Logic and the set theory

Lecture 7, 8: Predicate Logic

S. Choi

Department of Mathematical Science
 KAIST, Daejeon, South Korea

Fall semester, 2011

About this lecture

- Russell's theory of Description

About this lecture

- Russell's theory of Description
- Predicate and names

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models
- Refutation trees of predicate logic

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models
- Refutation trees of predicate logic
- Identity

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models
- Refutation trees of predicate logic
- Identity
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models
- Refutation trees of predicate logic
- Identity
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Descriptions".
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Descriptions".
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/ 24-241Fall-2005/CourseHome / See "Monadic Predicate Calculus".
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Descriptions".
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/ 24-241Fall-2005/CourseHome/ See "Monadic Predicate Calculus".
- http://philosophy.hku.hk/think/pl/. See Module: Predicate Logic.
- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Descriptions".
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/ 24-241Fall-2005/CourseHome/ See "Monadic Predicate Calculus".
- http://philosophy.hku.hk/think/pl/. See Module: Predicate Logic.
- http://logic.philosophy.ox.ac.uk/. See "Predicate Calculus" in Tutorial.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://en.wikipedia.org/wiki/Truth_table,
- http:
//logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)
- http://en.wikipedia.org/wiki/Truth_table,
- http:
//logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

Formalizations

- All S are $P: \forall x,(S x \rightarrow P x) .(\operatorname{Not} \forall x, S x \wedge P x)$

Formalizations

- All S are $P: \forall x,(S x \rightarrow P x)$. $(\operatorname{Not} \forall x, S x \wedge P x)$
- No S is $P: \forall x,(S x \rightarrow \neg P x)$. (Not $\forall x, S x \wedge \neg P x)$

Formalizations

- All S are $P: \forall x,(S x \rightarrow P x)$. $(\operatorname{Not} \forall x, S x \wedge P x)$
- No S is $P: \forall x,(S x \rightarrow \neg P x)$. (Not $\forall x, S x \wedge \neg P x)$
- Some S are $P: \exists x, S x \wedge P x(\operatorname{Not} \exists x, S x \rightarrow P x$.)
- All S are $P: \forall x,(S x \rightarrow P x)$. $(\operatorname{Not} \forall x, S x \wedge P x)$
- No S is $P: \forall x,(S x \rightarrow \neg P x)$. (Not $\forall x, S x \wedge \neg P x)$
- Some S are $P: \exists x, S x \wedge P x$ (Not $\exists x, S x \rightarrow P x$.)
- Sometimes, one has to use \wedge and sometimes \rightarrow.
- All S are $P: \forall x,(S x \rightarrow P x)$. $(\operatorname{Not} \forall x, S x \wedge P x)$
- No S is $P: \forall x,(S x \rightarrow \neg P x)$. (Not $\forall x, S x \wedge \neg P x)$
- Some S are $P: \exists x, S x \wedge P x$ (Not $\exists x, S x \rightarrow P x$.)
- Sometimes, one has to use \wedge and sometimes \rightarrow.
- See Problems 6.1 and 6.2. page 132-133 Nolt.

Russell's theory of Description

- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have M (Tom).
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have M (Tom).
- There exists x s.t. $B(x) \wedge P(x)$ hold.
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have M (Tom).
- There exists x s.t. $B(x) \wedge P(x)$ hold.
- How does one analyze such arguments logically.
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have M (Tom).
- There exists x s.t. $B(x) \wedge P(x)$ hold.
- How does one analyze such arguments logically.
- A statement such as a is a KAIST student.
- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have M (Tom).
- There exists x s.t. $B(x) \wedge P(x)$ hold.
- How does one analyze such arguments logically.
- A statement such as a is a KAIST student.
- This is a description $K(a)$.
- Is the statement "The present king of Korea is of Japanese descent" correct?
- Is the statement "The present king of Korea is of Japanese descent" correct?
- There exists x such that $K(x) \rightarrow J(x)$. (True always)
- Is the statement "The present king of Korea is of Japanese descent" correct?
- There exists x such that $K(x) \rightarrow J(x)$. (True always)
- There exists x such that $K(x) \wedge J(x)$. (False)
- Is the statement "The present king of Korea is of Japanese descent" correct?
- There exists x such that $K(x) \rightarrow J(x)$. (True always)
- There exists x such that $K(x) \wedge J(x)$. (False)
- These two are logically different.
- Is the statement "The present king of Korea is of Japanese descent" correct?
- There exists x such that $K(x) \rightarrow J(x)$. (True always)
- There exists x such that $K(x) \wedge J(x)$. (False)
- These two are logically different.
- Of course the theory of descriptions has some controversies as well. (If one accepts the theory, there are many implications.)

