Department Seminars & Colloquia




2023-10
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 1 11 12 13 14
15 16 17 1 18 19 20 1 21
22 23 24 1 25 26 27 28
29 30 31 1        
2023-11
Sun Mon Tue Wed Thu Fri Sat
      1 1 2 3 4
5 6 7 1 8 9 10 1 11
12 13 14 15 16 17 1 18
19 20 1 21 22 1 23 24 25
26 27 28 1 29 30    

When you're logged in, you can subscribe seminars via e-mail

Dirac's theorem determines the sharp minimum degree threshold for graphs to contain perfect matchings and Hamiltonian cycles. There have been various attempts to generalize this theorem to hypergraphs with larger uniformity by considering hypergraph matchings and Hamiltonian cycles. We consider another natural generalization of the perfect matchings, Steiner triple systems. As a Steiner triple system can be viewed as a partition of pairs of vertices, it is a natural high-dimensional analogue of a perfect matching in graphs. We prove that for sufficiently large integer $n$ with $n \equiv 1 \text{ or } 3 \pmod{6},$ any $n$-vertex $3$-uniform hypergraph $H$ with minimum codegree at least $\left(\frac{3 + \sqrt{57}}{12} + o(1) \right)n = (0.879... + o(1))n$ contains a Steiner triple system. In fact, we prove a stronger statement by considering transversal Steiner triple systems in a collection of hypergraphs. We conjecture that the number $\frac{3 + \sqrt{57}}{12}$ can be replaced with $\frac{3}{4}$ which would provide an asymptotically tight high-dimensional generalization of Dirac's theorem.
Host: Sang-il Oum     English     2023-11-01 15:43:21
I will report on some recent results on modelling the heart, the external circulation, and their application to problems of clinical relevance. I will show that a proper integration between PDE-based and machine-learning algorithms can improve the computational efficiency and enhance the generality of our iHEART simulator.
ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium), (pw: 1234) + Google Map
Host: Jae Kyoung Kim     English     2023-10-16 10:59:45
Given a hypergraph $H=(V,E)$, we say that $H$ is (weakly) $m$-colorable if there is a coloring $c:V\to [m]$ such that every hyperedge of $H$ is not monochromatic. The (weak) chromatic number of $H$, denoted by $\chi(H)$, is the smallest $m$ such that $H$ is $m$-colorable. A vertex subset $T \subseteq V$ is called a transversal of $H$ if for every hyperedge $e$ of $H$ we have $T\cap e \ne \emptyset$. The transversal number of $H$, denoted by $\tau(H)$, is the smallest size of a transversal in $H$. The transversal ratio of $H$ is the quantity $\tau(H)/|V|$ which is between 0 and 1. Since a lower bound on the transversal ratio of $H$ gives a lower bound on $\chi(H)$, these two quantities are closely related to each other. Upon my previous presentation, which is based on the joint work with Joseph Briggs and Michael Gene Dobbins (https://www.youtube.com/watch?v=WLY-8smtlGQ), we update what is discovered in the meantime about transversals and colororings of geometric hypergraphs. In particular, we focus on chromatic numbers of $k$-uniform hypergraphs which are embeddable in $\mathbb{R}^d$ by varying $k$, $d$, and the notion of embeddability and present lower bound constructions. This result can also be regarded as an improvement upon the research program initiated by Heise, Panagiotou, Pikhurko, and Taraz, and the program by Lutz and Möller. We also present how this result is related to the previous results and open problems regarding transversal ratios. This presentation is based on the joint work with Eran Nevo.
Host: Sang-il Oum     English     2023-11-01 15:44:42
TBD
ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium), (pw: 1234) + Google Map
Host: Jae Kyoung Kim     English     2023-10-16 10:58:00
Interpreting data using mechanistic mathematical models provides a foundation for discovery and decision-making in all areas of science and engineering. Key steps in using mechanistic mathematical models to interpret data include: (i) identifiability analysis; (ii) parameter estimation; and (iii) model prediction. Here we present a systematic, computationally efficient likelihood-based workflow that addresses all three steps in a unified way. Recently developed methods for constructing profile-wise prediction intervals enable this workflow and provide the central linkage between different workflow components. These methods propagate profile-likelihood-based confidence sets for model parameters to predictions in a way that isolates how different parameter combinations affect model predictions. We show how to extend these profile-wise prediction intervals to two-dimensional interest parameters, and then combine profile-wise prediction confidence sets to give an overall prediction confidence set that approximates the full likelihood-based prediction confidence set well. We apply our methods to a range of synthetic data and real-world ecological data describing re-growth of coral reefs on the Great Barrier Reef after some external disturbance, such as a tropical cyclone or coral bleaching event.
ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium), (pw: 1234) + Google Map
Host: Jae Kyoung Kim     English     2023-10-16 10:56:14
Determining the density required to ensure that a host graph G contains some target graph as a subgraph or minor is a natural and well-studied question in extremal combinatorics. The celebrated 50-year-old Erdős-Sós conjecture states that for every k, if G has average degree exceeding k-2 then it contains every tree T with k vertices as a subgraph. This is tight as the clique with k-1 vertices contains no tree with k vertices as a subgraph. We present some variants of this conjecture. We first consider replacing bounds on the average degree by bounds on the minimum and maximum degrees. We then consider replacing subgraph by minor in the statement.
