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Introduction

About this lecture

Russell’s theory of Description

Predicate and names

Quantifiers and variables

Formation rules

Models

Refutation trees of predicate logic

Identity

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer

A mathematical introduction to logic, H. Enderton, Academic Press.

Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea. )

http://plato.stanford.edu/contents.html has much resource. See “Descriptions”.

http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/
24-241Fall-2005/CourseHome/ See "Monadic Predicate Calculus".

http://philosophy.hku.hk/think/pl/. See Module: Predicate Logic.

http://logic.philosophy.ox.ac.uk/. See "Predicate Calculus" in Tutorial.
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Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http:
//logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html,
complete (i.e. has all the steps)

http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.
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Russell’s theory of Description

Formalizations

All S are P: ∀x , (Sx → Px). (Not ∀x ,Sx ∧ Px)

No S is P: ∀x , (Sx → ¬Px). (Not ∀x ,Sx ∧ ¬Px)

Some S are P: ∃x ,Sx ∧ Px (Not ∃x ,Sx → Px .)

Sometimes, one has to use ∧ and sometimes →.

See Problems 6.1 and 6.2. page 132-133 Nolt.
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Russell’s theory of Description

Russell’s theory of Description

Often we use sentences like “Tom is a man”. “A person of African descent is the President of
America.”

M(x): x is a man, B(x): x is of African descent. P(x): x is the President of America.

We have M(Tom).

There exists x s.t. B(x) ∧ P(x) hold.

How does one analyze such arguments logically.

A statement such as a is a KAIST student.

This is a description K (a).
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Russell’s theory of Description

Russell’s theory of Description

Is the statement “The present king of Korea is of Japanese descent" correct?

There exists x such that K (x) → J(x). (True always)

There exists x such that K (x) ∧ J(x). (False)

These two are logically different.

Of course the theory of descriptions has some controversies as well. (If one accepts the
theory, there are many implications.)
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Quantifiers and variables

Quantifiers

Universal quantifier ∀x .

Existential quantifier ∃x .

There exists x such that if x is K (x), then x is J(x).

∃x , K (x) → J(x).

Every body in KAIST has a course that he takes and which he hates.

∀x(K (x) → ∃c(T (x , c) ∧ H(x , c))).
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Quantifiers and variables

Examples

Nobody wish to get close to some one with H1N1 virus.

∀x(H1(x) → ¬(∃yC(y , x)).

If any one in the dorm has a friend who has the measles, then everyone in the room will be
quarantined.

(∃x(D(x) ∧ (∃y(F (y , x) ∧ M(y))))) → (∀z(D(z) → Q(z))).
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Quantifiers and variables

Quantifier negation laws

¬∃xP(x) ↔ ∀x¬P(x).

¬∀xP(x) ↔ ∃x¬P(x).

This will be proved later. (See also HTP)

Every body has a relative he does not like.

Negate this statement.

∀x(∃y(R(x , y) ∧ ¬L(x , y))).

¬∀x(∃y(R(x , y) ∧ ¬L(x , y))).

∃x¬(∃y(R(x , y) ∧ ¬L(x , y))).

∃x(∀y¬(R(x , y) ∧ ¬L(x , y))).

∃x∀y(¬R(x , y) ∨ L(x , y)).

∃x∀y(R(x , y) → L(x , y)).

There is someone who likes all his relatives.
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Quantifiers and variables

Interchangible

∀x∀y interchangible to ∀y∀x .

∃x∃y interchangible to ∃y∃x .

Other types are not interchangible.

∃x∃y(T (y , x) ∧ P(y , x)).

There is some one A who is a teacher of some one B and is younger than B.

∃y∃x(T (y , x) ∧ P(y , x))

There is some one B who is a student of some one A and is older than A.
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Quantifiers and variables

Some other equivalences

∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.

∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.

∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g. And also
∃x(f ∨ g) ↔ (∃xf ) ∨ g

∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g. And also
∀x(f ∧ g) ↔ (∀xf ) ∧ g

∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part of x1, ..., xn.

∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part of x1, ..., xn.

∃xf ↔ f if x is not a free variable of f .

∀xf ↔ f if x is not a free variable of f .

But ∃x(E(x) ∧ T (x)) is not equivalent to (∃xE(x)) ∧ (∃xT (x)).

