학과 세미나 및 콜로퀴엄
In this talk, we will discuss Leray-Hopf solutions to the two-dimensional Navier-Stokes equations with vanishing viscosity. We aim to demonstrate that when the initial vorticity is only integrable, the Leray-Hopf solutions in the vanishing viscosity limit do not exhibit anomalous dissipation. Moreover, we extend this result to the case where the initial vorticity is merely a Radon measure, assuming its singular part maintains a fixed sign. Our proof draws on several key observations from the work of J. Delort (1991) on constructing global weak solutions to the Euler equation. This is a joint work with Luigi De Rosa (University of Basel).