ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS
SANGHOON BAEK AND ALEXANDER S. MERKURJEV

ABSTRACT. Let p be a prime integer, 1 < s < r integers and F' a field
of characteristic different from p. We find upper and lower bounds for the
essential p-dimension edp(A/gpr)ps) of the class Alg, ,. of central simple
algebras of degree p” and exponent dividing p®. In particular, we show that
ed(Algg o) = eda(Algg ,) = 8 and ed,(Alg,2 ) = p* + p for p odd.

1. INTRODUCTION

Let F : Fields/F — Sets be a functor from the category Fields/F of field
extensions over F' to the category Sets of sets. Let E € Fields/F and K C E a
subfield over F'. An element o € F(FE) is said to be defined over K (and K is
called a field of definition of «) if there exists an element 8 € F(K) such that
« is the image of 5 under the map F(K) — F(E). The essential dimension
of a, denoted ed” (a), is the least transcendence degree tr.deg,(K) over all
fields of definition K of a. The essential dimension of the functor F is

ed(F) = sup{ed” (a)},

where the supremum is taken over all fields E € Fields/F and all a € F(E)
(see B, Def. 1.2] or [B, Sec.1]). Informally, the essential dimension of F is the
smallest number of algebraically independent parameters required to define F
and may be thought of as a measure of complexity of F.

Let p be a prime integer. The essential p-dimension of a;, denoted edi,E (o), is

defined as the minimum of ed” (ag/), where E’ ranges over all field extensions
of E of degree prime to p. The essential p-dimension of F is

ed,(F) = sup{edf(oz)},

where the supremum ranges over all fields £ € Fields/F and all o € F(E).
By definition, ed(F) > ed,(F) for all p.

For every integer n > 1, a divisor m of n and any field extension E/F, let
Alg,, ,(E) denote the set of isomorphism classes of central simple E-algebras
of degree n and exponent dividing m. Equivalently, Alg,, ,,(E) is the subset of
the m-torsion part Br,,(E) of the Brauer group of F consisting of all elements a
such that ind(a) divides n. In particular, if n = m, then Alg,,(E) := Alg,, .(E)
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is the set of isomorphism classes of central simple E-algebras of degree n. We
view Alg,, ,, and Alg,, as functors Fields/F" — Sets.

In the present paper we give upper and lower bounds for edp(A/gnjm) for a
prime integer p different from char(F'). Let p" (respectively, p®) be the largest
power of p dividing n (respectively, m). Then ed,(Alg,, ,,) = ed,(Alg, ) and
ed,(Alg,) = ed,(Alg,-) (see Section B). Thus, we may assume that n and m
are the p-powers p” and p® respectively.

Using structure theorems on central simple algebras, we can compute the
essential (p)-dimension of Alg, . for certain small values of r, s or p as follows.
As every central simple algebra A of degree p is cyclic over a finite extension
of fields of degree prime to p, A can be given by two parameters (see Section
20). In fact, ed,(Alg,) = 2 by [[@, Lemma 8.5.7].

By Albert’s theorem, every algebra in Algy » is biquaternion and hence can
be given by 4 parameters. In fact, ed(Algs2) = ed2(Algs ) = 4 (see Remark
B3).

Upper and lower bounds for ed,(Alg,) can be found in [[H] and [I] respec-
tively. In this paper (see Sections B and @), we establish the following upper
and lower bounds for ed,(Alg,r ,s) that match the bounds in the case r = s
given in [[H] and [Id]:

Theorem. Let F' be a field and p a prime integer different from char(F').
Then, for any integers r > 2 and s with 1 < s <r,

(r—1)2! if p=2ands=1,

2r—2 —~
A4 > ed,(Alg, ) >
P p > edy(Alg,r ) {(7, —1)p"+p"* otherwise.

Corollary. (cf. [A]) Let p be a prime integer and F a field of characteristic
different from p. Then

ed,(Alg,2) = p> + 1.

Corollary. Let p be an odd prime integer and F a field of characteristic
different from p. Then
ed,(Algy2 p) = P’ +p.

The corollary recovers a result in [E] that for p odd, there exists a cen-
tral simple algebra of degree p? and exponent p over a field F which is not
decomposable as a tensor product of two algebras of degree p over any finite
extension of F' of degree prime to p. Indeed, if every central simple algebra of
degree p? and exponent p were decomposable, then the essential p-dimension
of Alg,2 , would be at most 4.

Corollary. Let F be a field of characteristic different from 2. Then
edy(Algs ) = ed(Algs,) = 8.

The proof is given in Section B. The corollary recovers a result in [0] that
there is a central simple algebra of degree 8 and exponent 2 over a field ' which
is not decomposable as a tensor product of three quaternion algebras over any
finite extension of F' of degree prime to p. Indeed, if every central simple
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algebra of degree 8 and exponent 2 were decomposable, then the essential
2-dimension of Algg» would be at most 6.

The proof of the main theorem splits into two steps. In the first step we
relate the essential p-dimensions of Alg, s and of a certain torus S* by means
of the iterated degeneration. In the second step we apply [@, Th. 1.4] to
compute the essential p-dimension of S®.

2. CHARACTER, BRAUER GROUP AND ALGEBRAIC TORI

2.1. Character and Brauer group. Let I be a field, Fi, a separable closure
of F, I'r = Gal(Fip/F). For a (discrete) I'p- module M, we write H™(F, M)
for the Galois cohomology group H"(I'p, M).

If S is an algebraic group over F, we let H'(F, S) denote the set H' (I'p, S(Fiep))
(see [MF]).

The character group of F is defined by

Ch(F) := Homeon(T'r, Q/Z) = H'(F,Q/Z) ~ H*(F, 7).

The n-torsion character group Ch,(F) is identified with H'(F,Z/nZ). For a
character x € Ch(F), set F(x) = (Fup)¥™. The field extension F(x)/F is
cyclic of degree ord(x). If ¥ C Ch(F) is a finite subgroup, we set

F(W) = (Fup) 70,

where the intersection is taken over all y € W. The Galois group G =
Gal(F(¥)/F) is abelian and V¥ is canonically isomorphic to the character
group Hom(G,Q/Z) of G. Note that a character n € Ch(F') is trivial over
F(V) if and only if n € W,

If K/F is a field extension, we write K(¥) for K(Vg), where Uy is the
image of W under the natural homomorphism Ch(F') — Ch(K).

We write Br(F) for the Brauer group H?(F, Fy5,) of F. If L/F is a field
extension and a € Br(F), we let o, denote the image of a under the natural

map Br(F) — Br(L). We say that L is a splitting field of « if o, = 0. The
index ind(«) of « is the smallest degree of a splitting field of «. The exponent
exp(a) is the order of « in Br(F'). The integer exp(«) divides ind(a).

Let A be a central simple F-algebra. The degree of A in the square root of
dim(A). We write [A] for the class of A in Br(F'). The index of [A] divides
deg(A). If @ € Br(F') and n is a positive multiple of ind(«), then there is a
central simple F-algebra A of degree n with [A] = «.