∀x(E(x) ∨ T (x)) is not equivalent to (∀xE(x)) ∨ (∀xT (x)).
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Predicate and name

Predicate and names

Jones is a thief. T (j).

T (x) x is a thief. j Jones.

Bob loves Cathy.

L(b, c), L(c, b).

Cathy gave Fido to Bob.

G(c, f , b). G(x , y , z). x gave y to z.
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Predicate and name

Predicate and names

Jones likes everyone.

∀xL(j, x).

Jones likes a nurse.

∃x(N(x) ∧ L(j, x)).

Jones likes every nurse.

∀x(N(x) → L(j, x)).

A nurse likes a mechanic.

∃x∃y((N(x) ∧ M(y)) → L(x , y)).
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Formation rules

Formation rules

Logical symbols:

I Logical operators ¬,∧,∨,→,←.
I Quantifiers ∀, ∃.
I Variables; letter u, v , z, ....

Nonlogical symbols:

I Names: a, b, ..., t .
I Predicate: A, B, C, ....
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Formation rules

Well formed formula

Any atomic formula is a wff. P, K (a), J(a, b), so on.

If φ is a wff, then so is ¬φ.

If φ and ψ are wffs, then so are φ ∧ ψ, φ ∨ ψ, φ→ ψ, and φ↔ ψ.

If φ is a wff containing a name letter α, then any formula of form ∀βφβ/α and ∃βφβ/α for a
variable β are wff.

Here, φβ/α means that we replace every or some occurance of α in φ with β.
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Formation rules

Examples

F (a) ∧ G(a, b). a is fast and a is greater than b.

∀x(F (x) ∧ G(x , b)).

∃y∀x(F (x) ∧ G(x , y)).

There exists someone who is less than all the fast people.

∀xL(x , z)

not wff.

∃x∃x(F (x) ∧ (¬G(x))). This violates rules.
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Models

Models

Semantics or actual interpretations of symbols... i.e., universe A, B,... today’s universe....
These could even be finitely many.

These could form sets, but not necessarily so.

Symbols: Model interpretations

name letter: indiviual objects

zero-place predicate letter: truth value T or F.

one-place predicate letter: A class of objects.

n-place predicate letter: a relation between n objects.

Given a model M, it is possible that different simbols represent the same objects or relations.

We try to avoid giving same letters to different objects or relations in models.
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Models

Truth value assignment

A single letter. The truth value is the one directly supplied by the model.

Predicate P. P(a) is true if a belongs to the class of object denoted by P.

R(a, b, ..., g) is true if the relation hold between a, b, .., g and is false if not.
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Models

Examples

Universe: the class of all people.

o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21st century
U.S. Presidents. B people who own black dogs.

∀x(Px → Bx).

x = o. T . x = g. T .

x = h or any other person. T .

Thus ∀x(Px → Bx) is true.

Let P′ be the class of 20th century president.

Check ∀x(P′x → Bx).
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Models

α-variant of a model M

M a model, and α a name letter (an external object)

The α-variant of M is a model with the same universe as M and freely interpreting α as any
object in M.

A universal quantification ∀βφ is true in M if the wff φα/β is true for every α-variant of M.

An existential quantification ∃βφ is true in M if the wff φα/β is true for some α-variant of M.

If the wff φα/β is true for no α-variant of M, then ∃βφ is false.

Universe: all living creatures. B the class of blue things. W the class of winged horses.

∀x(Wx → Bx). Is this true?

We can let α be any living creature. Then Wx is always false.
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Models

Examples

Universe: the class of all positive integers

E : the class of even integers, B relation bigger than

∀x(Ex → ∀yBxy).

α-variant of M.,

α odd. Then true.

α even ∀yBαy . False.

Thus false.

Example: ∀y∃xBxy .

True.
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Refutation trees of predicate logic

Validity of predicate logic

We would write some statements is valid if it is true for all models of the theory.

We write P,Q, |= R if (P ∧ Q) → R is true on every model of the theory.

Example: ∃x∀yG(x , y) |= ∀y∃xG(x , y) is valid.

Example: ∀y∃xG(x , y) |= ∃x∀yG(x , y) is invalid. (See 6.20, 6.21, 6.22)

Note here the role of the models.

In this book, we confuse |= with `.
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Refutation trees of predicate logic

Refutation trees of predicate logic

One can use the refutation tree method for propositional logic for predicate logic also.

