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Abstract

We define rank-width of graphs to investigate clique-width. Rank-width is a com-

plexity measure of decomposing a graph in a kind of tree-structure, called a rank-

decomposition. We show that graphs have bounded rank-width if and only if they

have bounded clique-width.

It is unknown how to recognize graphs of clique-width at most k for fixed k > 3

in polynomial time. However, we find an algorithm recognizing graphs of rank-width

at most k, by combining following three ingredients.

First, we construct a polynomial-time algorithm, for fixed k, that confirms rank-

width is larger than k or outputs a rank-decomposition of width at most f(k) for some

function f . It was known that many hard graph problems have polynomial-time algo-

rithms for graphs of bounded clique-width, however, requiring a given decomposition

corresponding to clique-width (k-expression); we remove this requirement.

Second, we define graph vertex-minors which generalizes matroid minors, and

prove that if {G1, G2, . . .} is an infinite sequence of graphs of bounded rank-width,

then there exist i < j such that Gi is isomorphic to a vertex-minor of Gj. Conse-

quently there is a finite list Ck of graphs such that a graph has rank-width at most k

if and only if none of its vertex-minors are isomorphic to a graph in Ck.

Finally we construct, for fixed graph H, a modulo-2 counting monadic second-

order logic formula expressing a graph contains a vertex-minor isomorphic to H. It

is known that such logic formulas are solvable in linear time on graphs of bounded

clique-width if the k-expression is given as an input.

Another open problem in the area of clique-width is Seese’s conjecture; if a set

of graphs have an algorithm to answer whether a given monadic second-order logic

formula is true for all graphs in the set, then it has bounded rank-width. We prove a

weaker statement; if the algorithm answers for all modulo-2 counting monadic second-

order logic formulas, then the set has bounded rank-width.
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Chapter 1

Introduction

Some algorithmic problems, NP-hard on general graphs, are known to be solvable in
polynomial time when the input graph admits a decomposition into trivial pieces by
means of a tree-structure of cutsets of bounded order. However, it makes a difference
whether the input graph is presented together with the corresponding tree-structure
of cutsets or not. We have in mind two kinds of decompositions, “tree-width” and
“clique-width” decompositions. These are similar graph invariants, and while the
results of this paper concern clique-width, we begin with tree-width for purposes of
comparison.

Having bounded clique-width is more general than having bounded tree-width,
in the following sense. Every graph G of tree-width at most k has clique-width at
most O(2k) (Corneil and Rotics [11], Courcelle and Olariu [19]), and for such graphs
(for k fixed) the clique-width of G can be determined in linear time (Espelage et al.
[24]). No bound in the reverse direction holds, for there are graphs of arbitrary large
tree-width with clique-width at most k. (But, for fixed t, if G does not contain Kt,t

as a subgraph, then the tree-width is at most 3k(t − 1) − 1, shown by Gurski and
Wanke [31].)

The algorithmic situation with tree-width is as follows:

• Numerous problems have been shown to be solvable in polynomial time when
the input graph is presented together with a decomposition of bounded tree-
width. Indeed, every graph property expressible by monadic second order logic
formulas with quantifications over vertices, vertex sets, edges, and edge sets
(MS2 logic formula) can be solved in polynomial time (see Courcelle [15]).

• For fixed k there is a polynomial time algorithm that either decides that an
input graph has tree-width at least k + 1, or outputs a decomposition of tree-
width at most 4k (this is an easy modification of the algorithm to estimate
graph branchwidth presented by Robertson and Seymour [49]).

• Consequently, by combining these algorithms, it follows that the same class of
problems mentioned above can be solved on inputs of bounded tree-width; the
input does not need to come equipped with the corresponding decomposition.

1



CHAPTER 1. INTRODUCTION 2

• In particular, one of these problems is the problem of deciding whether a graph
has tree-width at most k. Consequently, for fixed k there is a polynomial (in-
deed, linear) time algorithm by Bodlaender [3] to test whether an input graph
has tree-width at most k, and if so to output the corresponding decomposition.

For inputs of bounded clique-width, less progress has so far been made. (We will
define clique-width properly later.)