The cup-product

Ch(F)® F* = H*(F,Z) @ H*(F,F})) — H*(F,F}) = Br(F)

sep sep
takes x®b to the class xU(b) in Br(F) that is split by F'(x). A class o € Br(F)
is called n-cyclic if a = x U (b) for a character y with nxy = 0. Such classes
belong to Br,(F). If n is prime to char(F), then Br,(F) ~ H*(F, u,), where
ftr, is the I'p-module of all n-th roots of unity in Fip.

Let n be prime to char(F) and suppose that F' contains a primitive n-th
root of unity £&. For any a € F'*, let x, € Ch(F') be the unique character with



4 S. BAEK AND A. MERKURJEV

values in 27 /7 C Q/Z such that
7(al/n) — g(nxa(v))al/n

for all v € Gal(Fiep/F). We write (a,b), for x, U (b). The symbol (a,b),
satisfies the following properties (see [, Chap. XIV, Prop.4]):

(0'7 b)n + (alv b)n = (aa/7 b)n7

(G, b)n = —(b, a)m

(a,—a), = 0.

For a finite subgroup ® C Ch(F') write Br(F(CI))/F)deC for the subgroup of
decomposable elements in Br(F(®)/F) generated by the elements yU(a) for all
x € ® and a € F*. The indecomposable relative Brauer group Br(F(@)/F) i
is the factor group Br(F(®)/F)/Br(F(®)/F),... Similarly, if ® C Ch,(F) for
some 7, then Br,,(F(®)/F),  is the indecomposable n-torsion relative Brauer
group defined as the factor group Br, (F(®)/F)/Br(F(®)/F),...

Let E be a complete field with respect to a discrete valuation v and K
its residue field. Let p be a prime integer different from char(K). There is
a natural injective homomorphism Ch(K){p} — Ch(E){p} of the p-primary
components of the character groups that identifies Ch(K){p} with the charac-
ter group of an unramified field extension of E. For a character x € Ch(K){p},
we write X for the corresponding character in Ch(E){p}.

If in addition F is an extension of a field F' such that v is trivial on £, then
K is a field extension of F' and the composition

Ch(F){p} — Ch(K){p} — Ch(E){p}

coincides with the canonical homomorphism for the field extension E/F.
By [@, §7.9], there is an exact sequence

0 — Br(K){p} > Br(E){p} 2 Ch(K){p} — 0.

If @ € Br(K){p}, then we write & for the element i(«) in Br(E){p}. For
example, if o = x U (a) for some x € Ch(K){p} and a unit u € E, then
a =X U (u). In the case F' contains a primitive n-th root of unity, where n is
a power of p, if @ = (a,b), with a and b units in E, then @ = (a,b),.

If 3 =a+ (YU (z)) for an element a € Br(K){p}, x € Ch(K){p} and
x € E* such that v(x) is not divisible by p, we have (cf. [[@, Prop. 2.4])

(1) ind(8) = ind(a(y)) - ord(x).

2.2. Representations of algebraic tori. Let T be an algebraic torus over
a fileld F', L/F a finite Galois splitting field for 7' with Galois group G.
The group G is called a decomposition group of T. The character group
T* := Homp(Tr,Gy, 1) has the structure of a G-module. The torus 7' can
be reconstructed from 7™ by

T = Spec(L[T*]9).
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A torus P over F split by L is called quasi-split if P* is a permutation G-
module, i.e., if there exists a G-invariant Z-basis X for P*. The torus P
is canonically isomorphic to the group of invertible elements of the étale F'-
algebra A = Mapq (X, L). The torus P acts linearly by multiplication on the
vector space A over F' making A a faithful P-space (a linear representation
of P) of dimension dim(P). It follows that a homomorphism of algebraic tori
v: T — P with P a quasi-split torus yields a linear representation of 7" of
dimension dim(P) that is faithful if v is injective.

Let P be a split torus over F', and P* its character group. As above, the
choice of a Z-basis X for P* allows us to identify P with the group of invertible
elements of a split étale F-algebra A and make A a faithful P-space over F'.
Let v : T — P be a homomorphism of split tori over F'. Suppose a finite
group G acts on T and P by tori automorphisms so that v is a G-equivariant
homomorphism. Then the map v* : P* — T™* is a G-module homomorphism.
Suppose that there is a G-invariant Z-basis X for P*, i.e., P* is permutation.
Then G acts on the algebra A by F-algebra automorphisms. The torus 7" acts
linearly on A via v. It follows that the semidirect product 7" x G acts linearly
on A making A a T x G-space.

Let L be a Galois G-algebra over F' (for example, L/F is a Galois field
extension with Galois group G). Then 7 : Spec L — Spec F' is a G-torsor.
Twisting the split torus T' by the torsor 7y, we get the torus

T, = (T x Spec L) /G = Spec(L[T*]%)
that is split by L and 77 is isomorphic to T* as G-modules.

By [B, Prop. 28.11], the fiber of H'(F,T x G) — H'(F,G) over the class of
7 is naturally bijective to the orbit set of the group G (F) in H'(F,T,), i.e.,

(2) Hl(FvTNG):HH1<F7T’Y)/G’Y(F)7
where the coproduct is taken over all [y] € H'(F, Q).

2.3. Generic torsors. Let T" be an algebraic torus split by a finite Galois
field extension L/F with G = Gal(L/F). Let P be a quasi-split torus split
by L and containing T as a subgroup. Set S = P/T. Then the canonical
homomorphism v : P — S is a T-torsor.

Proposition 2.1. The T-torsor v is generic, i.e., for every field extension
K/F with K infinite, every T-torsor ' : E — Spec K and every nonempty
open subset W C S, there is a morphism s : Spec K — S over F' with Im(s) C
W such that the T-torsors ' and s*(vy) = v x g Spec K over K are isomorphic.

Proof. As P is quasi-split, the last term in the exact sequence
P(K) 25 S(K) % HY(K,T) — H'(K, P)

is trivial. Then there is s € S(K) with §(s) = [y/]. As K is infinite, the
K-points of P are dense in P and we can modify s by an element in the image
of vk so that s € W(K), i.e., Im(s) C W. Then the T-torsor 7' over K with
the class d(s) satisfies the required property. O
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2.4. The algebraic tori P®, S®, T®, U® and V®. Let 1 < s < r be integers,
p a prime integer, F' a field with char(F') # p, ® a subgroup of Ch,(F') of rank
r and G = Gal(F(®)/F). Choose a basis x1, X2, ..., Xr for . Each y; can
be viewed as a character of G, i.e., as a homomorphism y; : G — Q/Z. Let

01,09, ...,0, be the dual basis for G, i.e.,
Xi(oj) = { 0, otherwise.

Let R be the group ring Z[G]. Consider the surjective G-modules homomor-
phism ¢ : R — Z/p°Z, defined by &£(x) = () + p°Z, where € : R — Z is the
augmentation homomorphism given by e(p) = 1 for all p € G. Set J := Ker(&),
thus, we have an exact sequence

0—=J—=RS Z/pZ — 0.

Moreover, the G-module J is generated by I and p°, where I := Ker(¢) is the
augmentation ideal in R.

Consider the G-module homomorphism A : R"*! — R taking the i-th canon-
ical basis element e; to 0; — 1 for 1 < i < r and e, to p°. The image of h
coincides with J.

