Posts Tagged ‘김연진’

1st Korean Workshop on Graph Theory

Tuesday, July 28th, 2015
1st Korean Workshop on Graph Theory
August 26-28, 2015
KAIST  (E6-1 1501 & 3435)
http://home.kias.re.kr/MKG/h/KWGT2015/
  • Program Book
  • Currently, we are planning to have talks in KOREAN.
  • Students/postdocs may get the support for the accommodation. (Hotel Interciti)
  • Others may contact us if you wish to book a hotel at a pre-negotiated price. Please see the website.
  • We may or may not have contributed talks. If you want, please contact us.
  • PLEASE REGISTER UNTIL AUGUST 16.
Location: KAIST
  • Room 1501 of E6-1 (August 26, 27)
  • Room 3435 of E6-1 (August 28)
Invited Speakers:
Organizers:

2014 KAIST CMC Discrete Math Workshop

Sunday, November 23rd, 2014
December 10–12, 2014
자연과학동(E6-1), KAIST

Preregistration in kcw2014.eventbrite.com deadline: Dec. 5 (Friday)

Program (Dec.10 Wed-Room 1409)
  • 1:30-2:00 Registration
  • 2:00-2:30 Young Soo Kwon (권영수), Yeungnam University: A variation of list coloring and its properties
  • 2:40-3:10 Mitsugu Hirasaka, Pusan National University: Small topics on association schemes
  • 3:10-3:40 Coffee Break
  • 3:40-4:10 Younjin Kim (김연진),  KAIST: On Extremal Combinatorial Problems of Noga Alon
  • 4:20-4:50 Jang Soo Kim (김장수),  Sungkyunkwan University: A new q-Selberg integral, Schur functions, and Young books
  • 5:00-6:00 Discussion
  • 6:00- Dinner
Program (Dec.11 Thurs-Room 1501 & 3435)
Program (Dec.12 Fri-Room 1501)

Younjin Kim (김연진), Cycle-saturated graphs with minimum number of edges

Tuesday, September 4th, 2012
Cycle-saturated graphs with minimum number of edges
Younjin Kim (김연진)
Department of Mathematical Sciences, KAIST
2012/9/14 Fri 4PM-5PM
A graph G is called H-saturated if it does not contain any copy of H, but for any edge e in the complement of G the graph G+e contains some H. The minimum size of an n-vertex H-saturated graph is denoted by sat(n,H). We prove sat(n,Ck) = n + n/k + O((n/k2) + k2) holds for all n≥k≥3, where Ck is a cycle with length k.
Joint work with Zoltan Füredi.