구글 Calendar나 iPhone 등에서 구독하면 세미나 시작 전에 알림을 받을 수 있습니다.

### Organizers

Sijong Kwak (KAIST)

Jinhyun Park (KAIST)

2017-2 CMC Foundations for Mathematical Challenges (대전 강연)

강연자: 기하서 교수 (연세대학교)

기간: 2017년 8월 27일(일) ~ 29일(화)

장소: KAIST 자연과학동 E6-1 1501호

주제: 소수정리와 리만가설

내용: 1859년 이후 리만가설은 다양한 사람들에 의해서 다양한 방법을 통하여 연구가 진행이 되어 왔는데 이번 강의에서는 본 발표자가 지난 20년간 리만가설의 완전한 해결을 위해서 시도한 방법론들을 요약해서 소개한다.

홈페이지: http://home.kias.re.kr/MKG/h/FMC2017daejeon/

Contact

김현수

hskim@kias.re.kr / 042-350-8545

====================================================

2017-1 CMC Foundations for Mathematical Challenges (서울 강연)

강연자: 이지운 교수 (KAIST)

기간: 2017년 8월 14일(월) ~ 18일(금)

장소: 서울 KIAS 1114 강의실(국제회의실)

주제: Random matrix theory

내용: TBA

홈페이지: http://home.kias.re.kr/MKG/h/FMC2017seoul/

*http://home.kias.re.kr/MKG/h/FMC2017daejeon/*

### Organizers

Soonsik Kwon, Paul Jung

-Speaker: Terence Tao (UCLA)

-Date: June 15-16, 2017

-Time: 16:00 pm

-Place: Fusion Hall, KI B/D, KAIST

-Title & Abstract

[ June 15 ]

Title: The Erdős discrepancy problem

Abstract: The discrepancy of a sequence f(1), f(2), ... of numbers is defined to be the largest value of |f(d) + f(2d) + ... + f(nd)| as n,d range over the natural numbers. In the 1930s, Erdos posed the question of whether any sequence consisting only of +1 and -1 could have bounded discrepancy. In 2010, the collaborative Polymath5 project showed (among other things) that the problem could be effectively reduced to a problem involving completely multiplicative sequences. Finally, using recent breakthroughs in the asymptotics of completely multiplicative sequences by Matomaki and Radziwill, as well as a surprising application of the Shannon entropy inequalities, the Erdos discrepancy problem was solved in 2015. In this talk I will discuss this solution and its connection to the Chowla and Elliott conjectures in number theory.

[ June 16 ]

Title: Finite time blowup constructions for supercritical equations

Abstract: Many basic PDE of physical interest, such as the three-dimensional Navier-Stokes equations, are "supercritical" in that the known conserved or bounded quantities for these equations allow the nonlinear components of the PDE to dominate the linear ones at fine scales. Because of this, almost none of the known methods for establishing global regularity for such equations can work, and global regularity for Navier-Stokes in particular is a notorious open problem. We present here some ways to show that if one allows some modifications to these supercritical PDE, one can in fact construct solutions that blow up in finite time (while still obeying conservation laws such as conservation of energy). This does not directly impact the global regularity question for the unmodified equations, but it does rule out some potential approaches to establish such regularity.

-Refreshments will be provided thirty minutes before the lecture begins.

-Contact

Hyeonsu Kim

hskim@kias.re.kr / +82-42-350-8545

*http://home.kias.re.kr/MKG/h/dls2017*

### Organizers

### Summer School on Probabilistic Methods

- Date
- 06/26/2017 - 06/30/2017
- Location
- NIMS

=========

10 Lectures + 5 Exercise Sessions for 5 Days

Tentative Schedule of Regular Days

==============================

2 Morning Lectures + Long Break + 1 Exercise Session before the dinner

(Monday: Starting at 11am)

Lecture description

===================

The Probabilistic Method is a powerful technique developed by the legendary Paul Erdős. To show the existence of a combinatorial object one defines a random object and shows that with positive probability it has the desired properties. Erdős deduces that the object must exist. In homage, we refer to this idea as Erdős Magic. Closely aligned is the study of random structures perse. Throughout we deal with large structures and asymptotic analysis permeates all of the lectures.

The specific lectures should be regarded as tentative. We will have two lectures each day but the material given may take more or less than one lecture period. Also, new material may be added and old material deleted. Expect the actual lectures to be these descriptions times 1 ± o(1).

Lecture I: What is Erdős Magic?

Lecture II: More Erdős Magic

Lecture III: Asymptopia

Lecture IV: Random Graphs

Lecture V and VI: The Erdős-Rényi Phase Transition

Lecture VII: Games Mathematicians Play

Lecture VIII: Needles in Exponential Haystacks

Lecture IX: Counting Connected Graphs

Lecture X: Gems

*https://camp.nims.re.kr/activities/eventpages/?id=207809&action=overview*