학과 세미나 및 콜로퀴엄




2024-07
Sun Mon Tue Wed Thu Fri Sat
  1 2 3 1 4 1 5 6
7 8 1 9 10 1 11 12 13
14 15 16 17 18 19 20
21 22 1 23 1 24 1 25 26 27
28 29 30 31      
2024-08
Sun Mon Tue Wed Thu Fri Sat
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

로그인 시, 세미나를 이메일로 구독할 수 있습니다.

This is part of an informal seminar series to be given by Mr. Jaehong Kim, who has been studying the book "Hodge theory and Complex Algebraic Geometry Vol 1 by Claire Voisin" for a few months. It will summarize about 70-80% of the book.
Host: 박진현     Contact: 박진현 (2734)     미정     2024-06-21 16:18:13
The analysis on the limiting behavior of solution is pivotal for equations in geometric analysis, mathematical physics and application in optimization. In 80s, Rene Thom conjectured that if an analytic gradient flow has a limit, then it approaches to the limit along a unique asymptotic direction. This represents a higher-order question following the seminal works by Lojasiewicz and L. Simon. In 2000, this conjecture was affirmatively proved by Kurdyka, Mostowski, and Parusinski for finite dimensional gradient flows. In this talk, we present a generalization of this to the class of PDEs which are gradient flows or equations with gradient structure. Our result reveals both the rate and the direction of convergence to the limit. This is a joint work with Pei-Ken Hung at UIUC.
Host: 권순식     Contact: 김송이 (042-350-2786)     미정     2024-05-31 09:38:22
In the 1970's J. Levine produced a surjection from the knot concordance group to the so called algebraic concordance group. This captured the known features of the knot concordance group to that point and classifies high dimensional concordance. During this survey talk we will explore the construction of the algebraic concordance group and explain some of its consequences.
Host: 박정환     영어     2024-05-28 14:06:55
In the 1980's Casson and Gordon produced the first non slice knots which are trivial in Levine's algebraic concordance group, and in 2003 Cochran-Orr-Teichner produced the first no slice knots undetectable by Casson and Gordon's invariants. They do so by producing a filtration of the concordance group by subgroups a knot in the 1.5th term of this filtration has vanishing Casson-Gordon invariants. Since then this work has been central to the study of knot concordance. We will introduce this filtration and review just enough of the theory of L^2 homology to prove that the successive quotients of this filtration are nontrivial.
Host: 박정환     영어     2024-05-28 14:08:42
Knot homology theories revolutionized the study of knots and links, much like (simplicial or singular) homology theory revolutionized the study of topological spaces. One of the major knot homology theories, Khovanov homology, was introduced by M. Khovanov in 2000 as a "categorification of the Jones polynomial." One notable feature of Khovanov homology is its ability to detect the unknot, a feature not known to be possessed by the Jones polynomial. Recently, it has found notable applications in low-dimensional topology, including the detection of exotic surfaces in the 4-ball. Day 1: Jones polynomial and its categorification.
Host: 박정환     영어     2024-05-23 10:47:52
Knot homology theories revolutionized the study of knots and links, much like (simplicial or singular) homology theory revolutionized the study of topological spaces. One of the major knot homology theories, Khovanov homology, was introduced by M. Khovanov in 2000 as a "categorification of the Jones polynomial." One notable feature of Khovanov homology is its ability to detect the unknot, a feature not known to be possessed by the Jones polynomial. Recently, it has found notable applications in low-dimensional topology, including the detection of exotic surfaces in the 4-ball. Day 2: Numerical invariants from Khovanov homology and their applications.
Host: 박정환     영어     2024-05-23 10:49:41
Knot homology theories revolutionized the study of knots and links, much like (simplicial or singular) homology theory revolutionized the study of topological spaces. One of the major knot homology theories, Khovanov homology, was introduced by M. Khovanov in 2000 as a "categorification of the Jones polynomial." One notable feature of Khovanov homology is its ability to detect the unknot, a feature not known to be possessed by the Jones polynomial. Recently, it has found notable applications in low-dimensional topology, including the detection of exotic surfaces in the 4-ball. Day 3: Recent developments of Khovanov homology and its applications to low-dimensional topology.
Host: 박정환     미정     2024-05-23 10:51:32