Department Seminars & Colloquia
When you're logged in, you can subscribe seminars via e-mail
The circle is the only connected closed 1-dimensional manifold, and maybe that's why it has so many interesting features. In this talk, we would like to emphasize that there are many things we still do not know about this one of the simplest manifolds. We will survey many interesting recent results around the circle in the context of low-dimensional topology.
In the talk, I discuss previous works on the arithmetic of various twisted special $L$-values and dynamical phenomena behind them. Main emphasis will be put on the problem of estimating several exponential sums such as Kloosterman sums and its relation to the problem of non-vanishing of special $L$-values with cyclotomic twists. A distribution of homological cycles on the modular curves will also be discussed and as a consequence, some results on a conjecture of Mazur-Rubin-Stein about the distribution of period integrals of elliptic modular forms will be presented.
This talk will review previous work on quadrupedal gaits and recent work on a generalized model for binocular rivalry proposed by Hugh Wilson. Both applications show how rigid phase-shift synchrony in periodic solutions of coupled systems of differential equations can help understand high level collective behavior in the nervous system.