Set N := Ker(h) and write w; = 1 +0; + 02 4---+ 0’ " € Rfor 1 <i <.
Consider the following elements in V:

eij = (0 —l)ej — (05— Vei,  fi=wie;, and g = —p'e; + (07 — 1)er1
forall 1 <,7 <.
Lemma 2.2. The G-module N is generated by e;;, fi and g;.

Proof. Consider the surjective morphism k : R — [ taking e; to 0; — 1 and
set N := Ker(k). Then we have the following commutative diagram

where R™*! — R is the projection morphism to the last coordinate and ¢’ :
J — Z is given by £'(j) = ¢(j)/p°.

By the exactness of the first column of the diagram, N is generated by N’
and the liftings g; of o; — 1 in N. The module N’ is generated by e;; and f;
by [, Lemma 3.4]. This completes the proof. O

Let g; : R™*' — Z be the i-th projection followed by the augmentation map
e. It follows from Lemma 22 that €;(N) = pZ for every i = 1,...,r. Moreover,
the G-homomorphism

qg:N—=7Z", x+— (El(x)/p,...,er(:v)/p)
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is surjective. Set M := Ker(q) and Q := R""' /M.

Let P®, S® T® U?® and V? be the algebraic tori over F split by the field
extension F(®)/F such that

(P<I>)* — Rr-{-l’ (S<I>)>k _ Q, (T<I>)* — M, (UCD)* — J, (Vq))* — N.

The diagram of homomorphisms of G-modules with the exact columns and
rows

N(—> R7'+1 L>> J
|
Y/l Q J
yields the following diagram of homomorphisms of the tori
(4) T<D [ T<I>
V<I> 7 P<I> D] UCID

| |

g

Gm Sfb D UCID

The commutative diagram

0 I R » Z —— 0
I I
0 J R > 2/p°Z —— 0O

induces the commutative diagram of homomorphisms of algebraic groups

I — pp —— Rp@)r(Gmre) — U® —— 1

® ! H !

1 —— Gm —_— RF(@)/F(GW%F(@)) —_— (]’<I> — 1
and then the commutative diagram
0 —— HYK,U®) —— H*(K,uy) — H*(K @ F(®),G,,)

© | | H

0 — HYK,U®) —— H*K,G,) — H*(K ® F(®),G,,)

for a field extension K/F. Note that the K-algebra K (®) is a direct factor of
K ® F(®). Hence

Ker(H*(K,G,,) - H*(KQF(®),G,,)) = Ker(H*(K,G,,) = H*(K(®),G,,)).
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It follows that
(7)  HYK,U)~Br(K(®)/K) and H'(K,U®) ~ Br,(K(®)/K).

Lemma 2.3. The map H'(K,U®) — HY(K,S?®) induces an isomorphism
HY(K,S8%) ~ Brys (K(®)/K)ina-

Proof. Consider the following commutative diagram

1 > U® y S > G > 1
L
1 U y S > GT 1,

where the bottom row is induced by the bottom row of the diagram (4) in [[].
This yields a commutative diagram

(K*) —— HYK,U®) —— HY(K,S%) —— 0

| l l

(KX — HYK,U?®) —— H'(K,5?%) —— 0
with the exact rows. The homomorphism A takes (z1,..., ) to > _; ((xi)x U
(z;)) by [, Lemma 3.6], whence the result. O

3. ESSENTIAL DIMENSION OF ALGEBRAIC TORI

Let S be an algebraic group over F' and p a prime integer different from
char(F). The essential dimension ed(S) (respectively, essential p-dimension
ed,(S)) of S is defined to be the essential (p-)dimension of the functor taking a
field extension K /F to the set of isomorphism classes S-torsors(K') of S-torsors
over K. Note that the functor S-torsors is isomorphic to the functor taking K
to the set H*(K,S).

Let S be an algebraic torus over F' split by L with G = Gal(L/F). We
assume that G is a group of order p", where r > 2. Let X be the G-module
of characters of S. Define the group X := X/(pX + IX), where I is the
augmentation ideal in R = Z|[G]. For any subgroup H C G, consider the
composition X < X — X. For every k, let V}, denote the subgroup generated
by images of the homomorphisms X# — X over all subgroups H with [G :
H] < p*. We have the sequence of subgroups

(8) 0=V,cVocCc---CcV.=X.

A p-presentation of X is a G-homomorphism P — X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P) is called minimal. The essential p-dimension of algebraic tori
was determined in [@, Th. 1.4] in terms of a minimal p-presentation P — X:

9) ed,(S) = rank(P) — dim(S).

We have the following explicit formula for the essential (p-)dimension of S
(cf. [@, Th. 4.3)):
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Theorem 3.1. Let S be a torus over a field F' and p a prime integer different
from char(F). If the decomposition group G of S is a p-group, then

r

ed(S) =ed,(S) = Z(rank Vi, — rank Vi_; )p* — dim(9).

k=0
Proof. The second equality was proven in [, Th. 4.3]. Let v : P — X be
a minimal p-presentation. By definition, the index m := [X : Im(v)] is prime

to p. Let T be the torus split by L with the character G-module Im(v). The
inclusion of Im(v) into X yields a homomorphism o : S — 7. AsmX C Im(v),
there is a homomorphism g : T" — S such that the compositions aof and fo«
are the m-th power endomorphisms of 7" and S respectively. It follows that for
any field extension K /F', the kernel and cokernel of the induced homomorphism

o, H'(K,S) — H'(K,T)

are m-periodic. But both groups are p-groups since S and T' are split by a
p-extension. Therefore, a, is an isomorphism.

Thus, the homomorphism « : S — T induces an isomorphism of functors
S-torsors — T-torsors. It follows that ed(S) = ed(T). (Another proof of this
equality using the notion of the genus of a lattice was given in [[@, Prop. 10.1].)
The surjection P — Im(v) yields a generically free representation of T by [,
Lemma 3.3]. Hence, by [B, Prop. 4.11] and (8), we have

ed,(S) <ed(S) = ed(T") < rank(P) — dim(7) = rank(P) — dim(S) = ed,(.5),
therefore, ed(S) = ed,(.5). O

Let F be a field, ® a subgroup of Ch,(F) of rank r > 2, L = F(®) and
G = Gal(L/F). In this section we compute the essential (p-)dimension of the
algebraic tori U? and S?® defined by (@). For any subgroup H of G, we write

ng =Y .y Tin R=Z[G]|. Anelement x € R is decomposable if v = yz with
Y,z € R, and ¢(y),e(z) € pZ.

Lemma 3.2. Let H C G be a nontrivial subgroup and x € R such that
e(ngx) € p*Z. Then nyx is decomposable.

Proof. If |H| = p, then ¢(z) € pZ and hence nyx is decomposable. Otherwise
H = H' x H” for nontrivial subgroups H' and H”. As nyg = ng - ng», the
element ny and therefore, nyx is decomposable. l

Lemma 3.3. If z € R is decomposable, then v = e(x) modulo pI + I*.

Proof. Let y = ¢(y) + v and z = &(2) + v for some u,v € I. Then we have
yz —e(yz) = (e(y)v + e(2)u) + wo € pI + I~ O

Consider the sequence of subgroups Vj C J as in (8) with respect to the
algebraic torus U®. If x € J we write T for the class of z in J. The classes
o; — 1 and p® form a basis for J, hence rank(J) = r + 1.

