학과 세미나 및 콜로퀴엄
Carl-Fredrik Nyberg Brodda (고등과학원)위상수학 세미나
An invitation to combinatorial semigroup theory I
Carl-Fredrik Nyberg Brodda (고등과학원)위상수학 세미나
An invitation to combinatorial semigroup theory II
Carl-Fredrik Nyberg Brodda (고등과학원)위상수학 세미나
An invitation to combinatorial semigroup theory III
Carl-Fredrik Nyberg Brodda (고등과학원)위상수학 세미나
An invitation to combinatorial semigroup theory IV
우태윤 (KAIST)기타
Grothendieck groups of regular schemes 1
대학원생 세미나
SAARC 세미나
편미분방정식 통합연구실 세미나
IBS-KAIST 세미나
학술회의 및 워크샵
학생 뉴스
북마크
Research Highlights
게시판
동문 뉴스
Problem of the week
Let \( X \in \mathbb{R}^{n \times n} \) be a symmetric matrix with eigenvalues \( \lambda_i \) and orthonormal eigenvectors \( u_i \). The spectral decomposition gives \( X = \sum_{i=1}^n \lambda_i u_i u_i^\top \). For a function \( f : \mathbb{R} \to \mathbb{R} \), define \( f(X) := \sum_{i=1}^n f(\lambda_i) u_i u_i^\top \). Let \( X, Y \in \mathbb{R}^{n \times n} \) be symmetric. Is it always true that \( e^{X+Y} = e^X e^Y \)? If not, under what conditions does the equality hold?