Quantifiers

- Universal quantifier $\forall x$.

Quantifiers

- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- There exists x such that if x is $K(x)$, then x is $J(x)$.
- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- There exists x such that if x is $K(x)$, then x is $J(x)$.
- $\exists x, K(x) \rightarrow J(x)$.
- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- There exists x such that if x is $K(x)$, then x is $J(x)$.
- $\exists x, K(x) \rightarrow J(x)$.
- Every body in KAIST has a course that he takes and which he hates.
- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- There exists x such that if x is $K(x)$, then x is $J(x)$.
- $\exists x, K(x) \rightarrow J(x)$.
- Every body in KAIST has a course that he takes and which he hates.
- $\forall x(K(x) \rightarrow \exists c(T(x, c) \wedge H(x, c)))$.

Examples

- Nobody wish to get close to some one with H1N1 virus.

Examples

- Nobody wish to get close to some one with H1N1 virus.
- $\forall x(H 1(x) \rightarrow \neg(\exists y C(y, x))$.
- Nobody wish to get close to some one with H1N1 virus.
- $\forall x(H 1(x) \rightarrow \neg(\exists y C(y, x))$.
- If any one in the dorm has a friend who has the measles, then everyone in the room will be quarantined.
- Nobody wish to get close to some one with H1N1 virus.
- $\forall x(H 1(x) \rightarrow \neg(\exists y C(y, x))$.
- If any one in the dorm has a friend who has the measles, then everyone in the room will be quarantined.
- $(\exists x(D(x) \wedge(\exists y(F(y, x) \wedge M(y))))) \rightarrow(\forall z(D(z) \rightarrow Q(z)))$.

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x(\forall y \neg(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x(\forall y \neg(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \forall y(\neg R(x, y) \vee L(x, y))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x(\forall y \neg(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \forall y(\neg R(x, y) \vee L(x, y))$.
- $\exists x \forall y(R(x, y) \rightarrow L(x, y))$.
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x(\forall y \neg(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \forall y(\neg R(x, y) \vee L(x, y))$.
- $\exists x \forall y(R(x, y) \rightarrow L(x, y))$.
- There is someone who likes all his relatives.

Interchangible

- $\forall x \forall y$ interchangible to $\forall y \forall x$.

Interchangible

- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.

Interchangible

- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\exists x \exists y(T(y, x) \wedge P(y, x))$.
- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\exists x \exists y(T(y, x) \wedge P(y, x))$.
- There is some one A who is a teacher of some one B and is younger than B.
- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\exists x \exists y(T(y, x) \wedge P(y, x))$.
- There is some one A who is a teacher of some one B and is younger than B .
- $\exists y \exists x(T(y, x) \wedge P(y, x))$
- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\exists x \exists y(T(y, x) \wedge P(y, x))$.
- There is some one A who is a teacher of some one B and is younger than B .
- $\exists y \exists x(T(y, x) \wedge P(y, x))$
- There is some one B who is a student of some one A and is older than A.

Some other equivalences

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.

Some other equivalences

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\forall x(E(x) \vee T(x))$ is not equivalent to $(\forall x E(x)) \vee(\forall x T(x))$.

Predicate and names

- Jones is a thief. $T(j)$.

Predicate and names

- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.

Predicate and names

- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.
- Bob loves Cathy.

Predicate and names

- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.
- Bob loves Cathy.
- $L(b, c), L(c, b)$.

Predicate and names

- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.
- Bob loves Cathy.
- $L(b, c), L(c, b)$.
- Cathy gave Fido to Bob.
- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.
- Bob loves Cathy.
- $L(b, c), L(c, b)$.
- Cathy gave Fido to Bob.
- $G(c, f, b) . G(x, y, z) . x$ gave y to z.