Lemma 3.4. The group Vi is generated by
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(1) the elements g such that |[H| > p™ % and e(nyx) € p°Z if r — k < s,
(2) the elements My such that |H| > p"=* if r — k > s.
Proof. The statement follows from the equality J? = RENJ =ngRNJ. O
Lemma 3.5. If k <r — s, then Vj, = 0.

Proof. By Lemma B4(2), Vi is generated by ny with |H| > p"%. As ny is
decomposable and [H| > p*, in view of Lemma B3, we have ng = e(ny) =
|H| =0 as |H| € pJ.

Lemma 3.6. If s >2 andr —s <k <r—1, then dim(V}) = 1.

O

Proof. By Lemma B3, V}, is generated by mgz with H nontrivial and e(nyz) €
p°Z. As s > 2, the element ngyx is decomposable by Lemma B3, In view of
Lemma B3, ngT = e(ngx), hence Vj, is generated by p?. O
Lemma 3.7. If s =1 and p is odd, then dim(V,_1) = 1.

Proof. We claim that V,._; is generated by p. By Lemma B32(2), V,._; is gener-
ated by my with |H| > p. If |H| > p?, then by Lemma B3, ny is decomposable
and in view of Lemma B3, g = £(ny) = 0.

Suppose |H| = p and let 0 € H be a generator. We have ny —p = (0 —1)m,
where m = 3P (p — 1 — i)a?, so e(m) = p(p — 1)/2. As pis odd, £(m) € pZ.
Hence, m € pR + I, therefore, ny —p € pI + I?> and iy = p in J. 0
Lemma 3.8. If s=1 and p =2, then V,_1 = J.

Proof. By Lemma B3(2), V,_; is generated by my with |[H| > 2. Take non-
trivial elements 0 # 7 in G. Then 2 = (1 +o07) —o(1+7) + (1 +0) € V1.
Also, forany o € G, 0 —1 =1+ 0 —2 € V,_;. The group J is generated by
2and 0 — 1 over all o € G. O

Proposition 3.9. We have

ed(U?) = ed,(U?) = {

(r—1)2—1 ifp=2 and s =1,
(r—1)p" +p"~° otherwise.

Proof. Note that V, = J, rank(V,) = rank(J) =7 + 1 and dim(U®) = p".
Case 1: pis odd or p =2 and s > 2. By Lemmas B3, B3 and B, we have

r+1 ifk=nr,
rankV, =<1 ifr—s<k<r,
0 Ho<k<r-—s.

Since the decomposition group G of U? is a p-group, by Theorem B,
ed(U?) = ed,(U*) = rp" +p"~* = dim(U®) = rp"+p" " =p" = (r—1)p" +p"~".
Case 2: p=2 and s = 1. By Lemmas B33 and BH, we have

r+1 ifk=r—1lork=r,

k p—
rank Vi {0 FO<k<r—o2
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Again by Theorem B,
ed(U®) = edy(U®) = (r + 1)27 ' — dim(U®) = (r — 1)2" "%, O

Remark 3.10. One can construct a surjective minimal p-presentation p :
P" — J as follows.

Case 1: pis odd or p=2 and s > 2. Let H be a subgroup of GG of order p*
and P’ := R" @ Z|G/H]. We define p by

V(xb s 71:1”717) = Z(Uz - ].).IZ + nypy.
i=1

Note that the element ngy is independent of the choice of a representative
y € Z|G] of y. The image of p contains I and ng. As ng = p® modulo I, we
have p® € Im(p), hence p is surjective. Note that e;; = (0, —1)e; — (0; —1)e; €
Ker(p). As oe;; # e;j for j # i and every 0 € G\ {1}, the group G acts
faithfully on Ker(p).

Case 2: p=2 and s = 1. Let H; be the subgroup of G generated by ¢; and
let H = (0109). Set P' =]],_, Z|G/H,] ® Z|G/H]. We define p by

p(Zy, ... T, y) = Z(O’i + 1)a; + (0102 + 1)y.
i=1

The image of p contains o; + 1 and 2 = (0102 + 1) — 01(09 + 1) + (07 + 1),
hence p is surjective. Note that h;; := (0; + 1)e; — (0 + 1)e; € Ker(p). As
ohij # h;j for i # j and 0 € G\ (0;,0;), the group G acts faithfully on Ker(p)
if r > 3. In fact, G acts trivially on Ker(p) if r = 2.

Corollary 3.11. We have

(r—1)2r"t—r ifp=2ands=1,

d(S?) = ed,(S*) =
ed(57) = ed,(S7) {(r—l)p’"—l—p’"_s—r otherwise.

Proof. By (8) and Proposition B9, there is a minimal p-presentation v : P — J
such that
)2t ifp=2ands=1
(10) rank(P) = (r+1) B np=eand s =4
rp” +p"~°  otherwise.
The exact sequence
0=2Z"-Q—J—=0

in the bottom row of (B) yields an exact sequence
Homg (P, Q) — Homg (P, J) — Extg(P,Z").

As P and 7Z" are permutation G-modules, Exté(P, Z") = 0, hence the homo-
morphism v factors through a morphism v/ : P — Q.

Recall that we write X = X/(pX + IX) for a G-module X. As Zr ~
(Z/pZ)" — Q is the zero map, the natural homomorphism @ — J is an
isomorphism, hence v/ is a minimal p-presentation of (). Note that G is a
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decomposition group of S® and dim(S?) = p" +r. By Theorem B, ed(S%) =
ed,(S®) = rank(P) — dim(S?), hence the result follows by (D). O

4. DEGENERATION

In this section we relate the essential p-dimensions of Alg, ,s and of the
torus S® by means of the iterated degeneration (Proposition B). The latter
is a method of comparison of the essential p-dimension of an object (a central
simple algebra in our case) over a complete discrete valued field and of its
specialization over the residue field.

4.1. A simple degeneration. Let F' be a field, p a prime integer different
from char(F) and & C Ch,(F) a finite subgroup. For integers k > 0, s > 1
and a field extension K/F, let

(11) Be(K) ={a €Br(K){p} | ind(ak@) <p" exp(a)<p'}.

We say that two elements o and o' in By (K) are equivalent if o — o' €
Br(K(®)/K),,. Write E%S(K) for the set of equivalence classes in By (K).

To simplify notation, we shall write a for the equivalence class of an element
a € B (K) in By (K). We view By, and By, as functors from Fields/F' to
Sets.

In particular, if k = 0, then Bf ,(K) and B ,(K) are bijective to Br,s (K (®)/K)
and Br,s (K(®)/K)ina, respectively. Hence, by () and Lemma B3,

12 B ~ U® torsors and B ~ S*-torsors.
( 0,s 0,s

Moreover, if & = 0, then

(13) B =B ~ Algy .

Let ®" C ® be a subgroup of index p and n € ®\ &', hence & = (¥, 7). Let
E/F be a field extension such that ng ¢ @’ in Ch(F). Choose an element
a € BE(E), ie., a € Br(E){p} such that ind(ag@)) < p* and exp(a) < p*.

