Archive for the ‘2016’ Category

András Sebő, The Salesman’s Improved Paths

Monday, April 4th, 2016
The Salesman’s Improved Paths
András Sebő
CNRS, Laboratoire G-SCOP, Université Grenoble-Alpes, France
2016/05/04 Wed 4PM-5PM
A new algorithm will be presented for the path tsp, with an improved analysis and ratio. After the starting idea of deleting some edges of Christofides’ trees, we do parity correction and eventual reconnection, taking the salesman to travel through a linear program determining the conditional probabilities for some of his choices; through matroid partition of a set of different matroids for a better choice of his initial spanning trees; and through some other adventures and misadventures.
The proofs proceed by global and intuitively justified steps, where the trees do not hide the forests.
One more pleasant piece of news is that we get closer to the conjectured approximation ratio of 3/2, and a hopefully last misadventure before finishing up this problem is that we still have to add 1/34 to this ratio, and also for the integrality gap. (The previous result was 8/5 with slight improvements.)
This is joint work with Anke van Zuylen.

Hyung-Chan An (안형찬), LP-based Algorithms for Capacitated Facility Location

Saturday, March 12th, 2016
LP-based Algorithms for Capacitated Facility Location
Hyung-Chan An (안형찬)
Department of Computer Science, Yonsei University, Seoul
2016/4/6 Wed 4PM-5PM (Room 3433 of Bldg. E6-1)
Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem.
In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.
Joint work with Mohit Singh and Ola Svensson.

Ilkyoo Choi (최일규), Improper coloring graphs on surfaces

Monday, March 7th, 2016
Improper coloring graphs on surfaces
Ilkyoo Choi (최일규)
Department of Mathematical Sciences, KAIST
2016/3/9 Wed 4PM-5PM
A graph is (d1, …, dr)-colorable if its vertex set can be partitioned into r sets V1, …, Vr where the maximum degree of the graph induced by Vi is at most di for each i in {1, …, r}.
Given r and d1, …, dr, determining if a (sparse) graph is (d1, …, dr)-colorable has attracted much interest.
For example, the Four Color Theorem states that all planar graphs are 4-colorable, and therefore (0, 0, 0, 0)-colorable.
The question is also well studied for partitioning planar graphs into three parts.
For two parts, it is known that for given d1 and d2, there exists a planar graph that is not (d1, d2)-colorable.
Therefore, it is natural to study the question for planar graphs with girth conditions.
Namely, given g and d1, determine the minimum d2=d2(g, d1) such that planar graphs with girth g are (d1, d2)-colorable. We continue the study and ask the same question for graphs that are embeddable on a fixed surface.
Given integers k, γ, g we completely characterize the smallest k-tuple (d1, …, dk) in lexicographical order such that each graph of girth at least g that is embeddable on a surface of Euler genus γ is (d1, …, dk)-colorable.
All of our results are tight, up to a constant multiplicative factor for the degrees di depending on g.
In particular, we show that a graph embeddable on a surface of Euler genus γ is (0, 0, 0, K1(γ))-colorable and (2, 2, K2(γ))-colorable, where K1(γ) and K2(γ) are linear functions in γ.This talk is based on results and discussions with H. Choi, F. Dross, L. Esperet, J. Jeong, M. Montassier, P. Ochem, A. Raspaud, and G. Suh.

Seongmin Ok (옥성민), On properties of almost all matroids

Wednesday, February 3rd, 2016
On properties of almost all matroids
Seongmin Ok (옥성민)
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
2016/02/12 Fri 4PM-5PM
In this talk, I attempt to provide a comprehensive introduction to the matroid properties that hold for almost all matroids.
Welsh conjectured that almost all matroids are paving, open for nearly 50 years. If true, the properties of paving matroids translate to almost all matroids, such as non-representability, concentrated ranks, high connectivity and so on. We shall see the related properties that are shown to hold for almost all matroids with some of the proofs. An overview of recent progress and possible further directions will also be presented.