This works by using negation rules for universal quantifiers and existential quantifiers. See
Example 6.24.

We will give rules for refutation trees for predicate logic.

The rules can show the validity (i.e. the soundness of the rule.)

However, rule may not detect invalidity (i.e. incompleteness of the rule). That is, sometimes, it
won’t give us counter-example.
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Refutation trees of predicate logic

Refutation trees of predicate logic example

Prove ∀xF (x) → ∀xG(x),¬∀xG(x) ` ¬∀xF (x).

1 ∀xF (x)→ ∀xG(x).

2 ¬∀xG(x)

3 ¬¬∀xF (x)

1 X ∀xF (x)→ ∀xG(x).

2 ¬∀xG(x)

3 ¬¬∀xF (x),

4 (i) ¬∀xF (x) (ii) ∀xG(x). → E .1

2 ¬∀xG(x)

3 ¬¬∀xF (x),

4 (i) ¬∀xF (x) (ii) ∀xG(x). → E .1

5 (i) (X) (ii) (X) valid
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Refutation trees of predicate logic

Universal quantifier rule ∀.

We have ∀βφ and a name letter α is on an open path containing it, write φα/β at the bottom
of that path.

If no name letter appears on the open path, then choose some name letter α and write φα/β
at the bottom of that path.

But do not check ∀βφ. (Since we will use it many times.)
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Refutation trees of predicate logic

Example

All university students are weak.

Everyone is a university student.

Thus, Alf is weak.

∀x(Ux → Wx), ∀xUx ` Wa.

1 ∀x(Ux → Wx),

2 ∀xUx

3 ¬Wa.

1 ∀x(Ux → Wx),

2 ∀xUx

3 ¬Wa.

4 Ua→ Wa (1 ∀.)

1 ∀x(Ux → Wx),

2 ∀xUx

3 ¬Wa.

4 Ua→ Wa (1 ∀.)

5 Ua (2 ∀)
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Refutation trees of predicate logic

1 ∀x(Ux → Wx),

2 ∀xUx

3 ¬Wa.

4 X Ua→ Wa (1 ∀.)

5 Ua (2 ∀)

6 (i) ¬Ua (4. →) (ii) Wa (4→).

1 ∀x(Ux → Wx),

2 ∀xUx

3 ¬Wa.

5 Ua (2 ∀)

6 (i) ¬Ua (4. →) (X)
(ii) Wa (4→). (X)

valid
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Refutation trees of predicate logic

More rules.

Existential quantification ∃: ∃βφ check it and choose α not anywhere and write φα/β .

Negated existential quantification ¬∃: ¬∃φ check it and write ∀¬φ.

Negated universal quantification ¬∀: ¬∀φ check it and write ∃¬φ.

These two are equivalences.
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Refutation trees of predicate logic

Example

Holmes, if any one can trap Moriarty, he can. Holmes can’t. No-one can.

∀xTxm → Thm, ¬Thm, ` ¬∃xTxm.

1 ∀xTxm → Thm,

2 ¬Thm,

3 ¬¬∃xTxm

1 ∀xTxm → Thm,

2 ¬Thm,

3 X¬¬∃xTxm.

4 ∃xTxm.

1 ∀xTxm → Thm,

2 ¬Thm,

4 ∃xTxm.

5 Tmm → Thm (1 ∀).
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Refutation trees of predicate logic

1 ∀xTxm → Thm,

2 ¬Thm,

4 ∃xTxm.

5 XTmm → Thm (1 ∀).

6 (i) ¬Tmm (5→) 6.(ii) Thm. (5→). (X 2, 6)

1 ∀xTxm → Thm,

2 ¬Thm,

4 ∃xTxm.

5 Tmm → Thm (1 ∀).

6 (i) ¬Tmm (5→)

7 Tcm (4 ∃). 6(ii) Thm. (5→). (X 2, 6)

8 Tcm → Thm (1 ∀)

9 (i) ¬Tcm (X, 4) (ii) Thm (X, 2). (8→).

valid
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Refutation trees of predicate logic

Example

There is some one who loves someone. Then there exists someone who loves himself.

∃x∃yLxy ` ∃xLxx .

1 ∃x∃yLxy .

2 ¬∃xLxx .

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 ∃yLay (1 ∃).

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 X∃yLay (1 ∃).