Let E’ be a field extension of F' that is complete with respect to a discrete
valuation v" over F' with residue field £ and set

(14) o/ :=a+ (fpU(r)) € Br(E){p},

for some z € E'™ such that ¢v'(x) is prime to p. As ng@) # 0, it follows from
() applied to the element a4, over the complete field E'(®') with residue

field E(®') that

ind(e/pry) = p - ind(ap@) <P and  exp(a’) < lem(exp(e), p) < p’,
hence o/ € BE,, (E').

In the case the condition exp(a) < p® in (D) is dropped, the following
proposition was proved in [, Prop. 5.2]:
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Proposition 4.1. Suppose that for any finite extension of fields N/E of degree
prime to p and any character p € Ch(N) of order p* such that pp € @y \ Py,
we have ind(OéN(cp/7p)) > pF. Then

=5/

B B
edp" " (a') > edp™* (o) + 1.

Proof. The proof of [, Prop. 5.2] still works with the following modification.
Let M/E' be a finite extension of fields of degree prime to p, My C M a

subfield over F' and «f € B,fjrl,s(Mo) such that (af)y = o) in B%LS and

.y
tr. deg (M) = edfk“’s(a’). We extend the discrete valuation v' on E’ to a
(unique) discrete valuation v on M and let N be its residue field. Let Ny be
the residue field of the restriction of v on My. It was shown in the proof of [T,
Prop. 5.2] that there exist ag € Br(No){p} with ind(ap)ny@) < p¥, a prime
element 7y in My, and 79 € Ch,(Ny) such that

(15) ()57, = Ao + (o U (m)) in Br (M)

where ]\/1\0 is the completion of the field M, with respect to the restriction of v
on My and

(16) OéN—(Oéo)N EBI‘(N(@)/N)
By (IH), we have

dec’

exp(ap) = exp(ap) < lem(exp(ag) g, p) < lem(exp(ag), p) < p°,

hence ag € By ,(No). Therefore, the class of ay in g,?s(N) is defined over N
by (I@). It follows that

S

R
ed§k+1,s (a/) — tr. degF(Mo) > tr. degF(No) +1> edgk,s (Oé) + 1. O

4.2. A technical lemma. In this subsection we prove Lemma B2 that will
allow us to apply Proposition B

Until the end of this subsection we assume that the base field F' contains a
primitive p-th root of unity.

Let x1, X2, ---, X, with r > 2 be linearly independent characters in Ch,(F)
and ® = (x1, X2, .-, Xr). Let E/F be a field extension such that rank(®g) = r
and let a € Br(E){p} be an element that is split by £(®) and exp(«a) < p°.

Let £y = E, Ei,...,E,. be field extensions of F' such that for any £ =
1,2,...,r, the field E, is complete with respect to a discrete valuation vy
over F and FEj_; is its residue field. For any k = 1,2,...,r, choose elements
xy, € B such that vi(xy) is prime to p and define the elements oy, € Br(Ey){p}
inductively by ap := a and

—

o = 04/14:?1 + ((Xk)Ek_l U (xk))

Let &, be the subgroup of ® generated by xxi1,...,xr. Thus, &, = &,
¢, = 0 and rank(®,) = r — k. Note that the character (xx)g, ,(@,) is not
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trivial. It follows from () applied to the element (ay) g, (a,) over the complete
field Ey(®y) with residue field Ej_;(®Py) that

ind(ak)Ek(ék) =p- ind(ak—l)Ek—1(¢k—1)

for any k =1,...,r. As ind ap@) = 1, we have ind(ay)g,(@,) = p* for all k =
0,1,...,7. Moreover, as exp(«) < p*, we have exp(ay) < lem(exp(ay_1),p) <
p°. Therefore, ay, € By (Fy).

The following lemma assures that under a certain restriction on the element
«, the conditions of Proposition B are satisfied for the fields Fj, the groups
of characters ®; and the elements aj. This lemma is similar to [0, Lemma
5.3].

Lemma 4.2. Suppose that for any subgroup W C ® with [® : U] = p* and
any field extension L/E(¥) of degree prime to p, the element oy is not p?-
cyclic. Then for every k = 0,1,...,r — 1, and any finite extension of fields
N/E}, of degree prime to p and any character p € Ch(N) of order p* such that

pp € (q)k’)N \ (‘I)k+1)N; we have

(17) ind (o) N (@ 1,0) = P
Proof. Let k, N and p satisfy the conditions of the lemma. We construct a
new sequence of fields Ey, E1, ..., E, such that each E; is a finite extension of

E; of degree prime to p as follows. We set £, = N. The fields E’j with j < k
are constructed by descending induction on j. If we have constructed Ej as a
finite extension of E; of degree prime to p, then we extend the valuation v; to
Ej and let Ej_l be its residue field. The fields Em with m > k are constructed
by ascending induction on m. If we have constructed E,, as a finite extension
of E,, of degree prime to p, then let E,,,1 be an extension of E,,.; of degree
[Em : E,,] with residue field E,,. Replacing E; by E; and a; by (i), we may
assume that N = E}.
We proceed by induction on r. The case r = 1 is obvious.

(r —1) = r: First suppose that & < r — 1. Consider the fields F’' =
F(x.), E' = E(x,), E! = E;(x,), the sequence of characters x; = (x;)r, and
the sequence of elements o := (a;)p € Br(E]) for i = 0,1,...,7 — 1. Let
O = (X1, Xh, -+, Xo—q) € Ch(F"), let @, be the subgroup of &' generated by
Xis1s- -+ Xp—y and let p' = ppy.

We check the conditions of the lemma for the new datum. Let ¥’ be a
subgroup of ® of index p?. Then the pre-image ¥ of ¥ under the map
Ch(F) — Ch(F") is a subgroup of ® of index p? and E'(¥') = E(¥). Let
L'JE'(V') be a field extension of degree prime to p. By assumption, the ele-
ment oy, = ays is not p?-cyclic. We also have pp’ = ppPE;, € ((IDk)EL = (@;)E;.
Suppose that pp' € (®},,)g, i.e., ppg = pp' = 1, for some n € (Ppi1)p,.
It follows that pp — n € Ker(Ch(E,) — Ch(E})) = ((x+)r,) and therefore,
pp € (@kﬂ)Ek, a contradiction, hence pp’ € (®}) g \ <®2+1)E,;'
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By the induction hypothesis, the inequality () holds for o, i.e,
. / k
lnd(ak)E;/C(‘I);C+1,P') 2 p .
As

() By @), o) = (%) B(@ri1.0)s

the inequality () holds for ay. Therefore, it remains to show the inequality
(I7) in the case k = r — 1. Note that in this case pp is a nonzero multiple of
(XT)ET71 and (I)k—i-l = (I)T = 0.

