Department Seminars and Colloquium
Graduate Seminars
SAARC Seminars
PDE Seminars
IBS-KAIST Seminars
Graduate School of AI for Math Seminar
Conferences and Workshops
Student News
Bookmarks
Research Highlights
Bulletin Boards
| 미원상사 두명장학금 장학생 선발 모집 공고 | 01. 21 | |
| [학부생연구프로그램] 2026 BSM REU at Haverford College | 01. 09 | |
| 2026-1회 박사자격시험 일정표 | 01. 08 |
| [파스칼 코리아] 석·박사 연구원 채용 | 02. 03 | |
| [삼성SDS] 2026년 상반기 알고리즘 특강 안내 | 12. 18 |
Problem of the week
Prove that for every positive integer \( k \) there exists a positive integer \( n \) such that
\[
\frac{(n+1)(n+2) \dots (2n-k)}{n(n-1) \dots (n-k+1)}
\]
is an integer and that \( k = o(n) \) for such \( n \).
KAIST Compass Biannual Research Webzine
Prove that for every positive integer \( k \) there exists a positive integer \( n \) such that
\[
\frac{(n+1)(n+2) \dots (2n-k)}{n(n-1) \dots (n-k+1)}
\]
is an integer and that \( k = o(n) \) for such \( n \).
