Analyzing Markov Chains using Belief Propagation
Eric Vigoda
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
2016/12/16 Friday 3PM-4PM
For counting weighted independent sets weighted by a parameter λ (known as the hard-core model) there is a beautiful connection between statistical physics phase transitions on infinite, regular trees and the computational complexity of approximate counting on graphs of maximum degree D. For λ below the critical point there is an elegant algorithm devised by Weitz (2006). The drawback of his algorithm is that the running time is exponential in log D. In this talk we’ll describe recent work which shows O(n log n) mixing time of the single-site Markov chain when the girth>6 and D is at least a sufficiently large constant. Our proof utilizes BP (belief propagation) to design a distance function in our coupling analysis. This is joint work with C. Efthymiou, T. Hayes, D. Stefankovic, and Y. Yin which appeared in FOCS ’16.
Tags: EricVigoda