Korea University
Room 1409
In this talk, we construct an algorithm producing the precise value of for positive integers m,n that uses recurrence relations of state matrices which turn out to be remarkably efficient to count such polygons. $$ p_{m \times n} = \mbox{(1,1)-entry of the matrix } (X_m)^n -1$$ where the matrix is defined by $$ X_{k+1} = \left( \begin{array}{cc} X_k & O_k \\ O_k & X_k \end{array}\right) \ \ \mbox{and} \ \ \ O_{k+1} = \left( \begin{array}{cc} O_k & X_k \\ X_k & 0 \end{array} \right) $$ for , with matrices and .