Predicate and names

- Jones likes everyone.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.
- Jones likes every nurse.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.
- Jones likes every nurse.
- $\forall x(N(x) \rightarrow L(j, x))$.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.
- Jones likes every nurse.
- $\forall x(N(x) \rightarrow L(j, x))$.
- A nurse likes a mechanic.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.
- Jones likes every nurse.
- $\forall x(N(x) \rightarrow L(j, x))$.
- A nurse likes a mechanic.
- $\exists x \exists y((N(x) \wedge M(y)) \rightarrow L(x, y))$.

Formation rules

- Logical symbols:

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.
- Variables; letter u, v, z, \ldots.

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.
- Variables; letter u, v, z, \ldots.
- Nonlogical symbols:

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.
- Variables; letter u, v, z, \ldots.
- Nonlogical symbols:
- Names: a, b, \ldots, t.

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.
- Variables; letter u, v, z, \ldots.
- Nonlogical symbols:
- Names: a, b, \ldots, t.
- Predicate: A, B, C, \ldots
- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- If ϕ is a wff, then so is $\neg \phi$.
- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- If ϕ is a wff, then so is $\neg \phi$.
- If ϕ and ψ are wffs, then so are $\phi \wedge \psi, \phi \vee \psi, \phi \rightarrow \psi$, and $\phi \leftrightarrow \psi$.
- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- If ϕ is a wff, then so is $\neg \phi$.
- If ϕ and ψ are wffs, then so are $\phi \wedge \psi, \phi \vee \psi, \phi \rightarrow \psi$, and $\phi \leftrightarrow \psi$.
- If ϕ is a wff containing a name letter α, then any formula of form $\forall \beta \phi^{\beta / \alpha}$ and $\exists \beta \phi^{\beta / \alpha}$ for a variable β are wff.
- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- If ϕ is a wff, then so is $\neg \phi$.
- If ϕ and ψ are wffs, then so are $\phi \wedge \psi, \phi \vee \psi, \phi \rightarrow \psi$, and $\phi \leftrightarrow \psi$.
- If ϕ is a wff containing a name letter α, then any formula of form $\forall \beta \phi^{\beta / \alpha}$ and $\exists \beta \phi^{\beta / \alpha}$ for a variable β are wff.
- Here, $\phi^{\beta / \alpha}$ means that we replace every or some occurance of α in ϕ with β.

Examples

- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.

Examples

- $F(a) \wedge G(a, b)$. a is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.

Examples

- $F(a) \wedge G(a, b)$. a is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- There exists someone who is less than all the fast people.
- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- There exists someone who is less than all the fast people.
- $\forall x L(x, z)$
- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- There exists someone who is less than all the fast people.
- $\forall x L(x, z)$
- not wff.
- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- There exists someone who is less than all the fast people.
- $\forall x L(x, z)$
- not wff.
- $\exists x \exists x(F(x) \wedge(\neg G(x)))$. This violates rules.
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.

Models

- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.
- one-place predicate letter: A class of objects.

Models

- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.
- one-place predicate letter: A class of objects.
- n-place predicate letter: a relation between n objects.
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.
- one-place predicate letter: A class of objects.
- n-place predicate letter: a relation between n objects.
- Given a model M, it is possible that different simbols represent the same objects or relations.
- Semantics or actual interpretations of symbols... i.e., universe A, B,... today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.
- one-place predicate letter: A class of objects.
- n-place predicate letter: a relation between n objects.
- Given a model M, it is possible that different simbols represent the same objects or relations.
- We try to avoid giving same letters to different objects or relations in models.
- A single letter. The truth value is the one directly supplied by the model.
- A single letter. The truth value is the one directly supplied by the model.
- Predicate $P . P(a)$ is true if a belongs to the class of object denoted by P.
- A single letter. The truth value is the one directly supplied by the model.
- Predicate $P . P(a)$ is true if a belongs to the class of object denoted by P.
- $R(a, b, \ldots, g)$ is true if the relation hold between a, b, \ldots, g and is false if not.