• Some problems have been shown to be solvable in polynomial time when the in-
put graph is presented together with a decomposition of bounded clique-width.
This class of problems is smaller than the corresponding set for tree-width,
but still of interest. For instance, deciding whether the graph is Hamiltonian
(Wanke [58]), finding the chromatic number (Kobler and Rotics [39]), and var-
ious partition problems (Espelage et al. [23]) are solvable in polynomial time;
and so is any problem that can be expressed in monadic second order logic with
quantifications over vertices and vertex sets (MS logic; see Courcelle et al. [18]
and Courcelle [15]).

• For fixed (general) k there was so far no known polynomial time algorithm that
either decides that an input graph has clique-width at least k+ 1, or outputs a
decomposition of clique-width bounded by any function of k. The best hitherto
was an algorithm of Johansson [38], that with input an n-vertex graph G, either
decides that G has clique-width at least k + 1 or outputs a decomposition of
clique-width at most 2k log n. Our main result fills this gap.

• Consequently, it follows that the same class of problems mentioned above can
be solved on inputs of bounded clique-width; the input does not need to come
equipped with the corresponding decomposition.

• However, the problem of deciding whether a graph has clique-width at most k
is not known to belong to this class. There is still no polynomial time algorithm
to test whether G has clique-width at most k, for fixed general k > 3.

Rank-width

In order to study graphs of bounded clique-width, we define another graph parameter,
called rank-width, in Section 3.2. Rank-width is based on the notion of branch-
width defined on symmetric submodular functions by Robertson and Seymour [48].
A tree-like decomposition for branch-width is called a branch-decomposition, and we
measure its width, and the branch-width is the minimum possible width of all branch-
decompositions. We define certain symmetric submodular functions on graphs, called
cut-rank functions, by using a matrix rank over GF(2). By using cut-rank functions,
we define rank-width and rank-decompositions of graphs as branch-width and branch-
decompositions of their cut-rank functions. It turns out that a set of graphs has
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bounded rank-width if and only if it has bounded clique-width. More precisely, we
obtain the following inequality

rank-width ≤ clique-width ≤ 21+rank-width − 1.

Basically we will show results based on rank-width, but they can be formulated in
terms of clique-width as well by this inequality.

Approximation algorithms

A big open problem in the area of clique-width was how to remove the need of a
decomposition of bounded clique-width as an input. Since there were no known
methods to find a decomposition, most algorithms just assume that it is given as an
input. To solve this problem, ideally we would like to have an algorithm, for fixed k,
that constructs a decomposition of clique-width at most k, called a k-expression if an
input graph has clique-width at most k and is given by its adjacency list. But we do
not have such an algorithm yet. Instead, we construct a polynomial-time algorithm
that constructs a decomposition of clique-width at most f(k) (f(k)-expression) or
confirms that the input graph has clique-width at least k + 1, for a fixed function
f . In fact, this is enough to remove the need of k-expressions as an input to many
algorithms requiring them, because we can provide f(k)-expressions instead of k-
expressions and we still obtain polynomial-time algorithms.

To obtain this “approximating” algorithm, we show that branch-width of certain
symmetric submodular functions can be in fact “approximated” in the following sense:
there is an algorithm that outputs a branch-decomposition of width at most O(3k)
or confirms that it has branch-width larger than k. As an easy corollary, we obtain
an approximating algorithm for rank-width. In Section 7.1 and 7.2, we show two
quicker algorithms approximating rank-width. We have a O(n4)-time algorithm with
f(k) = 3k+ 1 in Section 7.1, and a O(n3)-time algorithm with f(k) = 24k in Section
7.2 where n is the number of vertices in the input graph.

We also apply this algorithm to matroids, and obtain an algorithm to approximate
the branch-width of matroids, which was known before only for representable matroids
by Hliněný [32]. We prove:

Theorem 1.1. For fixed k there is an algorithm which, with input an n-element
matroid M in terms of its rank oracle, either decides that M has branch-width at
least k + 1, or outputs a branch-decomposition for M of width at most 3k − 1. Its
running time and number of oracle calls is at most O(n4).

