Archive for the ‘2018’ Category

Dong Yeap Kang (강동엽), On the rational Turán exponents conjecture

Thursday, September 27th, 2018
On the rational Turán exponents conjecture
Dong Yeap Kang (강동엽)
Department of Mathematical Sciences, KAIST
2018/11/5 Mon 5PM-6PM
The extremal number ex(n,F) of a graph F is the maximum number of edges in an n-vertex graph not containing F as a subgraph. A real number r∈[1,2] is realisable if there exists a graph F with ex(n , F) = Θ(nr). Several decades ago, Erdős and Simonovits conjectured that every rational number in [1,2] is realisable. Despite decades of effort, the only known realisable numbers are 1,7/5,2, and the numbers of the form 1+(1/m), 2-(1/m), 2-(2/m) for integers m≥1. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers 1 and 2.
We discuss some recent progress on the conjecture of Erdős and Simonovits. First, we show that 2-(a/b) is realisable for any integers a,b≥1 with b>a and b≡±1 (mod a). This includes all previously known ones, and gives infinitely many limit points 2-(1/m) in the set of all realisable numbers as a consequence.
Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.
This is joint work with Jaehoon Kim and Hong Liu.

JinHoo Ahn (안진후), Mekler’s Construction on NTP1 Theory

Tuesday, September 18th, 2018
Mekler’s Construction on NTP1 Theory
JinHoo Ahn (안진후)
Department of Mathematics, Yonsei University, Seoul
2018/10/1 Mon 5PM-6PM (E6-1, Room 1401)
Any structure whose language is finite has a model of graph theory which is bi-interpretable with it. From this idea, Mekler further developed a way of interpreting a model into a group. This Mekler’s construction preserves various model-theoretic properties such as stability, simplicity, and NTP2, thus helps us find new group examples in model theory. In this talk, I will introduce to you what Mekler’s construction is and briefly show that this preserves NTP1.

Joonkyung Lee (이준경), The extremal number of subdivisions

Thursday, September 13th, 2018
The extremal number of subdivisions
Joonkyung Lee (이준경)
Universität Hamburg, Hamburg, Germany
2018/9/17 Monday 5PM
One of the cornerstones of extremal graph theory is a result of Füredi, later reproved and given due prominence by Alon, Krivelevich and Sudakov, saying that if H is a bipartite graph with maximum degree r on one side, then there is a constant C such that every graph with n vertices and C n2 – 1/r edges contains a copy of H. This result is tight up to the constant when H contains a copy of Kr,s with s sufficiently large in terms of r. We conjecture that this is essentially the only situation in which Füredi’s result can be tight and prove this conjecture for r = 2. More precisely, we show that if H is a C4-free bipartite graph with maximum degree 2 on one side, then there are positive constants C and δ such that every graph with n vertices and C n3/2 – δ edges contains a copy of H. This answers a question by Erdős from 1988. The proof relies on a novel variant of the dependent random choice technique which may be of independent interest. This is joint work with David Conlon.

Euiwoong Lee (이의웅), Faster Exact and Approximate Algorithms for k-Cut

Saturday, September 8th, 2018
Faster Exact and Approximate Algorithms for k-Cut
Euiwoong Lee (이의웅)
Courant Institute of Mathematical Sciences, NYU, New York, USA
2018/11/13 Tue 5PM (Bldg. E6-1, Room 1401)
In the k-cut problem, we are given an edge-weighted graph G and an integer k, and have to remove a set of edges with minimum total weight so that G has at least k connected components. This problem has been studied various algorithmic perspectives including randomized algorithms, fixed-parameter tractable algorithms, and approximation algorithms. Their proofs of performance guarantees often reveal elegant structures for cuts in graphs.
It has still remained an open problem to (a) improve the runtime of exact algorithms, and (b) to get better approximation algorithms. In this talk, I will give an overview on recent progresses on both exact and approximation algorithms. Our algorithms are inspired by structural similarities between k-cut and the k-clique problem.

Euiwoong Lee (이의웅), Bridging Continuous and Discrete Optimization through the Lens of Approximation

Saturday, September 8th, 2018

[FYI: Colloquium, School of Computing]

Bridging Continuous and Discrete Optimization through the Lens of Approximation
Euiwoong Lee (이의웅)
Courant Institute of Mathematical Sciences, NYU, New York, USA
2018/11/12 Mon 4PM (Bldg. E3-1, Room 1501)
Mathematical optimization is a field that studies algorithms, given an objective function and a feasible set, to find the element that maximizes or minimizes the objective function from the feasible set. While most interesting optimization problems are NP-hard and unlikely to admit efficient algorithms that find the exact optimal solution, many of them admit efficient “approximation algorithms” that find an approximate optimal solution.
Continuous and discrete optimization are the two main branches of mathematical optimization that have been primarily studied in different contexts. In this talk, I will introduce my recent results that bridge some of important continuous and discrete optimization problems, such as matrix low-rank approximation and Unique Games. At the heart of the connection is the problem of approximately computing the operator norm of a matrix with respect to various norms, which will allow us to borrow mathematical tools from functional analysis.