Examples

- Universe: the class of all people.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21 st century U.S. Presidents. B people who own black dogs.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21 st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=0 . T . x=g . T$.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=0 . T . x=g . T$.
- $x=h$ or any other person. T.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21 st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=0 . T . x=g . T$.
- $x=h$ or any other person. T.
- Thus $\forall x(P x \rightarrow B x)$ is true.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21 st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=0 . T . x=g . T$.
- $x=h$ or any other person. T.
- Thus $\forall x(P x \rightarrow B x)$ is true.
- Let P^{\prime} be the class of 20th century president.
- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21 st century U.S. Presidents. B people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=0 . T . x=g . T$.
- $x=h$ or any other person. T.
- Thus $\forall x(P x \rightarrow B x)$ is true.
- Let P^{\prime} be the class of 20th century president.
- Check $\forall x\left(P^{\prime} x \rightarrow B x\right)$.
- M a model, and α a name letter (an external object)
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- If the wff $\phi^{\alpha / \beta}$ is true for no α-variant of M, then $\exists \beta \phi$ is false.
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- If the wff $\phi^{\alpha / \beta}$ is true for no α-variant of M, then $\exists \beta \phi$ is false.
- Universe: all living creatures. B the class of blue things. W the class of winged horses.
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- If the wff $\phi^{\alpha / \beta}$ is true for no α-variant of M, then $\exists \beta \phi$ is false.
- Universe: all living creatures. B the class of blue things. W the class of winged horses.
- $\forall x(W x \rightarrow B x)$. Is this true?
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- If the wff $\phi^{\alpha / \beta}$ is true for no α-variant of M, then $\exists \beta \phi$ is false.
- Universe: all living creatures. B the class of blue things. W the class of winged horses.
- $\forall x(W x \rightarrow B x)$. Is this true?
- We can let α be any living creature. Then $W x$ is always false.

Examples

- Universe: the class of all positive integers

Examples

- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than

Examples

- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.

Examples

- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- α even $\forall y B \alpha y$. False.
- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- α even $\forall y B \alpha y$. False.
- Thus false.
- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- α even $\forall y B \alpha y$. False.
- Thus false.
- Example: $\forall y \exists x B x y$.
- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- α even $\forall y B \alpha y$. False.
- Thus false.
- Example: $\forall y \exists x B x y$.
- True.

Validity of predicate logic

- We would write some statements is valid if it is true for all models of the theory.
- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- Example: $\exists x \forall y G(x, y) \models \forall y \exists x G(x, y)$ is valid.
- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- Example: $\exists x \forall y G(x, y) \models \forall y \exists x G(x, y)$ is valid.
- Example: $\forall y \exists x G(x, y) \models \exists x \forall y G(x, y)$ is invalid. (See 6.20, 6.21, 6.22)
- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- Example: $\exists x \forall y G(x, y) \models \forall y \exists x G(x, y)$ is valid.
- Example: $\forall y \exists x G(x, y) \models \exists x \forall y G(x, y)$ is invalid. (See 6.20, 6.21, 6.22)
- Note here the role of the models.
- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- Example: $\exists x \forall y G(x, y) \models \forall y \exists x G(x, y)$ is valid.
- Example: $\forall y \exists x G(x, y) \models \exists x \forall y G(x, y)$ is invalid. (See 6.20, 6.21, 6.22)
- Note here the role of the models.
- In this book, we confuse \models with \vdash.
- One can use the refutation tree method for propositional logic for predicate logic also.
- One can use the refutation tree method for propositional logic for predicate logic also.
- This works by using negation rules for universal quantifiers and existential quantifiers. See Example 6.24.
- One can use the refutation tree method for propositional logic for predicate logic also.
- This works by using negation rules for universal quantifiers and existential quantifiers. See Example 6.24.
- We will give rules for refutation trees for predicate logic.
- One can use the refutation tree method for propositional logic for predicate logic also.
- This works by using negation rules for universal quantifiers and existential quantifiers. See Example 6.24.
- We will give rules for refutation trees for predicate logic.
- The rules can show the validity (i.e. the soundness of the rule.)
- One can use the refutation tree method for propositional logic for predicate logic also.
- This works by using negation rules for universal quantifiers and existential quantifiers. See Example 6.24.
- We will give rules for refutation trees for predicate logic.
- The rules can show the validity (i.e. the soundness of the rule.)
- However, rule may not detect invalidity (i.e. incompleteness of the rule). That is, sometimes, it won't give us counter-example.

Refutation trees of predicate logic example

Prove $\forall x F(x) \rightarrow \forall x G(x), \neg \forall x G(x) \vdash \neg \forall x F(x)$.