Vertex-minors and well-quasi-ordering

Tree-width of graphs is interesting when considered together with the graph minor
relation. Contraction of an edge e is the operation that deletes e and identifies the
ends of e. A graph H is a minor of a graph G if H can be obtained from G by a
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sequence of contractions, vertex deletions, and edge deletions. If H is a minor of G,
then the tree-width of H is at most that of G. This implies that for fixed k, the set
of all graphs having tree-width at most k is closed under the graph minor relation.

To have similar statements for clique-width, we need an appropriate containment
relation on graphs such that many theorems relating the graph minor relation to
tree-width can be translated into theorems relating our containment relation to clique-
width. Minor containment is not appropriate for clique-width because every graph G
is a minor of the complete graph Kn on n = |V (G)| vertices, and Kn has clique-width
2 if n > 1.

Courcelle and Olariu [19] showed that if H is an induced subgraph of a graph G,
then the clique-width of H is at most that of G. But, induced subgraph containment
is not rich enough; Corneil, Habib, Lanlignel, Reed, and Rotics wrote the following
comment in their paper [9].

Unfortunately, there does not seem to be a succinct forbidden subgraph
characterization of graphs with clique-width at most 3, similar to the P4-
free characterization of graphs with clique-width at most 2. In fact every
cycle Cn with n ≥ 7 has clique-width 4, thereby showing an infinite set of
minimal forbidden induced subgraphs for Clique-width≤ 3.

We have not yet found an appropriate containment relation for clique-width, but
by generalizing the matroid minor relation, we define the vertex-minor relation of
graphs. (It was orignally called l-reduction by Bouchet [8].) For a graph G and a
vertex v of G, let G ∗ v be a graph, obtained by the local complementation at v, that
is, replacing the graph induced on the set of neighbors of v by its complement. We say
thatG is locally equivalent toH ifH can be obtained fromG by applying a sequence of
local complementations. A graph H is a vertex-minor of G if H can be obtained from
G by applying a sequence of vertex deletions and local complementations. A simple
fact is that if H is a vertex-minor of G, then the rank-width of H is at most that of G.
For an edge uv of G, a pivoting uv is a composition of three local complementations,
G ∗ u ∗ v ∗ u. It is an easy exercise to show that G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v. We say
that H is a pivot-minor of G if H can be obtained from G by applying a sequence of
vertex deletions and pivotings. Every pivot-minor of G is a vertex-minor of G, but
not vice versa.

In this paper, we prove the following.

Theorem 1.2. Let k be a constant. If {G1, G2, G3, · · · } is an infinite sequence of
graphs of rank-width at most k, then there exist i < j such that Gi is isomorphic to
a pivot-minor of Gj, and therefore isomorphic to a vertex-minor of Gj.

This implies that for each k, there is a finite list of graphs, such that a graph
G has rank-width at most k if and only if no graph in the list is isomorphic to a
vertex-minor of G.

This theorem was motivated by the following two theorems. The first one is for
graphs of bounded tree-width, proved by Robertson and Seymour [47].
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Theorem 1.3 (Robertson and Seymour [47]). Let k be a constant.
If {G1, G2, G3, · · · } is an infinite sequence of graphs of tree-width at most k, then

there exist i < j such that Gi is isomorphic to a minor of Gj.

The next one, generalizing the previous one, was shown by Geelen, Gerards, and
Whittle [27].

Theorem 1.4 (Geelen, Gerards, and Whittle [27]). Let k be a constant. Let
F be a finite field. If {M1,M2,M3, · · · } is an infinite sequence of F-representable
matroids of branch-width at most k, then there exist i < j such that Mi is isomorphic
to a minor of Mj.

If we set F = GF(2), then Theorem 1.4 implies Theorem 1.2 for bipartite graphs.
We will also show that Theorem 1.2 implies Theorem 1.4 if F = GF(2). In fact,
the main idea of proving Theorem 1.4 remains in our paper, although we have to go
through a different technical notion.

In the original proof of Theorem 1.4, they used “configuration” to represent F-
representable matroids, and then convert the matroid problem into a vector space
problem. We use a similar approach, but use a different notion. Research done by
Bouchet [4, 7, 5] was very helpful. He developed the notion of isotropic systems,
which generalize binary matroids. Informally speaking, an isotropic system can be
considered as an equivalence class of graphs by local equivalence. A detailed definition
will be reviewed in Section 4.1.

