학과 세미나 및 콜로퀴엄
We study the gradient theory of phase transitions through the asymptotic analysis of variational problems introduced by Modica (1987). As the perturbation parameter tends to zero, minimizers converge to two-phase functions whose interfaces minimize area. The proof uses techniques from the theory of functions of bounded variation and Γ-convergence. This framework has applications in materials science and the study of minimal surfaces.
4참고자료: L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 (1987), 123–142.
Confidence sequence provides ways to characterize uncertainty in stochastic environments, which is a widely-used tool for interactive machine learning algorithms and statistical problems including A/B testing, Bayesian optimization, reinforcement learning, and offline evaluation/learning.In these problems, constructing confidence sequences that are tight and correct is crucial since it has a significant impact on the performance of downstream tasks. In this talk, I will first show how to derive one of the tightest empirical Bernstein-style confidence bounds, both theoretically and numerically. This derivation is done via the existence of regret bounds in online learning, inspired by the seminal work of Raklin& Sridharan (2017). Then, I will discuss how our confidence bound extends to unbounded nonnegative random variables with provable tightness. In offline contextual bandits, this leads to the best-known second-order bound in the literature with promising preliminary empirical results. Finally, I will turn to the $[0,1]$-valued regression problem and show how the intuition from our confidence bounds extends to a novel betting-based loss function that exhibits variance-adaptivity. I will conclude with future work including some recent LLM-related topics.
Given a distribution, say, of data or mass, over a space, it is natural to consider a lower dimensional structure that is most “similar” or “close” to it. For example, consider a planning problem for an irrigation system (1-dimensional structure) over an agricultural region (2-dimensional distribution) where one wants to optimize the coverage and effectiveness of the water supply. This type of problem is related to “principal curves” in statistics and “manifold learning” in AI research. We will discuss some recent results in this direction that employ optimal transport approaches. This talk will be based on joint projects with Anton Afanassiev, Jonathan Hayase, Forest Kobayashi, Lucas O’Brien, Geoffrey Schiebinger, and Andrew Warren.
The investigation of $G_2$-structures and exceptional holonomy on 7-dimensional manifolds involves the analysis of a nonlinear Laplace-type operator on 3-forms. We will discuss the existence of solutions to the Poisson equation for this operator. Based on joint work with Timothy Buttsworth (The University of New South Wales).
자연과학동(E6) Room 1501
기타
Artem Pulemotov, Mikhail Feldman
KAI-X Mathematics Special PDE Lecture Series
자연과학동(E6) Room 1501
기타
Lecture 1: Artem Pulemotov (University of Queensland), 4:15-5:15PM
Title: The prescribed Ricci curvature problem on homogeneous spaces
Abstract: We will discuss the problem of recovering the ``shape" of a Riemannian manifold $M$ from its Ricci curvature. After reviewing the relevant background material and the history of the subject, we will focus on the case where $M$ is a homogeneous space for a compact Lie group. Based on joint work with Wolfgang Ziller (The University of Pennsylvania).
Lecture 2: Mikhail Feldman (University of Wisconsin-Madison), 5:30-6:30PM
Title: Self-similar solutions to two-dimensional Riemann problems with transonic shocks
Abstract: Multidimensional conservation laws is an active research area with open questions about existence, uniqueness, and stability of properly defined weak solutions, even for fundamental models such as the compressible Euler system. Understanding particular classes of weak solutions, such as Riemann problems, is crucial in this context. This talk focuses on self-similar solutions to two-dimensional Riemann problems involving transonic shocks for compressible Euler systems. Examples include regular shock reflection, Prandtl reflection, and four-shocks Riemann problem. We first review the results on existence, regularity, geometric properties and uniqueness of global self-similar solutions of regular reflection structure in the framework of potential flow equation. A significant open problem is to extend these results to compressible Euler system, i.e. to understand the effects of vorticity. We show that for the isentropic Euler system, solutions of regular reflection structure have low regularity. We further discuss existence, uniqueness and stability of renormalized solutions to the transport equation for vorticity in this low regularity setting.
***Tea Time 3:45PM-4:15PM in Room 1410***
***Tea Time 3:45PM-4:15PM in Room 1410***
Title: The prescribed Ricci curvature problem on homogeneous spaces
Abstract: We will discuss the problem of recovering the ``shape" of a Riemannian manifold $M$ from its Ricci curvature. After reviewing the relevant background material and the history of the subject, we will focus on the case where $M$ is a homogeneous space for a compact Lie group. Based on joint work with Wolfgang Ziller (The University of Pennsylvania).
Lecture 2: Mikhail Feldman (University of Wisconsin-Madison), 5:30-6:30PM
Title: Self-similar solutions to two-dimensional Riemann problems with transonic shocks
Abstract: Multidimensional conservation laws is an active research area with open questions about existence, uniqueness, and stability of properly defined weak solutions, even for fundamental models such as the compressible Euler system. Understanding particular classes of weak solutions, such as Riemann problems, is crucial in this context. This talk focuses on self-similar solutions to two-dimensional Riemann problems involving transonic shocks for compressible Euler systems. Examples include regular shock reflection, Prandtl reflection, and four-shocks Riemann problem. We first review the results on existence, regularity, geometric properties and uniqueness of global self-similar solutions of regular reflection structure in the framework of potential flow equation. A significant open problem is to extend these results to compressible Euler system, i.e. to understand the effects of vorticity. We show that for the isentropic Euler system, solutions of regular reflection structure have low regularity. We further discuss existence, uniqueness and stability of renormalized solutions to the transport equation for vorticity in this low regularity setting.
***Tea Time 3:45PM-4:15PM in Room 1410***
***Tea Time 3:45PM-4:15PM in Room 1410***
We consider a nonlocal semilinear elliptic equation in a bounded smooth domain with the inhomogeneous Dirichlet boundary condition, which arises as the stationary problem of the Keller-Segel system with physical boundary conditions describing the boundary-layer formation driven by chemotaxis. This problem has a unique steady-state solution which possesses a boundary-layer profile as the nutrient diffucion coefficient tends to zero. Using the Fermi coordinates and delicate analysis with subtle estimates, we also rigorously derive the asymptotic expansion of the boundary-layer profile and thickness in terms of the small diffusion rate with coefficients explicitly expressed by the domain geometric properties including mean curvature, volume and surface area. By these expansions, one can explicitly find the joint impact of the mean curvature, surface area and volume of the spatial domain on the boundary-layer steepness and thickness.
Computing obstructions is a useful tool for determining the dimension and singularity of a Hilbert scheme at a given point. However, this task can be quite challenging when the obstruction space is nonzero. In a previous joint work with S. Mukai and its sequels, we developed techniques to compute obstructions to deforming curves on a threefold, under the assumption that the curves lie on a "good" surface (e.g., del Pezzo, K3, Enriques, etc.) contained in the threefold. In this talk, I will review some known results in the case where the intermediate surface is a K3 surface and the ambient threefold is Fano. Finally, I will discuss the deformations of certain space curves lying on a complete intersection K3 surface, and the construction of a generically non-reduced component of the Hilbert scheme of P^5.