Prove $\forall x F(x) \rightarrow \forall x G(x), \neg \forall x G(x) \vdash \neg \forall x F(x)$.
$1 \forall x F(x) \rightarrow \forall x G(x)$.
$2 \neg \forall x G(x)$
$3 \neg \neg \forall x F(x)$

```
Prove \(\forall x F(x) \rightarrow \forall x G(x), \neg \forall x G(x) \vdash \neg \forall x F(x)\).
\(1 \forall x F(x) \rightarrow \forall x G(x)\).
\(2 \neg \forall x G(x)\)
\(3 \neg \neg \forall x F(x)\)
\[
\begin{array}{ll}
1 & \checkmark \forall x F(x) \rightarrow \forall x G(x) . \\
2 & \neg \forall x G(x) \\
3 & \neg \neg \forall x F(x), \\
4 & \text { (i) } \neg \forall x F(x) \text { (ii) } \forall x G(x) . \rightarrow E .1
\end{array}
\]
```

Prove $\forall x F(x) \rightarrow \forall x G(x), \neg \forall x G(x) \vdash \neg \forall x F(x)$.
$1 \forall x F(x) \rightarrow \forall x G(x)$.
$1 \checkmark \forall x F(x) \rightarrow \forall x G(x)$.
$2 \neg \forall x G(x)$
$2 \neg \forall x G(x)$
$3 \neg \neg \forall x F(x)$
$2 \neg \forall x G(x)$
$3 \neg \neg \forall x F(x)$,
4 (i) $\neg \forall x F(x)$ (ii) $\forall x G(x) . \rightarrow E .1$
$3 \neg \neg \forall x F(x)$,
4 (i) $\neg \forall x F(x)$ (ii) $\forall x G(x) . \rightarrow E .1$
5 (i) (X) (ii) (X) valid

- We have $\forall \beta \phi$ and a name letter α is on an open path containing it, write $\phi^{\alpha / \beta}$ at the bottom of that path.
- We have $\forall \beta \phi$ and a name letter α is on an open path containing it, write $\phi^{\alpha / \beta}$ at the bottom of that path.
- If no name letter appears on the open path, then choose some name letter α and write $\phi^{\alpha / \beta}$ at the bottom of that path.
- We have $\forall \beta \phi$ and a name letter α is on an open path containing it, write $\phi^{\alpha / \beta}$ at the bottom of that path.
- If no name letter appears on the open path, then choose some name letter α and write $\phi^{\alpha / \beta}$ at the bottom of that path.
- But do not check $\forall \beta \phi$. (Since we will use it many times.)
- All university students are weak.
- Everyone is a university student.
- Thus, Alf is weak.
- $\forall x(U x \rightarrow W x), \forall x U x \vdash W a$.

Example

- All university students are weak.
- Everyone is a university student.
- Thus, Alf is weak.
- $\forall x(U x \rightarrow W x), \forall x U x \vdash W a$.
$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg$ Wa.

Example

- All university students are weak.
- Everyone is a university student.
- Thus, Alf is weak.
- $\forall x(U x \rightarrow W x), \forall x U x \vdash W a$.
$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg$ Wa.

$$
\begin{aligned}
& 1 \forall x(U x \rightarrow W x), \\
& 2 \forall x U x \\
& 3 \neg W a . \\
& 4 \forall a \rightarrow \text { Wa }(1 \forall .)
\end{aligned}
$$

- All university students are weak.
- Everyone is a university student.
- Thus, Alf is weak.
- $\forall x(U x \rightarrow W x), \forall x U x \vdash W a$.
$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg W a$.

$$
\begin{aligned}
& 1 \forall x(U x \rightarrow W x), \\
& 2 \forall x U x \\
& 3 \neg W a . \\
& 4 \quad U a \rightarrow \text { Wa }(1 \forall .)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \quad \forall x(U x \rightarrow W x), \\
& 2 \forall x U x \\
& 3 \forall W a . \\
& 4 \quad U a \rightarrow W a(1 \forall .) \\
& 5 \quad U a(2 \forall)
\end{aligned}
$$