Seese’s conjecture

We have seen that many NP-hard problems can be effectively solved for graphs of
bounded tree-width or bounded clique-width. This fact is not only an observation
but we have theorems stating this as follows.

• If a graph problem can be expressed by MS2 logic formulas, then there is an
algorithm that answers this problem in polynomial time if an input graph has
bounded tree-width. (see [15])

• If a graph problem can be expressed by MS logic formulas, then there is an
algorithm that answers this problem in polynomial time if an input graph has
bounded clique-width [18].

Since there are many graph problems expressible by MS2 logic formulas or MS logic
formulas, the above two theorems prove usefulness of tree-width and clique-width.

We would like to ask another question related to logic formulas.

Let C be a set of graphs. When does there exists an algorithm (not
necessarily polynomial-time) that answers whether a given logic formula
is satisfied for all graphs in C?
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The answer of this problem will depend on the set of logic formulas that will be given
as an input. We are interested in two kinds of logic formulas on graphs, MS logic
formulas and MS2 logic formulas. If there is such an algorithm, then we call that C
has a decidable MS theory or has a decidable MS2 theory depending on the choice of
logic formulas.

For MS2 logic formulas, we have the following theorem called Seese’s theorem
[52]: if a set of graphs has a decidable MS2 theory, then it has bounded tree-width.
This answers the previous problem for MS2 logic formulas. The proof uses the “grid
theorem” by Robertson and Seymour [46] stating that if a set of graphs has bounded
tree-width, then no graph in the set contains a minor isomorphic to a sufficiently
large grid.

We are interested in answering the problem for MS logic formulas. The statement
analogous to Seese’s Theorem for MS formulas is a conjecture, also made by D. Seese
in [52]. This conjecture says that if a set of graphs has a decidable MS theory, then
it has bounded clique-width. Its hypothesis concerns less formulas, hence is weaker
than that of Seese’s Theorem. Since a set of graphs has bounded clique-width if it
has bounded tree-width, Seese’s Theorem is actually a weakening of the Conjecture.

In Chapter 5, we will actually prove a slight weakening of the Conjecture, by
assuming that the considered sets of graphs has a decidable satisfiability problem for
C2MS logic formulas , in other words, for MS logic formulas that can be written with
the set predicate Card2(X), that we will write Even(X) for simplicity.

Recognizing rank-width

Our main objective was to find an exact algorithm that answers whether an input
graph has clique-width at most k in polynomial time, but we were unable to find such
an algorithm. This problem seems very hard because it is still unknown whether it is
in co-NP to recognize graphs of clique-width at most k for fixed k > 3. Instead, we
developed rank-width and may ask the same question but with rank-width.

In Section 2.3, we will show that, for a given symmetric submodular function that
satisfies certain conditions and can be evaluated in polynomial time from the input,
it is in NP∩co-NP to answer whether branch-width is at most k. This implies, in
particular, that recognizing graphs of rank-width at most k is in NP∩co-NP.

We would like to have an algorithm that recognize graphs of rank-width at most
k. Let us first see some analogous results for tree-width. To recognize graphs having
tree-width at most k, we can use the following two theorems.

(1) For fixed k, there is a finite list of graphs such that a graph G has tree-width at
most k if and only if no graph in the list is isomorphic to a minor of G (Robertson
and Seymour [47]).

(2) For fixed graph H, there is a O(|V (G)|3)-time algorithm that answers whether an
input graph G contains a minor isomorphic to H (Robertson and Seymour [49]).

When we combine these two facts, we prove the existence of a polynomial-time algo-
rithm to answer whether a given graph has tree-width at most k.
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We now pay attention to rank-width. From the well-quasi-ordering theorem (The-
orem 1.2), we have a theorem analogous to (1) in the above as follows: for fixed k,
there is a finite list of graphs such that a graph G has rank-width at most k if and
only if no graph in the list is isomorphic to a vertex-minor of G. But we do not have a
polynomial-time algorithm to answer whether an input graph contains a vertex-minor
isomorphic to a fixed graph.