Case 1: The character p is unramified with respect to v,_1, i.e., p = @ for
a character u € Ch(FE,_5) of order p?>. Note that pu is a nonzero multiple of
(X?“)Er—z'

By (),
(18) ind(e—2) B, 5(¢— 1) = Md(—1) B, (p)/P-

Consider the fields F' = F(x,-1), E' = E(xr-1), E! = E;i(xr—1), the new
sequence of characters x| = (x1)r, .-, Xoo = (Xr—2)F, Xoy = (Xr)Fr, the

group of characters ® = (x}, X5, ..., X,_;) and the elements o € Br(E))
for i = 0,1,...,7 — 1 defined by o] = (a;)p for i < r—2 and a; ; =
Qp_o + ()?r U (wr_l)) over E!_,, and the character u. The new datum satisfies
the conditions of the lemma. By the induction hypothesis, the inequality ()

holds for ] _,, i.e,

: r—2
1nd(04;_2)E/_2(u) >0

As
(a;fZ)EL_Q(M) = (aT*Q)Er&(XPLM)?

the inequality (I4) holds for a,_; in view of the equality (IR).

Case 2: The character p is ramified. Assume that inequality () does not
hold for «a,._1, i.e., we have

ind(—1) g, () < P
By [, Lemma 2.3(2)], there exists a unit v € E,_; such that E, _5(x,) =
ET_Q(’L_Ll/p) and
ind(oy—2 — (xr—1 U (ﬂl/p)))

By descending induction on j = 0,1,...,r — 2 we show that there exist an
element u; in £ and a subgroup ¥; C @ of rank r — j — 2 such that

<X17 oo anv Xr—1, X'r‘> N \Ijj - 07 E](Xr) - Ej(u;/p) and
. 1 .
(19) lnd(aj - (XT—l U (u]/p)))E](eJ) < p]7
where O; := (¥, x,). We set ¥,_o =0 and u,_5 = 4.
j = (j —1): The field Ej(ujl-/p) = FE;(x,) is unramified over E;, hence
v;(u;) is divisible by p. Modifying u; by a p*-th power, we may assume that

1 r—2
Bty = md(ar1)E, i) <P
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u; = v, " for a unit v € F; and an integer m. Then

(Oéj — (XT’—l U (u;/p)))E](QJ) - B+ (ﬁU (xj))Ej(@j)a

where n = x;—myx,_1 and 8 = (ozj_l—(X,,_lu(ujl-ipl)))Ej_l(ej), where u;_1 = 0.

As 7 is not contained in ©;, the character ng, ,(e,) is not trivial. Set ¥, ; =
(¥;,n). It follows from () and the induction hypothesis that

ind (85, (0, 1) = ind(a; — (o1 U (w)))) o ,/p < P/

This completes the induction step.
Applying the inequality () in the case j = 0, we have

g0 = (Xr-1U (wl/p))E(eo)
for an element w € E* such that E(w'/?) = E(x,). Hence

O gy (w/r?) = (QE©0)) p(og)@wi/r?) = 0 i Br(E(Uo)(w'/?")).

As x, & Wy, the field E(¥,)(w'/?) = E(¥)(x,) is a cyclic extension of E(¥)
of degree p. Hence E(Wy)(w'/?")/E(¥,) is a cyclic extension of degree p?.
Since ap(py) is split by the extension E(¥o)(w/?")/E(¥,), g, 1S pP-cyclic.
As [® : U] = p?, this contradicts the assumption. Hence, the inequality (IC2)
holds for a,_q. O

5. NON-CYCLICITY OF THE GENERIC ELEMENT

The aim of this section is the technical Lemma B3 that will allow us to
apply later Lemma B= and Proposition EI.

In this section we assume that the base field F' contains a primitive p*-th
root of unity. The choice of a primitive p?>-th root of unity & allows us to define
the symbol (a,b),2 as in Section EII. As —1 is a p*-th power in F'*, we have
(a,—1),2 = 0, hence (a,a),2 = 0 for all a € F*. We shall write (a,b), for
p(a,b),2 = (a,b),2.

Lemma 5.1. Let E be a field extension of F' that is complete with respect to
a discrete valuation v with residue field K and o € Br(K). Set f = a+ (a,x),
for a unit a € E and x € E* such that a ¢ K*P and v(z) is prime to p. If 5
is p*-cyclic, then o = (a, z),2 in Br(K) for some z € K*.

Proof. Suppose that 8 = (ur’,tn?),2 and write z = wr* for a prime element
7, integers 4, j, k = v(z) and units u, ¢, w in E. Then we have

a+ (a,wrt),e = B = (ur', tn?),2 = (u,t),2 + (W /t', 7).
Applying the residue map 9,, we get a?* = @/t in K*/K*P* and
a = (u,t),2 — (a,w?),y.

Suppose that i/j is a p-integer (the other case is similar). As k is not
divisible by p and @ is not a p-th power in K, j is not divisible by p?. It
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follows that @ € (@,%) in K*/K>*?" and then @ € a"#* K**" for some 7 and s.
Hence o = (a, " /wP) . O

Corollary 5.2. Let x,y be independent variables over F' and a,b € F*. If
(a,b), # 0 in Br(F), then for any field extension M/F(x,y) of degree prime
to p, the element (a,x), + (b,y), in Br(M) is not p*-cyclic.

Proof. Let M/F(x,y) be a field extension of degree prime to p and 5 = (a, x),+
(b,y), over M. As the degree of M/F(z,y) is prime to p, by [8, Lemma 6.1],
there exists a field extension E of the fields F'((y))(z)) and M over F' such that
the degree of E/F((y))((x)) is finite and prime to p. The discrete valuation v,
on the complete field F'(y))((z)) extends uniquely to a discrete valuation v of
E. The ramification index of E/F((y))(x)) is prime to p, hence v(x) is prime
to p. The residue field K of v is an extension of F((y)) of degree prime to p.

Let v’ be the valuation on K extending the discrete valuation v, on F((y)).
The ramification index ¢’ of K/F((y)) is prime to p. The residue field N of v
is a finite extension of F' of degree prime to p.

Let o = (b,y), over K, so fg = @+ (a,z),. Suppose that 3 is p*-cyclic
over M. Then Bg is also p*-cyclic. By Lemma B, applied to Sg over E, we
have a = (a, 2),2 for some z € K*, hence (b,y),2 = (a, 2),2. Taking the cup
product with (a), € K*/K*?*, we get

(a)pz U (bp, y)p2 = (a)p2 U (a, Z)p2 = (a, a)pz U (Z)pz =0.
Applying the residue map 9, : H3(K, u?f) — H?*(N, p2) = Brjz2(N), we find
that €'(a,b), = €(a,b?),2 = 0 over N, hence (a,b), = 0 in Br(/V). Taking
the corestriction map Br(N) — Br(F), we see that (a,b), = 0 in Br(F), a
contradiction. U

Lemma 5.3. For any integer r > 2, there ezist a field extension F'/F and a
subgroup ® C Ch,(F") of rank r such that for any subgroup ¥ C @ of index
p?, there is an element B € Brp(F’(q))/F’) with the property that any field
extension M/F' (V) of degree prime to p, the element By is not p*-cyclic.

Proof. Let ay,as,...,a,, x,y be independent variables over F and set F’ :=
F(ay,aq9,...,a,,2,y). For every i = 1,...,7, let x; € Ch,(F’') be a char-
acter such that F'(x;) = F’(a;/p) and set ® = (x1,Xx2,.-.,Xs). Let ¥
be a subgroup of ® of index p?. Choose a basis 71,7, ...,n, for ® such
that ¥ = (n1,7m2,...,m—2) and the elements by, by, ..., b, in F’ such that
F(n) = F'") for all i = 1,...,r and F(by,bs,...,b,) = F(a1,a, ..., a,).
Clearly, by, by, . . ., b, are algebraically independent over F' and F'(V) = L(z,y),
where L := F(b/", ... b}" b,_1,b,) with the generators algebraically indepen-
dent over F'.