$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg W a$.
$4 \checkmark \mathrm{Ua} \rightarrow$ Wa $(1 \forall$.
5 Ua (2 \forall)
6 (i) \neg Ua $(4 . \rightarrow)$ (ii) $\mathrm{Wa}(4 \rightarrow)$.
$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg$ Wa.
$4 \checkmark \mathrm{Ua} \rightarrow$ Wa $(1 \forall$.
5 Ua (2 \forall)
6 (i) \neg Ua $(4 . \rightarrow)$ (ii) Wa $(4 \rightarrow)$.
$1 \forall x(U x \rightarrow W x)$,
$2 \forall x U x$
$3 \neg$ Wa.
5 Ua ($2 \forall$)
6 (i) $\neg \operatorname{Ua}(4 . \rightarrow)(X)$
(ii) $\mathrm{Wa}(4 \rightarrow)$. (X)

- valid

More rules.

- Existential quantification \exists : $\exists \beta \phi$ check it and choose α not anywhere and write $\phi^{\alpha / \beta}$.

More rules.

- Existential quantification $\exists: \exists \beta \phi$ check it and choose α not anywhere and write $\phi^{\alpha / \beta}$.
- Negated existential quantification $\neg \exists$: $\neg \exists \phi$ check it and write $\forall \neg \phi$.
- Existential quantification $\exists: \exists \beta \phi$ check it and choose α not anywhere and write $\phi^{\alpha / \beta}$.
- Negated existential quantification $\neg \exists$: $\neg \exists \phi$ check it and write $\forall \neg \phi$.
- Negated universal quantification $\neg \forall: \neg \forall \phi$ check it and write $\exists \neg \phi$.
- Existential quantification $\exists: \exists \beta \phi$ check it and choose α not anywhere and write $\phi^{\alpha / \beta}$.
- Negated existential quantification $\neg \exists$: $\neg \exists \phi$ check it and write $\forall \neg \phi$.
- Negated universal quantification $\neg \forall: \neg \forall \phi$ check it and write $\exists \neg \phi$.
- These two are equivalences.

Example

- Holmes, if any one can trap Moriarty, he can. Holmes can't. No-one can.
- $\forall x T x m \rightarrow$ Thm, $\neg T h m, \vdash \neg \exists x T x m$.

Example

- Holmes, if any one can trap Moriarty, he can. Holmes can't. No-one can.
- $\forall x T x m \rightarrow$ Thm, $\neg T h m, \vdash \neg \exists x T x m$.
$1 \forall x$ Txm \rightarrow Thm,
$2 \neg$ Thm,
$3 \neg \neg \exists x T x m$
- Holmes, if any one can trap Moriarty, he can. Holmes can't. No-one can.
- $\forall x T x m \rightarrow$ Thm, $\neg T h m, \vdash \neg \exists x T x m$.
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$3 \neg \neg \exists x T x m$
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$3 \checkmark \neg \neg \exists x T x m$.
$4 \exists x T x m$.
- Holmes, if any one can trap Moriarty, he can. Holmes can't. No-one can.
- $\forall x T x m \rightarrow$ Thm, $\neg T h m$, $\vdash \neg \exists x T x m$.
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$3 \neg \neg \exists x T x m$
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$3 \checkmark \neg \neg \exists x T x m$.
$4 \exists x T x m$.
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$4 \exists x T x m$.
$5 \mathrm{Tmm} \rightarrow \operatorname{Thm}(1 \forall)$.
$1 \forall x T x m \rightarrow$ Thm,
$2 \neg$ Thm,
$4 \exists x T x m$.
$5 \checkmark$ Tmm \rightarrow Thm ($1 \forall$).
6 (i) $\neg \operatorname{Tmm}(5 \rightarrow) 6$.(ii) Thm. $(5 \rightarrow)$. $(\mathrm{X} 2,6)$
$1 \forall x$ Txm \rightarrow Thm,
$2 \neg$ Thm,
$4 \exists x T x m$.
$5 \checkmark \mathrm{Tmm} \rightarrow \operatorname{Thm}(1 \forall)$.
6 (i) $\neg \operatorname{Tmm}(5 \rightarrow) 6$.(ii) Thm. $(5 \rightarrow)$. $(\mathrm{X} 2,6)$
$1 \forall x$ Txm \rightarrow Thm,
$2 \neg$ Thm,
$4 \exists x T x m$.
$5 \mathrm{Tmm} \rightarrow \operatorname{Thm}(1 \forall)$.
6 (i) $\neg \operatorname{Tmm}(5 \rightarrow)$
7 Tcm (4 ヨ). 6(ii) Thm. $(5 \rightarrow) .(X 2,6)$
$8 \mathrm{Tcm} \rightarrow \operatorname{Thm}(1 \forall)$
9 (i) $\neg \operatorname{Tcm}(\mathrm{X}, 4)$ (ii) $\operatorname{Thm}(\mathrm{X}, 2) .(8 \rightarrow)$.
- valid
- There is some one who loves someone. Then there exists someone who loves himself.
- $\exists x \exists y L x y \vdash \exists x L x x$.
- There is some one who loves someone. Then there exists someone who loves himself.
- $\exists x \exists y L x y \vdash \exists x L x x$.
$1 \exists x \exists y\llcorner x y$.
$2 \neg \exists x L x x$.
- There is some one who loves someone. Then there exists someone who loves himself.
- $\exists x \exists y L x y \vdash \exists x L x x$.