Instead, we construct a C2MS logic formula for a fixed graph H such that it is
true if and only if an input graph contains a vertex-minor isomorphic to H. Since
every C2MS logic formula can be determined for graphs of bounded clique-width,
we can recognize graphs of clique-width at most k by combining the following four
statements.

• (Section 7.1 and 7.2) For fixed k, there is a polynomial-time algorithm that
outputs a rank-decomposition of width 3k + 1 or confirms that the rank-width
of the input graph is larger than k.

• (Section 6.8) For fixed k, there is a finite list of graphs such that a graph G
has rank-width at most k if and only if no graph in the list is isomorphic to a
vertex-minor of G.

• (Section 4.4) For fixed graph H, there is a C2MS logic formula such that it is
true on a graph G if and only if G contains a vertex-minor isomorphic to H.

• (Section 4.3) Every C2MS logic formula on graphs can be decided in polynomial
time if the input graph has bounded clique-width.

Conventions

In this thesis, we assume that graphs are simple undirected and finite.

Notes

Chapter 2 and Section 3.2 are joint work with P. Seymour [43]. Section 4.4, Chapter
5 (except Section 5.1), and Section 7.3 are joint work with B. Courcelle [20]: Section
2.1, 3.1, 4.1–4.3 are reviews of previous results. Other results without attribution are
claimed to be original research. Section 3.3–3.7 come from the author’s paper [42]
that was accepted to Journal of Combinatorial Theory series B.



Chapter 2

Branch-width of Symmetric
Submodular Functions

This chapter begins with the definition of branch-width of symmetric submodular
functions. After defining branch-width, one natural question would be the following.

Problem 2.1. Let k be a fixed constant and let V be a finite set. What is the time
complexity of deciding whether the branch-width of a symmetric submodular function
f : 2V → Z is at most k?

(We assume that f is given by an oracle.)

We answer this question partially when f satisfies

f({v})− f(∅) ≤ 1 for all v ∈ V. (2.1)

In Section 2.3, we show that if the branch-width is larger than k, then there is a
certificate of length polynomial in |V | such that we can prove it using this certificate
in a polynomial (of |V |) time, assuming that f satisfies (2.1) and is given by an oracle.

We were not yet able to find a polynomial-time algorithm to decide whether
branch-width is at most k, but in Section 2.4, we show a polynomial-time “approxi-
mation” algorithm that, for fixed k, either confirms that branch-width is larger than
k or obtains a branch-decomposition of width at most 3k+ 1− 2f(∅), assuming that
f satisfies (2.1).

There are some instances of f having better algorithmic properties. If V is the
element set of a matroid M and f is the connectivity function of M, then we obtain
an approximation algorithm for the branch-width of matroids, and in Section 2.5 we
show how to make the above algorithm faster by using properties of connectivity
functions of matroids. In next chapter, we define the rank-width of graphs by using a
certain symmetric submodular function on the set of vertices. In this case, the above
approximation algorithm can run quickly, which will be discussed in Chapter 7.

8
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2.1 Definition of branch-width

Let us write Z to denote the set of integers. Let V be a finite set and f : 2V → Z be
a function. If

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for all X, Y ⊆ V , then f is said to be submodular . If f satisfies f(X) = f(V \X) for
all X ⊆ V , then f is said to be symmetric.

A subcubic tree is a tree with at least two vertices such that every vertex is incident
with at most three edges. A leaf of a tree is a vertex incident with exactly one edge.
We call (T,L) a partial branch-decomposition of a symmetric submodular function f
if T is a subcubic tree and L : V → {t : t is a leaf of T} is a surjective function. (If
|V | ≤ 1 then f admits no partial branch-decomposition.) If in addition L is bijective,
we call (T,L) a branch-decomposition of f . If L(v) = t, then we say t is labeled by v
and v is a label of t.

For an edge e of T , the connected components of T \ e induce a partition (X, Y )
of the set of leaves of T . The width of an edge e of a partial branch-decomposition
(T,L) is f(L−1(X)). The width of (T,L) is the maximum width of all edges of T .
The branch-width bw(f) of f is the minimum width of a branch-decomposition of f .
(If |V | ≤ 1, we define bw(f) = f(∅).)

