IBS/KAIST Joint Discrete Math Seminar

TU Graz

Seminar series on discrete mathematics @ Dept. of Mathematical Sciences, KAIST.

IBS/KAIST Joint Discrete Math Seminar

The genus of a random graph and the fragile genus property

Mihyun Kang (강미현)

TU Graz

TU Graz

2019/08/20 Tue 4:30PM-5:30PM

In this talk we shall discuss how quickly the genus of the Erdős-Rényi random graph grows as the number of edges increases and how dramatically a small number of random edges can increase the genus of a randomly perturbed graph. (Joint work with Chris Dowden and Michael Krivelevich)

IBS/KAIST Joint Discrete Math Seminar

Integrality of set covering polyhedra and clutter minors

Dabeen Lee (이다빈)

IBS Discrete Mathematics Group

IBS Discrete Mathematics Group

2019/07/16 Tue 4:30PM-5:30PM

Given a finite set of elements $V$ and a family $\mathcal{C}$ of subsets of $V$, the set covering problem is to find a minimum cardinality subset of $V$ intersecting every subset in the family $\mathcal{C}$. The set covering problem, also known as the hitting set problem, admits a simple integer linear programming formulation. The constraint system of the integer linear programming formulation defines a polyhedron, and we call it the set covering polyhedron of $\mathcal{C}$. We say that a set covering polyhedron is integral if every extreme point is an integer lattice point. Although the set covering problem is NP-hard in general, conditions under which the problem becomes polynomially solvable have been studied. If the set covering polyhedron is integral, then it is straightforward that the problem can be solved using a polynomial-time algorithm for linear programming.

In this talk, we will focus on the question of when the set covering polyhedron is integral. We say that the family $\mathcal{C}$ is a clutter if every subset in $\mathcal{C}$ is inclusion-wise minimal. As taking out non-minimal subsets preserves integrality, we may assume that $\mathcal{C}$ is a clutter. We call $\mathcal{C}$ ideal if the set covering polyhedron of it is integral. To understand when a clutter is ideal, the notion of clutter minors is important in that $\mathcal{C}$ is ideal if and only if so is every minor of it. We will study two fundamental classes of non-ideal clutters, namely, deltas and the blockers of extended odd holes. We will characterize when a clutter contains either a delta or the blocker of an extended odd hole as a minor.

This talk is based on joint works with Ahmad Abdi and G\’erard Cornu\’ejols.

IBS/KAIST Joint Discrete Math Seminar

A model theoretical approach to sparsity

Patrice Ossona de Mendez

CNRS, France

CNRS, France

2019/06/25 Tue 4:30PM-5:30PM

We discuss how the model theoretic notion of first-order transduction allows to define a notion of structural sparsity, and give some example of applications, like existence of low shrub-depth decompositions for tranductions of bounded expansion classes, characterization of transductions of classes with bounded pathwidth, decompositions of graphs with bounded rank-width into cographs.

IBS/KAIST Joint Discrete Math Seminar

An odd [1,b]-factor in regular graphs from eigenvalues

Suil O (오수일)

Department of Applied Mathematics and Statistics, SUNY-Korea

Department of Applied Mathematics and Statistics, SUNY-Korea

2019/06/19 Wed 4:30PM-5:30PM

An odd [1,b]-factor of a graph is a spanning subgraph H such that for every vertex v∈V(G), 1≤d_{H}(v)≤b, and d_{H}(v) is odd. For positive integers r≥3 and b≤r, Lu, Wu, and Yang gave an upper bound for the third largest eigenvalue in an r-regular graph with even number of vertices to guarantee the existence of an odd [1,b]-factor. In this talk, we improve their bound.

IBS/KAIST Joint Discrete Math Seminar

The number of maximal independent sets in the Hamming cube

Jinyoung Park (박진영)

Department of Mathematics, Rutgers University, USA

Department of Mathematics, Rutgers University, USA

2019/06/03 Monday 4:30PM-5:30PM (IBS, Room B232)

Let $Q_n$ be the $n$-dimensional Hamming cube (hypercube) and $N=2^n$. We prove that the number of maximal independent sets in $Q_n$ is asymptotically $2n2^{N/4}$, as was conjectured by Ilinca and Kahn in connection with a question of Duffus, Frankl and Rödl. The value is a natural lower bound derived from a connection between maximal independent sets and induced matchings. The proof of the upper bound draws on various tools, among them “stability” results for maximal independent set counts and old and new results on isoperimetric behavior in $Q_n$. This is joint work with Jeff Kahn.