Putting your coin collection on a shelf
Otfried Cheong
School of Computing, KAIST
School of Computing, KAIST
2017/04/03 Monday 4PM-5PM
Imagine you want to present your collection of n coins on a shelf, taking as little space as possible – how should you arrange the coins?
More precisely, we are given n circular disks of different radii, and we want to place them in the plane so that they touch the x-axis from above, such that no two disks overlap. The goal is to minimize the length of the range from the leftmost point on a disk to the rightmost point on a disk.
On this seemingly innocent problem we will meet a wide range of algorithmic concepts: An efficient algorithm for a special case, an NP-hardness proof, an approximation algorithm with a guaranteed approximation factor, APX-hardness, and a quasi-polynomial time approximation scheme.
More precisely, we are given n circular disks of different radii, and we want to place them in the plane so that they touch the x-axis from above, such that no two disks overlap. The goal is to minimize the length of the range from the leftmost point on a disk to the rightmost point on a disk.
On this seemingly innocent problem we will meet a wide range of algorithmic concepts: An efficient algorithm for a special case, an NP-hardness proof, an approximation algorithm with a guaranteed approximation factor, APX-hardness, and a quasi-polynomial time approximation scheme.
Tags: OtfriedCheong