Let 3 = (b,_1,2)p+ (b, y), in Br, (F'(®)/F’) and M/F'(¥) a field extension
of degree prime to p. As 0, ((b,,_l, bT)p) = b,_1, where v is the discrete valuation
on L associated with b,, is nontrivial, we have (b,_1,b,), # 0 in Br(L). The
result follows from Corollary B2. U
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Let F'/F be the field extension and ® C Ch,(F") the subgroup of rank r as
in Lemma BEZ3. Consider the algebraic tori P*, S®, T®, U® and V® over F’
defined in Section 4. The morphism v : P® — V?® in the diagram (@) is a
U®-torsor. Denote by d the image of the class of v under the composition

He}t(vq)’ UCD) - Hét(‘/q)? U/<I>> — He?t(vcpa Gm)7

induced by the diagram (B). We write 04, for the image of ¢ under the
homomorphism

H;(V®,G,,) = H*(F'(V®),G,,) = Br(F'(V?))

induced by the generic point morphism Spec(F'(V®)) — V®. It follows from
(B) that dge, € Brys (F'(V?)).

Lemma 5.4. Let K = F'(V®) and ¥ C ® a subgroup with [® : U] = p?>. Then
for any field extension M /K (V) of degree prime to p, the element (dgen)nr is
not p?-cyclic.

Proof. Suppose that there exist a subgroup ¥ C ® with [® : U] = p? and
a field M/K(¥) of degree prime to p such that (dze,)n = x U (a) for some
X € H*(M,Z) = Ch(M) with p*y = 0 and a € H*(M,G,,) = M*. Choose
an integral scheme X over F’ such that F'(X) = M together with a dominant
F’-morphism
[ X = V) = (V)

of degree prime to p that induces the embedding of the function field K (V)
into M. Let h: X — V® be the composition of f with the natural morphism
g:V®(U) — V? Replacing X by a nonempty open set, we may assume that
h*(8) = xoU(ag) for some xo € HZ(X,Z) with p*xo = 0 and ag € HY(X, G,,).

By [B, Lemma 6.2], there is a nonempty open set W’ C V*(¥) such that
for every 2’ € W’ there exists a point x € X with f(z) = 2’ and the degree
[F'(x) : F'(2')] prime to p. Let Z = V®(W)\ W’'. As g is finite, g(Z) # V2,
hence the open set W := V®\ g(Z) is not empty. We have g~1(W) C W".

Consider the element 8 € Br,(F'(®)/F’) constructed in Lemma B3. Let
v € HY(F',U®) be the corresponding class of U®-torsors over F’ under the
isomorphism H'(F’,U®) =~ Br,:(F'(®)/F’) by (@). As ~ is a generic U®-
torsor, there exists an F’-morphism v : Spec I’ — V' such that v*(y) = +/
and Im(v) C W (see Section E3). From the commutativity of the diagram

®

HL(V® U®) —— HYF',U?)

l l

HZ(V®,Gp) —"— H(F',Gy)
we find that v*(§) = f.
Let v/ : Spec F'(¥) — V*(¥) be the morphism v (y). Note that Im(v') C
g (W) cw'.
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By the definition of W’ there is a point x € X such that the degree of the
field extension F’(z) over the residue field of (the only) point z in Im(v') is
prime to p. By [B, Lemma 6.1], there exist a field extension M’/ F’(¥) of degree
prime to p and a field homomorphism F'(x) — M’ extending F'(z) — F'(\).
Therefore, there is a morphism w : Spec(M’) — X (with image {z}) such that
the diagram

Spec(M') —— Spec(F'(¥)) —— Spec(F”)
X s ovewy L ype
is commutative. It follows that
B = 0" (0)ar = w*h*(8) = w* (xo U (a0)) = w*(x0) Uw*(ao),

i.e., By is p*-cyclic. This contradicts Lemma B23. U

6. A LOWER BOUND FOR ed,(Alg, )

Let n > 1 be an integer, m a divisor of n and p a prime integer. Let p”
(respectively, p®) be the largest power of p dividing n (respectively, m). If
A € Alg,,,(K) for some field extension K/F, then there is a finite extension
of fields E/K of degree prime to p such that ind(Ag) is a p-power. Hence
ind(Ag) divides p" and exp(Ag) divides p*® as it divides m and ind(Ag), i.e.,
Ap € Alg, ,s(E). Tt follows that the embedding functor Alg,. . — Alg,
is p-surjective and hence ed,(Alg,,,) < ed,(Alg, ) by [B, Sec. 1.3]. Con-
versely, if A € Alg,,,(K), then the p-primary component A, of A satisfies
Ay € Alg, s (K), hence the morphism of functors Alg,, ,,, — Alg, s, taking A
to A, is surjective and therefore, ed,(Alg,, ,,) > ed,(Alg,r ,s). We proved that

ed,(Alg,, ) = ed,(Alg . .).

Theorem 6.1. Let F' be a field and p a prime integer different from char(F).
Then, for any integers r and s with 1 < s <,

ed (Alg, ) > 4D ifp=2ands=1,
P PEP= ) (= 1)p" 4+ p*  otherwise.

Proof. By [B, Prop.1.5], we can replace the base field by any field extension.
Hence we may assume that F contains a primitive p3-th root of unity. More-
over, we can replace F' by the field F’ in Lemma B3. Let ® C Ch,(F) be
the subgroup in Lemma BE23 and let V® be the algebraic torus constructed in
Section EA. Set E = F(V?) and let « := dye, € Brys(E(®)/E) be the element
defined in Section B. Let E) be the fields and oy € B,i’;(Ek) the elements
constructed in Section B2, so that Fy = F and oy = a. By Lemma B4, «; is
not p2-cyclic for any subgroup ¥ C ® with [® : U] = p? and any field extension
M/E (V) of degree prime to p, hence « satisfies the condition of Lemma B2
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It follows that we can apply Proposition E. By the iterated application of
this proposition, we have
Algyr s Bor Bril
(20) edp " (ap) = ed) " (o) > edp (1) + 12>
Bo 720 Be
>edp " (ar) + (r—1) >edp”* () + 7 =edp ™ () + 7.
Consider the commutative diagram with exact rows:

1] — U —  p2 Ty

l l H

1—>S‘I’—>P‘I’><G;LL>V‘I’—>1,
where P* — P?® x G, takes x to (x,1), S* — P?® x G, is the product of
S? — P* and S* —» G}, and v/(x,t) = v(z) - k(t)* (see diagram (@)).