$$
\begin{aligned}
& 1 \exists x \exists y L x y . \\
& 2 \neg \exists x L x x .
\end{aligned}
$$

$$
\begin{aligned}
& 1 \checkmark \exists x \exists y L x y . \\
& 2 \neg \exists x L x x . \\
& 3 \text { ヨyLay (1 } \exists) .
\end{aligned}
$$

- There is some one who loves someone. Then there exists someone who loves himself.
- $\exists x \exists y L x y \vdash \exists x L x x$.

$$
\begin{array}{ll}
1 \exists x \exists y L x y . & 1 \checkmark \exists x \exists y L x y . \\
2 \neg \exists x L x x . & 2 \neg \exists x L x x . \\
& 3 \exists y \operatorname{Lay}(1 \exists) .
\end{array}
$$

$$
\begin{array}{ll}
1 & \checkmark \exists x \exists y L x y . \\
2 & \neg \exists x L x x . \\
3 & \checkmark \exists y L a y(1 \exists) . \\
4 & \text { Lab. (4 ヨ.) }
\end{array}
$$

$2 \checkmark \neg \exists x L x x$.
4 Lab. (4 ヨ.)
$5 \forall x \neg L x x$.

$2 \checkmark \neg \exists x L x x$.	4 Lab. $(4 \exists)$.
4 Lab. $(4 \exists)$.	$5 \forall x \neg L x x$.
$5 \forall x \neg L x x$.	$6 . \neg \operatorname{Laa}(5 \forall)$.

```
2 \checkmark\neg\existsxLxx.
4 Lab. (4 \exists.)
\(5 \forall x \neg L x x\).
```

4 Lab. (4 ヨ.)
$5 \forall x \neg L x x$.
6 . $\neg \operatorname{Laa}(5 \forall)$.

4 Lab.
$5 \forall x \neg L x x$.
$6 \neg \operatorname{Laa}(5 \forall)$.
$7 \neg L b b(5 \forall) \ldots$
8 Invalid. (cannot do any more...)

Identity

- We can introduce the identity symbols $=$ to predicate logic.
- We can introduce the identity symbols = to predicate logic.
- = indicates two objects are the "same".
- We can introduce the identity symbols = to predicate logic.
- = indicates two objects are the "same".
- Symbols c Samuel Clemens, h Huckleberry Finn the Novel, t Mark Twain.
- We can introduce the identity symbols = to predicate logic.
- = indicates two objects are the "same".
- Symbols c Samuel Clemens, h Huckleberry Finn the Novel, t Mark Twain.
- Mark Twain is not Samuel Clemens. $\neg(t=c)$ or $t \neq c$.
- We can introduce the identity symbols = to predicate logic.
- = indicates two objects are the "same".
- Symbols c Samuel Clemens, h Huckleberry Finn the Novel, t Mark Twain.
- Mark Twain is not Samuel Clemens. $\neg(t=c)$ or $t \neq c$.
- Only Mark Twain wrote Huckelberry Finn. $\forall x(W x h \rightarrow x=t)$.
- We can introduce the identity symbols = to predicate logic.
- = indicates two objects are the "same".
- Symbols c Samuel Clemens, h Huckleberry Finn the Novel, t Mark Twain.
- Mark Twain is not Samuel Clemens. $\neg(t=c)$ or $t \neq c$.
- Only Mark Twain wrote Huckelberry Finn. $\forall x(W x h \rightarrow x=t)$.
- Mark Twain is the best American writer At $\wedge(\forall x(A x \wedge \neg x=t) \rightarrow B t x)$.
- Identity (=) rule: $\alpha=\beta$ occurs. Then we can replace from ϕ any number of α with β and vice versa at the bottom of the path.
- Identity (=) rule: $\alpha=\beta$ occurs. Then we can replace from ϕ any number of α with β and vice versa at the bottom of the path.
- Negated Identity Rule ($\neg=)$: $\neg \alpha=\alpha$ occurs. Then we can close the path containing it.