Host: Sang-il Oum     English     2023-10-06 16:34:20
The Hypothalamic-Pituitary-Adrenal (HPA) axis is the key regulatory pathway responsible for maintaining homeostasis under conditions of real or perceived stress. Endocrine responses to stressors are mediated by adrenocorticotrophic hormone (ACTH) and corticosteroid (CORT) hormones. In healthy, non-stressed conditions, ACTH and CORT exhibit highly correlated ultradian pulsatility with an amplitude modulated by circadian processes. Disruption of these hormonal rhythms can occur as a result of stressors or in the very early stages of disease. Despite the fact that misaligned endocrine rhythms are associated with increased morbidity, a quantitative understanding of their mechanistic origin and pathogenicity is missing. Mathematically, the HPA axis can be understood as a dynamical system that is optimised to respond and adapt to perturbations. Normally, the body copes well with minor disruptions, but finds it difficult to withstand severe, repeated or long-lasting perturbations. Whilst a healthy HPA axis maintains a certain degree of robustness to stressors, its fragility in diseased states is largely unknown, and this understanding constitutes a critical step toward the development of digital tools to support clinical decision-making. This talk will explore how these challenges are being addressed by combining high-resolution biosampling techniques with mathematical and computational analysis methods. This interdisciplinary approach is helping us quantify the inter-individual variability of daily hormone profiles and develop novel “dynamic biomarkers” that serve as a normative reference and to signal endocrine dysfunction. By shifting from a qualitative to a quantitative description of the HPA axis, these insights bring us a step closer to personalised clinical interventions for which timing is key.
ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium), (pw: 1234) + Google Map
Host: Jae Kyoung Kim     English     2023-10-16 10:52:33
We prove that every finite colouring of the plane contains a monochromatic pair of points at an odd integral distance from each other.
Host: Sang-il Oum     English     2023-10-09 22:00:59
Graph product structure theory describes complex graphs in terms of products of simpler graphs. In this talk, I will introduce this subject and talk about some of my recent results in this area. The focus of my talk will be on a new tool in graph product structure theory called `blocking partitions.’ I’ll show how this tool can be used to prove stronger product structure theorems for powers of planar graphs as well as k-planar graphs, resolving open problems of Dujmović, Morin and Wood, and Ossona de Mendez.
Host: Sang-il Oum     English     2023-10-06 15:36:23
Almost all biological systems possess the ability to gather environmental information and modulate their behaviors to adaptively respond to changing environments. While animals excel at sensing odors, even simple bacteria can detect faint chemicals using stochastic receptors. They then navigate towards or away from the chemical source by processing this sensed information through intracellular reaction systems. In the first half of our talk, we demonstrate that the E. coli chemotactic system is optimally structured for sensing noisy signals and controlling taxis. We utilize filtering theory and optimal control theory to theoretically derive this optimal structure and compare it to the quantitatively verified biochemical model of chemotaxis. In the latter half, we discuss the limitations of traditional information theory, filtering theory, and optimal control theory in analyzing biological systems. Notably, all biological systems, especially simpler ones, have constrained computational resources like memory size and energy, which influence optimal behaviors. Conventional theories don’t directly address these resource constraints, likely because they emerged during a period when computational resources were continually expanding. To address this gap, we introduce the “memory-limited partially observable optimal control,” a new theoretical framework developed by our group, and explore its relevance to biological problems.
ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium), (pw: 1234) + Google Map
Host: Jae Kyoung Kim     English     2023-10-16 10:49:53
An edge-coloured graph is said to be rainbow if it uses no colour more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstraëte from 2007 asks for the maximum possible average degree of a properly edge-coloured graph on n vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of $(\log n)^{2+o(1)}$ for this question. Very recently, Janzer-Sudakov and Kim-Lee-Liu-Tran independently removed the $o(1)$ term in Tomon's bound. We show that the answer to the question is equal to $(\log n)^{1+o(1)}$. A key tool we use is the theory of robust sublinear expanders. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non-abelian groups. Joint work with: Noga Alon, Lisa Sauermann, Dmitrii Zakharov and Or Zamir.
Host: Sang-il Oum     English     2023-10-08 20:27:39
The k-color induced size-Ramsey number of a graph H is the smallest number of edges a (host) graph G can have such that for any k-coloring of its edges, there exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in their seminal paper, Haxell, Kohayakawa and Łuczak showed that for cycles these numbers are linear for any constant number of colours, i.e., for some C=C(k), there is a graph with at most Cn edges whose any k-edge-coloring contains a monochromatic induced cycle of length n. The value of C comes from the use of the sparse regularity lemma and has a tower-type dependence on k. In this work, we obtain nearly optimal bounds for the required value of C. Joint work with Nemanja Draganić and Benny Sudakov.
Host: Sang-il Oum     English     2023-09-20 22:53:08