학과 세미나 및 콜로퀴엄




2024-03
Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            
2024-04
Sun Mon Tue Wed Thu Fri Sat
  1 2 3 4 5 2 6
7 8 9 1 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        

로그인 시, 세미나를 이메일로 구독할 수 있습니다.

In this talk, we focus on the global existence of volume-preserving mean curvature flows. In the isotropic case, leveraging the gradient flow framework, we demonstrate the convergence of solutions to a ball for star-shaped initial data. On the other hand, for anisotropic and crystalline flows, we establish the global-in-time existence for a class of initial data with the reflection property, utilizing explicit discrete-in-time approximation methods.
Contact: 강문진 (0423502743)     미정     2024-03-25 10:08:59
We begin the first talk by introducing the concept of an h-principle that is mostly accessible through the two important methods. One of the methods is the convex integration that was successfully used by Mueller and Sverak and has been applied to many important PDEs. The other is the so-called Baire category method that was mainly studied by Dacorogna and Marcellini. We compare these methods in applying to a toy example.
Contact: 강문진 (0423502743)     미정     2024-03-25 10:03:36
In the second talk of the series, we exhibit several examples of application of convex integration to important PDE problems. In particular, we shall sketch some ideas of proof such as in the p-Laplace equation and its parabolic analogue, Euler-Lagrange equation of a polyconvex energy, gradient flow of a polyconvex energy and polyconvex elastodynamics.
Contact: 강문진 (0423502743)     미정     2024-03-27 09:40:37