4 Lab. (4 ∃.)

S. Choi (KAIST) Logic and set theory September 23, 2011 32 / 38



Refutation trees of predicate logic

Example

There is some one who loves someone. Then there exists someone who loves himself.

∃x∃yLxy ` ∃xLxx .

1 ∃x∃yLxy .

2 ¬∃xLxx .

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 ∃yLay (1 ∃).

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 X∃yLay (1 ∃).

4 Lab. (4 ∃.)

S. Choi (KAIST) Logic and set theory September 23, 2011 32 / 38



Refutation trees of predicate logic

Example

There is some one who loves someone. Then there exists someone who loves himself.

∃x∃yLxy ` ∃xLxx .

1 ∃x∃yLxy .

2 ¬∃xLxx .

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 ∃yLay (1 ∃).

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 X∃yLay (1 ∃).

4 Lab. (4 ∃.)

S. Choi (KAIST) Logic and set theory September 23, 2011 32 / 38



Refutation trees of predicate logic

Example

There is some one who loves someone. Then there exists someone who loves himself.

∃x∃yLxy ` ∃xLxx .

1 ∃x∃yLxy .

2 ¬∃xLxx .

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 ∃yLay (1 ∃).

1 X∃x∃yLxy .

2 ¬∃xLxx .

3 X∃yLay (1 ∃).

4 Lab. (4 ∃.)

S. Choi (KAIST) Logic and set theory September 23, 2011 32 / 38



Refutation trees of predicate logic

2 X¬∃xLxx .

4 Lab. (4 ∃.)

5 ∀x¬Lxx .

4 Lab. (4 ∃.)

5 ∀x¬Lxx .

6 . ¬Laa (5 ∀).

4 Lab.

5 ∀x¬Lxx .

6 ¬Laa (5 ∀).

7 ¬Lbb (5 ∀)...

8 Invalid. (cannot do any more...)
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Refutation trees of predicate logic
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Identity

Identity

We can introduce the identity symbols = to predicate logic.

= indicates two objects are the “same”.

Symbols c Samuel Clemens, h Huckleberry Finn the Novel, t Mark Twain.

Mark Twain is not Samuel Clemens. ¬(t = c) or t 6= c.

Only Mark Twain wrote Huckelberry Finn. ∀x(Wxh → x = t).

Mark Twain is the best American writer At ∧ (∀x(Ax ∧ ¬x = t) → Btx).
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Identity

Refutation tree rules for Identity

Identity (=) rule: α = β occurs. Then we can replace from φ any number of α with β and vice
versa at the bottom of the path.

Negated Identity Rule (¬ =): ¬α = α occurs. Then we can close the path containing it.
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Identity

Example

We show ` ∀x∀y(x = y → y = x).

1 ¬∀x∀y(x = y → y = x).
1 X¬∀x∀y(x = y → y = x).

2 ∃x¬∀y(x = y → y = x).

1 X¬∀x∀y(x = y → y = x).

2 X∃x¬∀y(x = y → y = x).

3 ¬∀y(a = y → y = a). (2 ∃.)
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Identity

3 X¬∀y(a = y → y = a). (2 ∃.)

4 ∃y¬(a = y → y = a). (3 ¬∀).

4 X∃y¬(a = y → y = a).

5 ¬(a = b → b = a).

5 X¬(a = b → b = a).

6 a = b (5 ¬ →)

7 ¬(b = a) (5 ¬ →).

6 a = b (5 ¬ →)

7 ¬(b = a) (5 ¬ →).

8 ¬(a = a). 6, 7 =. X.

valid.
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Identity

Some other equivalences (Repeated)

∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.

∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.

∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g. And also
∃x(f ∨ g) ↔ (∃xf ) ∨ g

∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g. And also
∀x(f ∧ g) ↔ (∀xf ) ∧ g

∃yf (x1, ..., xn, y) ↔ ∃zf (x1, .., xn, z) if neither y , z are part of x1, ..., xn.

∀yf (x1, ..., xn, y) ↔ ∀zf (x1, .., xn, z) if neither y , z are part of x1, ..., xn.

∃xf ↔ f if x is not a free variable of f .

∀xf ↔ f if x is not a free variable of f .

But ∃x(E(x) ∧ T (x)) is not equivalent to (∃xE(x)) ∧ (∃xT (x)).

∀x(E(x) ∨ T (x)) is not equivalent to (∀xE(x)) ∨ (∀xT (x)).
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