Archive for the ‘2015’ Category

[FYI] KAIST Theory Day (May 31, 2015)

Monday, May 11th, 2015

FYI: (KAIST Theory Day organized by Jinwoo Shin and Eric Vigoda)

KAIST Theory Day
2015/5/31 Sun 10AM-5PM (Building N1, room 102, KAIST)
9:30 – Coffee and refreshments
10:00 – Daniel Stefankovic (Rochester):  Spin models: connections between complexity, phase transition, belief propagation, and induced matrix norms
11:00 – Yitong Yin (Nanjing)Phase transition of hypergraph matchings
12:00 – Lunch break
1:30 – Euiwoong Lee (CMU):  Hardness of Graph Pricing through Generalized Max-Dicut
2:30 – Sewoong Oh (UIUC):  Data processing inequality for differential privacy and applications
3:30 – Coffee break
4:00 – Martin Ziegler (TU Darmstadt):  Algebraic Complexity Theory and Quantum Logic

Speaker: Daniel Stefankovic

Title: Spin models: connections between complexity, phase transition, belief propagation, and induced matrix norms

What are the typical configurations of a spin model (for example, Ising model, or Potts model) on a random regular graph? We show that the answer to this question is characterized by tree recursions (belief propagation) and p->q operator matrix norms.

Understanding the typical configurations allows us to show hardness of approximating the partition function for certain multispin models (for example, Potts model) on d-regular graphs in the non-uniqueness regime (that is, when the Gibbs measure on infinite d-regular tree is not unique). Joint work with Andreas Galanis, and Eric Vigoda.

Speaker: Yitong Yin

Title: Phase transition of hypergraph matchings

We study the problem of approximately counting weighted matchings in hypergraphs of bounded maximum edge size and maximum degree. The problem is expressed as evaluating the partition function, which is the weighted sum of all macthings in a hypergraph where each macthing M is assigned a weight λ|M| in terms of a fixed activity parameter λ. This model unifies two important problems in approximate counting arising from statistical physics: counting independent set (the hardcore model) and counting matchings (the monomer-dimer model).

We show that for hypergraph matchings, the critical activity λc= dd/k(d-1)(d+1) is the uniqueness threshold for the Gibbs measure on (d+1)-uniform (k+1)-regular hyper-tree, and when λ<λc, the hypergraphs of maximum edge size at most d+1 and maximum degree at most k+1 exhibit strong spatial mixing. As a consequence, there is an FPTAS for counting matchings in hypergraphs of bounded maximum edge size at most and bounded maximum degree as long as the uniqueness condition is satisfied.

As for the inapproximability, it can be easily shown that there is no FPRAS for the problem when λ>2λc, unless NP=RP. This left an intriguing gap between λc and 2λc. A key step towards tight inapproximability result is the local weak convergence from a sequence of finite graphs to the extremal measures for the uniqueness threshold on the infinite tree. For hypergraph matchings, we discover that such local weak convergence does not exist for any sequence of finite hypergraphs, which indicates that approximate counting on hypergraphs (or general CSPs) contains much richer structure yet to be understood.

Speaker: Euiwoong Lee

Title: Hardness of Graph Pricing through Generalized Max-Dicut

The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial ¼-approximation algorithm, the best hardness result remains at ½ assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than ¼ under the UGC, so that the simple combinatorial algorithm might be the best possible.

This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(T), which has a domain size T + 1 for every T ≥ 1 . Generalized Max-Dicut(1) is well-known Max-Dicut. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms — for this arity two CSP, a simple combinatorial algorithm does the best.

Speaker: Sewoong Oh

Title: Data processing inequality for differential privacy and applications

We provide a hypothesis testing interpretation to differential privacy and derive natural forward and reverse data processing inequalities. These inequalities are very useful in deriving tight impossibility results, as demonstrated by the following two applications: composing multiple queries and multi-party computation. The impossibility results hold for arbitrary parameter settings (privacy levels, number of queries, etc) and for both standard and approximate differential privacy settings. Further, these impossibility results cannot be improved upon.

Speaker: Martin Ziegler

Title: Algebraic Complexity Theory and Quantum Logic

Algebraic models of computation (like register machines) make one operation per step regardless of the value processed. They underly algorithms for sorting or in computational geometry. As opposed to bit models, algebraic methods permit to establish non-trivial lower bounds:

We recall Morgenstern’s elegant proof that the fast fourier transform is optimal; then proceed to the structural complexity theory and prove the quantum satisfiability problem complete for NP_R^0: a well-known discrete complexity class between NP and PSPACE. (Joint work with Christian Herrmann.)

