Seog-Jin Kim (김석진), Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree

Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree
Seog-Jin Kim (김석진)
Dept. of Mathematics Education, Konkuk University, Seoul, Korea.
2011/3/10 Thu 5PM-6PM
Say that a graph with maximum degree at most d is d-bounded. For d>k, we prove a sharp sparseness condition for decomposability into k forests and a d-bounded graph. Consequences ar e that every graph with fractional arboricity at most k+ d/(k+d+1) has such a decomposition, and (for k=1) every graph with maximum average degree less than 2+2d/(d+2) decomposes into a forest and a d-bounded graph. When d=k+1, and when k=1 and d≤6, the d-bounded graph in the decomposition can also be required to be a forest. When k=1 and d≤2, the d-bounded forest can also be required to have at most d edges in each component.
This is joint work with A.V. Kostochka, D.B. West, H. Wu, and X. Zhu.

Tags:

Comments are closed.