Department Seminars & Colloquia
When you're logged in, you can subscribe seminars via e-mail
Algebraic fibre spaces are relative versions of algebraic varieties. For an algebraic fibre space f:X->Y, the varieties X,Y and the general fibre F
are deeply related by various formulas and conjectures on the invariants of varieties. For example, the Iitaka conjecture is still an open problem which predicts that the Kodaira dimension of X is at least the sum of kodaira dimensions of F and Y.
We explain how the geometry of algebraic fibre spaces can be studied by convex bodies called Okounkov bodies.
The idea of using homogeneous dynamics to Diophantine approximation has grown to an active subfield of mathematics, with numerous results on Hausdorff dimension of sets of vectors with certain Diophantine properties. In this talk, we will start from scratch, from the Gauss map of the usual continued fraction expansion for real numbers and give a "dynamical interpretation" of Diophantine properties of continued fractions in terms of the orbits of the geodesic flow on the hyperbolic plane. We will then present a series of results of the speaker with coauthors on inhomogeneous Diophantine approximation and give ideas of proofs, especially the idea related to the partial proof of Littlewood conjecture of Einsiedler-Katok-Lindenstrauss. (The latter part of the talk is based on joint works with U. Shapira-N. de Saxce, Y. Bugeaud-Donghan Kim-M. Rams, and Wooyeon Kim-Taehyung Kim.)
In this talk, I will present a recent work in collaboration with physicists on the analysis of real time Transmission Electron Microscopy (TEM) images to understand molecular transition from crystal solid state to liquid state. Molecules are deposited on graphene with multilayer structures, which are projected and overlaid in noisy 2d TEM images. The problem is to find all the molecular centers in the extremely noisy 2d images where projected molecules are overlaid and to track the centers across the image frames. Before discussing the method that we considered, I will give a brief history in the development of image segmentation techniques with some theoretical and numerical details of old fashioned methods. Then, our method of image segmentation for molecular center identification follows.