Pinyan Lu, Optimal Competitive Auctions

Wednesday, April 29th, 2015
Optimal Competitive Auctions
Pinyan Lu (陆品燕)
Theory Group, Microsoft Research Asia, Beijing, China
2015/5/19 Tue 4PM-5PM
We study the design of truthful auctions for selling identical items in unlimited supply (e.g., digital goods) to n unit demand buyers. This classic problem stands out from profit-maximizing auction design literature as it requires no probabilistic assumptions on buyers’ valuations and employs the framework of competitive analysis. Our objective is to optimize the worst-case performance of an auction, measured by the ratio between a given benchmark and revenue generated by the auction.
We establish a sufficient and necessary condition that characterizes competitive ratios for all monotone benchmarks. The characterization identifies the worst-case distribution of instances and reveals intrinsic relations between competitive ratios and benchmarks in the competitive analysis. With the characterization at hand, we show optimal competitive auctions for two natural benchmarks.
The most well-studied benchmark F^2 measures the envy-free optimal revenue where at least two buyers win. Goldberg et al. showed a sequence of lower bounds on the competitive ratio for each number of buyers n. They conjectured that all these bounds are tight. We show that optimal competitive auctions match these bounds. Thus, we confirm the conjecture and settle a central open problem in the design of digital goods auctions. As one more application we examine another economically meaningful benchmark, which measures the optimal revenue across all limited-supply Vickrey auctions. We identify the optimal competitive ratios to be (n/({n-1})^{n-1}-1 for each number of buyers n, that is e-1 as n approaches infinity.

Joint work with Ning Chen and Nick Gravin.

Jinwoo Kim (김진우), Stable Matching in Large Economies

Wednesday, April 8th, 2015
Stable Matching in Large Economies
Jinwoo Kim
Department of Economics, Seoul National University, Seoul, Korea
2015/5/12 Tue 4PM-5PM
Complementarities of preferences have been known to jeopardize the stability of two-sided matching, and they are a pervasive feature of many markets. We revisit the stability issue with such preferences in a large market.
Workers have preferences over firms while firms have preferences over distributions of workers and may exhibit complementarity. We demonstrate that if each firm’s choice changes continuously as the set of available workers changes, then there exists a stable matching even with complementarity. Building on this result, we show that there exists an approximately stable matching in any large finite economy. We extend our framework to accommodate indifferences in firms’ preferences, construct a stable mechanism that is strategy-proof and equitable for workers perceived as indifferent by firms, and apply the analysis to probabilistic and time-share matching models with a finite number of firms and workers.

Tony Huynh, Space Proof Complexity for Random 3-CNFs

Tuesday, April 7th, 2015
Space Proof Complexity for Random 3-CNFs
Tony Huynh
Dipartimento di Informatica, Sapienza Università di Roma, Rome, Italy
2015/6/2 Tue 4PM-5PM
During the last decade, an active line of research in proof complexity has been the space complexity of proofs and how space is related to other complexity measures (like size, length, width, degree). Space is (roughly) how large of an erasable board one would need to show a proof line-by-line.
Here, we are interested in the space complexity of refuting 3-CNFs (formulas in conjunctive normal form with at most 3 literals per clause). We prove that a random 3-CNF with n variables requires, with high probability, Ω(n2) total space in Resolution. This is best possible up to a constant factor.
This lower bound is obtained via a variant of Hall’s Lemma which may be of independent interest. Namely, we show that in bipartite graphs G with bipartition (L,R) and left-degree at most 3, L can be covered by certain families of disjoint paths, called VW-matchings, provided that L expands in R by a factor of (2-ε), for ε < 1/23.
This is joint work with Patrick Bennett, Ilario Bonacina, Nicola Galesi, Mike Molloy, and Paul Wollan.

Eric Vigoda, Computational Phase Transitions for the Potts Model

Monday, March 30th, 2015
Computational Phase Transitions for the Potts Model
Eric Vigoda
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
2015/4/14 Tue 4PM-5PM
This is a followup talk to my CS colloquium on March 2. In that talk I discussed the problems of counting independent sets and colorings. Those problems are examples of antiferromagnetic systems in which neighboring vertices prefer different assignments. In this talk we will look at ferromagnetic systems where neighboring vertices prefer the same assignment. We will focus on the ferromagnetic Potts model. We will look at the phase transitions in this model, and their connections to the complexity of associated counting/sampling problems and the performance of related Markov chains.
The talk is based on joint works with Andreas Galanis, Daniel Stefankovic, and Linji Yang.