문제 풀다가 모르는 문제가 몇가지 있어서 올립니다.
1. A and B are nxn square matrices and B is invertible. Prove or disprove that
Every eigenvectors of AB is also an eigenvector of BA.
2. A is nxn positive definite matrix. Show that an orthogonal disgonalization A=PDP^t is a a singular value decomposition of A.
도무지 풀이를 어떻게 시작해야 할지 모르겠습니다. 도와주세요~
let, AB=C . Then A= CB^(-1) . So, BA = BCB^(-1) .
Here, C=AB, therefore we can say C is similar to BA.
Hence AB is similar to BA. similar --> by Thm4, page 315, same eigenvalues.
Refer to page 334, exer 23.
then the statement is true.
한글이랑 영어랑 바꾸기 힘들어서 대충 써봤는데요. 맞는지는 모르겠습니다. 그래도 참고하세요 ^^