Department Seminars & Colloquia




2021-07
Sun Mon Tue Wed Thu Fri Sat
        1 1 2 3
4 5 6 7 8 9 10
11 12 1 13 14 1 15 16 17
18 19 20 21 22 23 24
25 26 27 28 1 29 30 31
2021-08
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 1 11 12 13 14
15 16 17 1 18 1 19 20 21
22 23 24 1 25 26 27 28
29 30 31 1        

When you're logged in, you can subscribe seminars via e-mail

A signed graph is a pair $(G,\Sigma)$ where $G$ is a graph and $\Sigma$ is a subset of edges of $G$. A cycle $C$ of $G$ is a subset of edges of $G$ such that every vertex of the subgraph of $G$ induced by $C$ has an even degree. We say that $C$ is even in $(G,\Sigma)$ if $|C \cap \Sigma|$ is even; otherwise, $C$ is odd. A matroid $M$ is an even-cycle matroid if there exists a signed graph $(G,\Sigma)$ such that circuits of $M$ precisely corresponds to inclusion-wise minimal non-empty even cycles of $(G,\Sigma)$. For even-cycle matroids, two fundamental questions arise: (1) what is the relationship between two signed graphs representing the same even-cycle matroids? (2) how many signed graphs can an even-cycle matroid have? For (a), we characterize two signed graphs $(G_1,\Sigma_1)$ and $(G_2,\Sigma_2)$ where $G_1$ and $G_2$ are $4$-connected that represent the same even-cycle matroids. For (b), we introduce pinch-graphic matroids, which can generate exponentially many representations even when the matroid is $3$-connected. An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a pair of vertices such that every odd cycle intersects with at least one of them. We prove that there exists a constant $c$ such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number of representations is bounded by $c$. This is joint work with Bertrand Guenin and Irene Pivotto.
Host: Sang-il Oum     English     2021-08-30 10:02:48
The Weighted $\mathcal F$-Vertex Deletion for a class $\mathcal F$ of graphs asks, given a weighted graph $G$, for a minimum weight vertex set $S$ such that $G-S\in\mathcal F$. The case when $\mathcal F$ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted $\mathcal F$-Vertex Deletion. Only three cases of minor-closed $\mathcal F$ are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class $\mathcal F$ of $\theta_c$-minor-free graphs, under the equivalent setting of the Weighted c-Bond Cover, and present a constant-factor approximation algorithm using the primal-dual method. For this, we leverage a structure theorem implicit in [Joret et al., SIDMA’14] which states the following: any graph $G$ containing a $\theta_c$-minor-model either contains a large two-terminal protrusion, or contains a constant-size $\theta_c$-minor-model, or a collection of pairwise disjoint constant-sized connected sets that can be contracted simultaneously to yield a dense graph. In the first case, we tame the graph by replacing the protrusion with a special-purpose weighted gadget. For the second and third case, we provide a weighting scheme which guarantees a local approximation ratio. Besides making an important step in the quest of (dis)proving a constant-factor approximation for Weighted $\mathcal F$-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families. This is joint work with Euiwoong Lee and Dimitrios M. Thilikos.
YouTube Live at https://youtube.com/ibsdimag
Host: Sang-il Oum     English     2021-08-06 14:29:30
We call an induced cycle of length at least four a hole. The parity of a hole is the parity of its length. Forbidding holes of certain types in a graph has deep structural implications. In 2006, Chudnovksy, Seymour, Robertson, and Thomas famously proved that a graph is perfect if and only if it does not contain an odd hole or a complement of an odd hole. In 2002, Conforti, Cornuéjols, Kapoor, and Vuškovíc provided a structural description of the class of even-hole-free graphs. I will describe the structure of all graphs that contain only holes of length $\ell$ for every $\ell \geq 7$ (joint work with Jake Horsfield, Myriam Preissmann, Paul Seymour, Ni Luh Dewi Sintiari, Cléophée Robin, Nicolas Trotignon, and Kristina Vuškovíc. Analysis of how holes interact with graph structure has yielded detection algorithms for holes of various lengths and parities. In 1991, Bienstock showed it is NP-Hard to test whether a graph G has an even (or odd) hole containing a specified vertex $v \in V(G)$. In 2002, Conforti, Cornuéjols, Kapoor, and Vuškovíc gave a polynomial-time algorithm to recognize even-hole-free graphs using their structure theorem. In 2003, Chudnovsky, Kawarabayashi, and Seymour provided a simpler and slightly faster algorithm to test whether a graph contains an even hole. In 2019, Chudnovsky, Scott, Seymour, and Spirkl provided a polynomial-time algorithm to test whether a graph contains an odd hole. Later that year, Chudnovsky, Scott, and Seymour strengthened this result by providing a polynomial-time algorithm to test whether a graph contains an odd hole of length at least $\ell$ for any fixed integer $\ell \geq 5$. I will present a polynomial-time algorithm (joint work with Paul Seymour) to test whether a graph contains an even hole of length at least $\ell$ for any fixed integer $\ell \geq 4$.
YouTube Live at https://youtube.com/ibsdimag
Host: Sang-il Oum     English     2021-08-06 14:28:02
We show that for pairs (Q,R) and (S,T) of disjoint subsets of vertices of a graph G, if G is sufficiently large, then there exists a vertex v in V(G)−(Q∪R∪S∪T) such that there are two ways to reduce G by a vertex-minor operation while preserving the connectivity between Q and R and the connectivity between S and T. Our theorem implies an analogous theorem of Chen and Whittle (2014) for matroids restricted to binary matroids. Joint work with Sang-il Oum.
Host: Sang-il Oum     English     2021-08-06 14:25:28
Organisms have evolved an internal biological clock which allows them to temporally regulate and organize their physiological and behavioral responses to cope in an optimal way with the fundamentally periodic nature of the environment. It is now well established that the molecular genetics of such rhythms within the cell consist of interwoven transcriptional-translational feedback loops involving about 15 clock genes, which generate circa 24-h oscillations in many cellular functions at cell population or whole organism levels. We will present statistical methods and modelling approaches that address newly emerging large circadian data sets, namely spatio-temporal gene expression in SCN neurons and rest-activity actigraph data obtained from non-invasive e-monitoring, both of which provide unique opportunities for furthering progress in understanding the synchronicity of circadian pacemaking and address implications for monitoring patients in chronotherapeutic healthcare.
This talk will be presented online. Zoom link: 709 120 4849 (pw: 1234)
Abstract: We consider the problem of nonparametric imputation using neural network models. Neural network models can capture complex nonlinear trends and interaction effects, making it a powerful tool for predicting missing values under minimum assumptions on the missingness mechanism. Statistical inference with neural network imputation, including variance estimation, is challenging because the basis for function estimation is estimated rather than known. In this paper, we tackle the problem of statistical inference with neural network imputation by treating the hidden nodes in a neural network as data-driven basis functions. We prove that the uncertainty in estimating the basis functions can be safely ignored and hence the linearization method for neural network imputation can be greatly simplified. A simulation study confirms that the proposed approach results in efficient and well-calibrated confidence intervals even when classic approaches fail due to severe nonlinearity and complicated interactions.
Host: 김재경     To be announced     2021-06-08 15:30:51