Example

We show $\vdash \forall x \forall y(x=y \rightarrow y=x)$.

Example

We show $\vdash \forall x \forall y(x=y \rightarrow y=x)$.
$1 \neg \forall x \forall y(x=y \rightarrow y=x)$.

Example

We show $\vdash \forall x \forall y(x=y \rightarrow y=x)$.

$$
\begin{array}{ll}
1 \neg \forall x \forall y(x=y \rightarrow y=x) . & 1 \checkmark \neg \forall x \forall y(x=y \rightarrow y=x) . \\
& 2 \exists x \neg \forall y(x=y \rightarrow y=x) .
\end{array}
$$

We show $\vdash \forall x \forall y(x=y \rightarrow y=x)$.

$$
\begin{array}{lll}
1 \neg \forall x \forall y(x=y \rightarrow y=x) . & 1 \checkmark \neg \forall x \forall y(x=y \rightarrow y=x) . & 1 \checkmark \neg \forall x \forall y(x=y \rightarrow y=x) . \\
& 2 \exists x \neg \forall y(x=y \rightarrow y=x) . & 2 \checkmark \exists x \neg \forall y(x=y \rightarrow y=x) . \\
& & 3 \neg \forall y(a=y \rightarrow y=a) . \text { (2 } \exists \text {.) }
\end{array}
$$

$3 \checkmark \neg \forall y(a=y \rightarrow y=a)$. (2 ヨ.)
$4 \exists y \neg(a=y \rightarrow y=a) .(3 \neg \forall)$.

$$
\begin{array}{ll}
3 \checkmark \neg \forall y(a=y \rightarrow y=a) .(2 \exists .) & 4 \checkmark \exists y \neg(a=y \rightarrow y=a) . \\
4 \exists y \neg(a=y \rightarrow y=a) .(3 \neg \forall) . & 5 \neg(a=b \rightarrow b=a) .
\end{array}
$$

$$
\begin{array}{ll}
3 \checkmark \neg \forall y(a=y \rightarrow y=a) .(2 \exists .) & 4 \checkmark \exists y \neg(a=y \rightarrow y=a) . \\
4 \exists y \neg(a=y \rightarrow y=a) .(3 \neg \forall) . & 5 \neg(a=b \rightarrow b=a) .
\end{array}
$$

$$
\begin{aligned}
& 5 \checkmark \neg(a=b \rightarrow b=a) . \\
& 6 a=b(5 \neg \rightarrow) \\
& 7 \neg(b=a)(5 \neg \rightarrow) .
\end{aligned}
$$

$3 \checkmark \neg \forall y(a=y \rightarrow y=a)$. (2 $\exists) \quad .4 \checkmark \exists y \neg(a=y \rightarrow y=a)$.
$4 \exists y \neg(a=y \rightarrow y=a) .(3 \neg \forall) . \quad 5 \neg(a=b \rightarrow b=a)$.

$$
5 \checkmark \neg(a=b \rightarrow b=a)
$$

$$
6 a=b(5 \neg \rightarrow)
$$

$$
7 \neg(b=a)(5 \neg \rightarrow)
$$

$$
\begin{aligned}
& 6 a=b(5 \neg \rightarrow) \\
& 7 \neg(b=a)(5 \neg \rightarrow) . \\
& 8 \neg(a=a) .6,7=. X .
\end{aligned}
$$

- valid.

Some other equivalences (Repeated)

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.

Some other equivalences (Repeated)

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\forall x(E(x) \vee T(x))$ is not equivalent to $(\forall x E(x)) \vee(\forall x T(x))$.

