Archive for the ‘2017’ Category

Bernard Lidický, 3-coloring triangle-free planar graphs

Wednesday, March 1st, 2017
3-coloring triangle-free planar graphs
Bernard Lidický
Department of Mathematics, Iowa State University, Ames, IA, USA
2017/3/7 Tue 4PM
A well known theorem of Grötzsch states that every planar graph is 3-colorable. We will show a simple proof based on a recent result of Kostochka and Yancey on the number of edges in 4-critical graphs. Then we show a strengthening of the Grötzsch’s theorem in several different directions. Based on joint works with Ilkyoo Choi, Jan Ekstein, Zdeněk Dvořák, Přemek Holub, Alexandr Kostochka, and Matthew Yancey.

Suil O (오수일), The second largest eigenvalue and vertex-connectivity in regular graphs

Monday, January 23rd, 2017
The second largest eigenvalue and vertex-connectivity in regular graphs
Suil O (오수일)
Department of Applied Mathematics & Statistics, SUNY Korea, Incheon
2017/2/3 Fri 4PM-5PM
In this talk, for a fixed positive integer d at least 3, we study upper
bounds for the second largest eigenvalue in (an n-vertex) d-regular graph to
guarantee a certain vertex-connectivity.