categorical p-adic local Langlands program.
Host: 임보해     Contact: 김윤옥 (5745)     To be announced     2024-07-03 15:02:19
For the past few years, I’ve been working on formalizing proofs in matroid theory using the Lean proof assistant. This has led me to many interesting and unexpected places. I’ll talk about what formalization looks like in practice from the perspective of a combinatorialist.
Host: Sang-il Oum     English     2024-07-26 09:02:35
Let S be a simply-connected rational homology complex projective plane with quotient singularities. The algebraic Montgomery-Yang problem conjectures that the number of singular points of S is at most three. In this talk, we leverage results from the study of smooth 4-manifolds, such as the Donaldson diagonalization theorem, to establish additional conditions for S. As a result, we eliminate the possibility of a rational homology complex projective plane of specific types with four singularities. We also identify infinite families of singularities that satisfy properties in algebraic geometry, including the orbifold BMY inequality, but are obstructed from being a rational homology complex projective plane due to smooth conditions. Additionally, we discuss experimental results related to this problem. This is joint work with Jongil Park and Kyungbae Park.
Host: 박정환     To be announced     2024-07-02 09:42:41
As part of the Langlands conjecture, it is predicted that every $\ell$-adic Galois representation attached to an algebraic cuspidal automorphic representation of $\mathrm{GL}_n$ over a number field is irreducible. In this talk, we will prove that a type $A_1$ Galois representation attached to a regular algebraic (polarized) cuspidal automorphic representation of $\mathrm{GL}_n$ over a totally real field $K$ is irreducible for all $\ell$, subject to some mild conditions. We will also prove that the attached Galois representation is residually irreducible for almost all $\ell$. Moreover, if $K=\mathbb Q$, we will prove that the attached Galois representation can be constructed from two-dimensional modular Galois representations up to twist. This is a joint work with Professor Chun-Yin Hui.
Host: 임보해     Contact: 김윤옥 (5745)     To be announced     2024-07-30 00:07:07
In this talk, I will talk about isotopy problems of Seifert surfaces pushed in to the 4-ball. In particular, I will prove that every Seifert surface of a non-split alternating link become isotopic in the 4-ball. This is a joint work with Maggie Miller and Jaehoon Yoo.
Host: 박정환     English     2024-07-01 20:29:29
In the first part of the talk, I will discuss the asymptotic expansions of the Euclidean Φ^4-measure in the low-temperature regime. Consequently, we derive limit theorems, specifically the law of large numbers and the central limit theorem for the Φ^4-measure in the low-temperature limit. In the second part of the talk, I will focus on the infinite volume limit of the focusing Φ^4-measure. Specifically, with appropriate scaling, the focusing Φ^4-measure exhibits Gaussian fluctuations around a scaled solitary wave, that is, the central limit theorem. This talk is based on joint works with Benjamin Gess, Pavlos Tsatsoulis, and Philippe Sosoe.
Host: Kyeongsik Nam     English     2024-07-09 19:07:38
Every (finite) matroid consists of a (finite) set called the ground set, and a collection of distinguished subsets called the independent sets. A classic example arises when the ground set is a finite set of vectors from a vector space, and the independent subsets are exactly the subsets that are linearly independent. Any such matroid is said to be representable. We can think of a representable matroid as being a geometrical configuration where the points have been given coordinates from a field. Another important class arises when the points are given coordinates from a group. Such a class is said to be gain-graphic. Monadic second-order logic is a natural language for matroid applications. In this language we are able to quantify only over subsets of the ground set. The importance of monadic second-order logic comes from its connections to the theory of computation, as exemplified by Courcelle’s Theorem. This theorem provides polynomial-time algorithms for recognising properties defined in monadic second-order logic (as long as we impose a bound on the structural complexity of the input objects). It is natural to ask which classes of matroids can be defined by sentences in monadic second-order logic. When the class consists of the matroids that are coordinatized by a field we have a complete answer to this question. When the class is coordinatized by a group the problem becomes much harder. This talk will contain a brief introduction to matroids. Based on work with Sapir Ben-Shahar, Matt Conder, Daryl Funk, Angus Matthews, Mike Newman, and Gabriel Verret.
Host: Sang-il Oum     English     2024-07-29 21:53:44
In 1980, Burr conjectured that every directed graph with chromatic number $2k-2$ contains any oriented tree of order $k$ as a subdigraph. Burr showed that chromatic number $(k-1)^2$ suffices, which was improved in 2013 to $\frac{k^2}{2} – \frac{k}{2} + 1$ by Addario-Berry et al. In this talk, we give the first subquadratic bound for Burr’s conjecture, by showing that every directed graph with chromatic number $8\sqrt{\frac{2}{15}} k \sqrt{k} + O(k)$ contains any oriented tree of order $k$. Moreover, we provide improved bounds of $\sqrt{\frac{4}{3}} k \sqrt{k}+O(k)$ for arborescences, and $(b-1)(k-3)+3$ for paths on $b$ blocks, with $b\ge 2$.
Host: Sang-il Oum     English     2024-06-21 15:10:32
An edge-colored graph $H$ is called rainbow if all of its edges are given distinct colors.  An edge-colored graph $G$ is then called rainbow $H$-free when no copy of $H$ in $G$ is rainbow.  With this, we define a graph $G$ to be rainbow $H$-saturated when there is some proper edge-coloring of $G$ which is rainbow $H$-free, but for every pair of non-adjacent vertices $x,y\in V(G)$, the graph $G+xy$ formed by adding the edge $xy$ to $G$ cannot be given a rainbow $H$-free coloring.  We think of these graphs as edge-maximal rainbow $H$-free graphs.  (We note that here we make no restrictions on the colorings of $G+xy$ whatsoever, except that they are proper colorings.  They may use any number of colors, and need not be extensions of the original rainbow $H$-free coloring of $G$.) With this framework in place, we define the rainbow saturation number and rainbow extremal number to be the largest and smallest number of edges, respectively, among all $n$ vertex rainbow $H$-saturated graphs.  The latter of these was defined by Keevash, Mubayi, Sudakov, and Verstraëte in 2007; the former was introduced by B., Johnston, and Rombach in 2019.  In this talk, we discuss recent progress on both the rainbow saturation numbers and rainbow extremal numbers.  We also give several broad generalizations of these concepts and discuss many open problems.  This talk contains joint work with Vic Bednar (Furman), Dan Johnston (Trinity College, CT), and Puck Rombach (Vermont).
Host: Sang-il Oum     English     2024-07-06 00:03:17