Fall 2021 Combinatorial Topology (MAS 430. 25.430)

Time: Monday, Wednesday 1:00-2:15

Lecture room: 3434

Instructor: Suhyoung Choi 4403(office) 
Office Hours:
schoi at math dot kaist dot ac dot kr Phone: 2732

Prerequisite: MAS 331 Topology



Course book:  Topology, J. Munkres (secondary: A basic course in Algebraic topology, W.S. Massey)

Topics: Fundamental groups, Surface theory, Covering space theory

     Lectures are given by vidoes. Zoom presentation meetings will be scheduled one or two weeks ahead.         

Grading: Final (150 pts.)  Midterm (150 pts.) Homework (100 pts.) Class contribution (25 pts.) Attendance (25 pts.) Total 450pts

There will be Zoom presentations of your homework solutions. These are 50% of the homework grades.  The midterm and the final will be take-home exams. You can cowork for homework. However,  you cannot help one another at all for take-home exams. There will be peer grading which will be counted for class contributions.  Zoom session links will beprovided in the KLMS. 

Course schedules:

Week

Date

 Lecture plan

 

 1

Aug. 30, Sept. 1

 Introduction, S. 51; S. 52, Fundamental groups

 

 2

Sept. 6, 8  

S.53, S.54, Covering spaces

 

 3

Sept.13, 15

S. 55, S.56, S.57, Retractions and fixed points

 

 4

Sept. 20, 22

 

No classes (National Holidays,   Chuseok)

 5

Sept. 27, 29

S. 58; S. 59, S. 60,  Homotopy types

 

 6.

Oct. (4),  6

S. 61, S.62; S. 63,  Separation theorems

 Oct. 4th may be a holiday

 7

Oct. (11), 13

S. 64, S. 65, S. 66, Winding numbers

Oct. 11th may be a holiday

 8

Oct. 18, 20

 

  Midterm period  

 9

Oct. 25, 27

S. 67, S. 68, S. 69, Seifert van-Kampen theorem

 

 10

Nov. 1, 3

S. 70, S. 71; S. 72, S.73 Seifert van-Kampen theorem

 

 11

Nov. 8, 10

S. 74, S. 75; S. 76, Classification of surfaces

 

 12

Nov. 15, 17 

S. 77, S. 78, Classification of surfaces

 

 13

Nov. 22, 24

S. 79, S. 80, Classification of covering spaces

 

 14

 Nov. 29, (Dec 1)

 S. 81; S. 82, Classification of covering spaces

 (Dec. 1st is the KAIST entrance exam day)

 15

Dec 6, 8

 S. 83; S. 84, S. 85, Application to graph theory

 

  16

Dec. 13, 15

 

 Final exam period