MAS109 Introduction to Linear Algebra, *corrected March 4, 2014*

2014 spring

Instructors

Prof. G.H. Choe: choe@euclid.kaist.ac.kr, Tel: 2725, Office: E6-1, 3405, *Coordinator* Prof. Ja Kyung Koo: jkkoo@math.kaist.ac.kr, Tel: 2722, Office: E6-1, 3409 Prof. Chang-Ock Lee: colee@kaist.edu, Tel: 2738, Office: E2, 3211 Dr. Younjin Kim: younjin@kaist.ac.kr, Tel: 2792, Office: E6-1, 4424 Head TA: E. Lee MATLAB TA: J.W. Kim

Course Outline

Linear Algebra is widely used in physics, chemistry, biology, computer science, engineering, economics, finance and business. This course covers linear independence, vector space, basis, dimension, inverse matrix, determinant, rank, eigenvalue, eigenvector, orthogonal matrix, diagonalization, LU-decomposition, and singular value decomposition. The goal of this course is to learn how to solve systems of linear equations with practical applications in mind.

Textbook

"Contemporary Linear Algebra" by H. Anton and R.C. Busby, John Wiley & Sons, Inc.

Evaluation

Midterm (30%), Final (40%), Quiz (20%), Class Attendance (10%)Students who miss either midterm or final exam will get the final grade 'F'.Course grades will be determined by a relative scale based only on scores of first-time takers.*For repeaters, the possible highest course grade is* A-.

Homework

You do not have to hand in your homework. Instead you practice with the n-th week's homework to prepare for the (n+1)-st week's quiz.

Recitation Class

There will be a one-hour recitation class each week except for the first two weeks. Each section is run by a TA and accommodates about 30 students.

MATLAB

Every week, MATLAB problems are assigned. Students are required to submit MATLAB assignments to their TA's, there will be MATLAB problems in the midterm and final exam.

Weeks	Topics to be covered	Sections	Homework
Week 1	- Solving linear system by row reduction and some operations on matrices	§ 2.1-2, 3.1	§2.1 8, 12, 25,31, D9 §2.2 11,25,40,44,D4 §3.1 8,20,24,26,D9,P2
Week 2	Inverse and elementary matricesSubspaces and linear independence	§ 3.2-4	§3.2 21,32,34,D1,D2 §3.3 16,25,32,D6,P6 §3.4 16,20,24,28,D6,P1
Week 3	 The geometry of linear systems Matrices with special forms and LU decomposition 	§ 3.5-7	\$3.5 2,8,16,D4,P4 \$3.6 6,14,18,26,28,D10 \$3.7 10,14,18,D3
Week 4	Determinants, cofactor expansionProperties of determinants	§ 4.1-2	\$4.1 12,20,34,35,D5 \$4.2 6,20,22,26,38,D8
Week 5	 Cramer's rule Eigenvalues and eigenvectors Matrices as transformations 	§ 4.3-4, 6.1	§4.3 12,18,33,36,48,50 §4.4 2,12,26,31,D8,P7 §6.1 10,23,27,32,D4
Week 6	Geometry of linear operationsKernel and rangeComposition and invertibility	§ 6.2-4	§6.2 13,15,24,30,D6 §6.3 6,10,16,20,D1,P1 §6.4 6,8,14,22,24,D1
Week 7	- Basis and dimension - Properties of bases	§ 7.1-2	§7.1 2,6,8,12,D2,D4 §7.2 8,16,18,D1,D2,P5
Week 8	Midterm Exam		
Week 9	 The fundamental spaces of a matrix The dimension theorem The rank theorem	§7.3-5	§7.3 8,24,32,D2,P4 §7.4 8,14,24,D1,P4 §7.5 1 0,14,18,D4,P1
Week 10	- The pivot theorem	§7.6	§7.6 6,10,14,16,D2
Week 11	The projection theoremBest approximation and least squares	§7.7-8	§7.7 4,20,26,D5,P3 §7.8 2,4,8,14,P2
Week 12	- The Gram-Schmidt process - Coordinate change	§7.9, 7.11	§7.9 6,12,26,39,D5 §7.11 12,18,20,26,P2
Week 13	 Matrix representations of linear transformations Similarity and diagonalizability 	§8.1-2	§8.1 16,24,30,D4,P3 §8.2 10,18,26,D3,D4
Week 14	Orthogonal diagonalizabilityQuadratic forms	§8.3-4	§8.3 10,18,28,D1,P2 §8.4 8,16,18,32,34,D2
Week 15	- Singular value decomposition	§8.6	§8.6 4,10,20,22,D1
Week 16	Final Exam		

2014 Spring Lecture Schedule

• June 4, 2014, Wednesday (Week 14) is the Election Day and there is no class!