The element a considered in Bgf s(F) corresponds to the generic fiber of the
U®-torsor v under the bijection Bg(E) ~ U®- torsors(E) in (I2). Hence, by
the diagram, the class of a in gg” s(E) corresponds to the generic fiber +;, of
the S®-torsor 4/ in the diagram under the bijection Egj J(E) ~ S*-torsors(E).
As P®* x G/ is a quasi-split torus, 7' is a generic S®-torsor by Proposition 21,
hence

R
(21) edy* () = edf" " (v),,) = ed, (S7)

gen

by [B, Th. 2.9]. The essential p-dimension of S* was calculated in Corollary
BT, From (EO),(E0) and this corollary, we have

Algyr s (r—1)2r1 if p=2and s=1,
ed, (A/gp’,ps) > edy, " () > edy(S)+r = {(7“ —1)p" +p"~*  otherwise

This concludes the proof. O

7. AN UPPER BOUND FOR ed,(Alg,: )

Lemma 7.1. Let F' be a field and p a prime. Then, for any integers r and s
with 1 < s <,
edy(Alg, ) < ed,(Alg,) +p* — 1.

Proof. Let A € Alg,- ,«(K) C Alg,-(K) for a field extension K/F. There exist
a field extension K'/K of degree prime to p, a subfield Ky C K’ over F' and
B € Alg,(Ko) such that tr.degp (/o) < ed,(Alg, ) and A®g K' ~ B®g, K'.

By I8, Lemma 5.6], ind(B®F") divides p"~*. Choose a central simple algebra
C of degree p"* over Kj in the Brauer class of B¥" in Br(Kj) and consider the
Severi-Brauer variety X := SB(C') of C. Since exp(A) divides p®, the algebra
C' is split over K', hence X (K') # (). This implies that there exists z € X
such that Ko(z) C K’ and X (Ko(z)) # 0. Therefore, C,(s) is split, hence
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exp(Bry(x)) divides p*, i.e., Bry@) € Alg,r s (Ko(z)). Since dim(X) = p"*—1,
we have

edp®7 7 (A) < tr. degp(Ko(x)) = tr. degp(Ko) + tr. deg e, (Ko(x)) <
ed,(Alg,.) + dim(z) < ed,(Alg,) + (" °—1). O

By [IH],
edP<A/gp7') S p2T72 _'_ 17

if » > 2 and char(F) # p. Therefore, by Lemma [, we have the following
upper bound for ed,(Alg, s ):

Theorem 7.2. Let F be a field and p a prime integer different from char(F').
Then, for any integers r > 2 and s with 1 < s <r,

ed,(Alg, o) <p 2 +p "

8. ESSENTIAL DIMENSION OF Alg;/r, Algec AND ALGg.

Let G be an elementary abelian group of order p” and K/F a field extension.
Consider the subset Algg(K) of Algy »s(K) consisting of all classes that have
a splitting Galois K-algebra E with Gal(E/K) ~ G.

Let L/F be a Galois field extension with Gal(L/F) ~ G. Consider the
subset Algy/r(K) of Alge(K) consisting of all classes split by the Galois G-
algebra KL /K. We have the subfunctors of Algyr ,s:

Alg,)r C Algg C Algy .

We write ALGg(K) for the set of isomorphism classes of pairs (A, F), where
A € Alge(K) and F is a Galois G-algebra splitting A. We have an obvious
surjective morphism of functors ALGg — Algg.

Theorem 8.1. Let F' be a field, p a prime integer different from char(F), G
an elementary abelian group of order p" with r > 2, and L/F a Galois field
extension with Gal(L/F) ~ G. Let an integer s satisfy 1 < s < r. Suppose
thatr > 3 if p=2 and s = 1. Let F be one of the three functors: Alg,/r, Alges
or ALGg. Then

(r—1)2r1 ifp=2ands=1,
(r—1)p"+p"~* otherwise.

ed,(F) =ed(F) = {

Proof. Let @ be a subgroup of Ch,(F) of rank r such that L = F'(®). By (@),
we have Alg /p ~ U ®_torsors. It follows from Proposition B that

(r—1)2! ifp=2and s=1,

edy(AlgL/r) = ed(AlgL/r) = dprs = {(r —1)p" +p"~°  otherwise.

Let o, € Br(E,) be as in the proof of Theorem Bl. By construction, «,. is split
by E.(®), hence o, € Algg(E,). Note that edf(ﬁ) < ed!() for any subfunctor
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H of a functor B and any 5 € H(K). Hence, by the proof of Theorem B, we
have

od,(Alge) > ed€ () > edy & (a,) > dy, .

Let J be the G-module defined in the Section B4 and T' := Spec F[J] the
split torus with the character group J. Consider the minimal surjective p-
presentation v : P’ — J as in Remark BT0. As explained in Section B3,
a choice of a G-invariant basis for P’ yields a linear T" x G-space V with
dim (V) = rank(P’). By Remark B0, G acts faithfully on Ker(v). It follows
from [M0, Lemma 3.3] that the action of 7" x G on V is generically free in this
case, hence, by [, Prop. 4.11],

ed(T x G) < dim(V) —dim(7 x G)
ank(P') — rank(J)
= rank(Ker( )

Let v be a G-torsor over F' and let L be the corresponding Galois G-
algebra over F. Since G is an abelian group, we have G = G,. The G-
action on Ry p(Gy,, ) restricts to the trivial action on the subgroup pps. As
T, = Rp/p(Gp1)/ tps, the connecting G-equivariant map

HY(K,T,) = H*(K, ji,0) = Bry: (K)

is injective for any field extension K/F, hence the group G,(K) = G acts
trivially on H'(K,T,). By (@),

H(KTxG) =[] Bre(E/K),
Gal(E/K)=G

where the disjoint union is taken over all isomorphism classes of Galois G-
algebras F// K. Hence we have a surjective morphism of functors 7' x G- torsors —
ALGg. As ALGg surjects on Algg, we have

ed,(Alge) < (ed,(ALGg) or ed(Algs)) < ed(ALGg) < ed(T x G) < dp,s. O

Remark 8.2. Suppose that p =7 = 2 and s = 1 and F is a field of charac-
teristic different from 2. By [, Th.1] or [B, Sec.2.4], there exists a nontrivial
cohomological invariant Alge — H*(—,Z/27) over F(i), where i is a primitive
4-th root of unity. Hence, edy(Alge) > eda(Alge) ) > 4 by [B, Cor. 3.6] and
[, Lemma 6.9]. Moreover, by the structure theorem on central simple alge-
bras split by a biquadratic field extension [E0, Cor.2.8|, every isomorphism class
(A, E) € ALGG(K) is of the form E = K(a'/? b"/?) and A = (a,2); ® (b, y)2
for some a,b,z,y € K*. Hence ed(ALGg) < 4. As ALGg surjects on Algg, we
have

4 < edy(Algs) < (ed2(ALGg) or ed(Algs)) < ed(ALGg) < 4,

hence the essential (2)-dimension of Algg and ALGg is equal to 4.
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Corollary 8.3. Let I be a field of characteristic # 2. Then

eda(Algg o) = ed(Alggy) = 8.

Proof. As any central simple algebra of degree 8 and exponent 2 has a tri-
quadratic splitting field by [[3], we have Algg, = Algc for the elementary
abelian group G of order 8, hence the statement follows from Theorem E.
Note that the inequality edy(Algg,) > 8 is also proven in Theorem E and the

opposite inequality ed(Algs,) < 8 was shown in [@, Th.2.12]. O
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