We define a linked branch-decomposition. For a branch-decomposition (T,L) of
f , let e1 and e2 be two edges of T . Let E be the set of leaves of T in the component
of T \ e1 not containing e2, and let F be the set of leaves of T in the component of
T \ e2 not containing e1. Let P be the shortest path in T containing e1 and e2. We
call e1 and e2 linked if

min
h∈E(P )

(width of h of (T,L)) = min
L−1(E)⊆Z⊆V \L−1(F )

f(Z).

We call a branch-decomposition (T,L) linked if each pair of edges of T is linked.

2.2 Interpolation of a submodular function

In this section, we define an interpolation of a certain submodular function. Later we
will use it to prove other theorems.

For a finite set V , we define (with a slight abuse of terminology) 3V to be {(X, Y ) :
X, Y ⊆ V,X ∩ Y = ∅}.

Definition 2.2. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X) for
all X ⊆ V . We call f ∗ : 3V → Z an interpolation of f if

i) f ∗(X,V \X) = f(X) for all X ⊆ V ,

ii) (uniform) if C ∩D = ∅, A ⊆ C, and B ⊆ D, then f ∗(A,B) ≤ f ∗(C,D),

iii) ( submodular) f ∗(A,B) + f ∗(C,D) ≥ f ∗(A ∩ C,B ∪D) + f ∗(A ∪ C,B ∩D) for
all (A,B), (C,D) ∈ 3V .
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iv) f ∗(∅, ∅) = f(∅).
Assuming that ∅ is a minimizer of f is not a serious restriction, because first of

all it is true for all symmetric submodular functions, and secondly if we let

g(X) =

{
f(X) if X 6= ∅
minZ f(Z) otherwise,

then g is also submodular.

Proposition 2.3. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X)
for all X ⊆ V , and let f ∗ : 3V → Z be an interpolation of f . Then:

(1) f ∗(X,Y ) ≤ minX⊆Z⊆V \Y f(Z) for all (X, Y ) ∈ 3V ,

(2) f ∗(∅, Y ) = f(∅) for all Y ⊆ V .

(3) If f({v})−f(∅) ≤ 1 for every v ∈ V , then for every fixed B ⊆ V , f ∗(X,B)−f(∅)
is the rank function of a matroid on V \B.

We note that the matroid theory is reviewed in Section 2.5.

Proof.

(1) If X ⊆ Z ⊆ V \ Y , then f ∗(X, Y ) ≤ f ∗(Z, V \ Z) = f(Z).

(2) f(∅) = f ∗(∅, ∅) ≤ f ∗(∅, Y ) ≤ f ∗(∅, V ) = f(∅).

(3) Let r(X) = f ∗(X,B)−f(∅). It is trivial that r is submodular and nondecreasing.
Moreover,

0 ≤ r(X) = f ∗(X,B)− f(∅) ≤ f(X)− f(∅) ≤ |X|,

and therefore r is the rank function of a matroid on V \B.

We define fmin(X,Y ) = min f(Z), the minimum being taken over all Z satisfying
X ⊆ Z ⊆ V \ Y .

Proposition 2.4. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X)
for all X ⊆ V . Then fmin is an interpolation of f .

Proof. The first, second, and last conditions are trivial. Let us prove submodularity.
Let X, Y be subsets of V such that A ⊆ X ⊆ V \ B, C ⊆ Y ⊆ V \D, fmin(A,B) =
f(X), and fmin(C,D) = f(Y ). Then

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

≥ fmin(A ∩ C,B ∪D) + fmin(A ∪ C,B ∩D).

Thus, fmin is an interpolation.

In general fmin is not the only interpolation of a function f , and sometimes it is
better for us to work with other interpolations that can be evaluated more quickly.

We remark that if f ∗ : 3V → Z is a uniform submodular function satisfying
f ∗(∅, ∅) = f ∗(∅, V ), then there is a submodular function f : 2V → Z such that
f(∅) ≤ f(X) for all X ⊆ V and f ∗ is an interpolation of f .
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2.3 Comparing branch-width with a fixed number

Let V be a finite set and f : 2V → Z be a symmetric submodular function such that

f({v})− f(∅) ≤ 1 for all v ∈ V.

In this section, we show that a statement, “branch-width of f is at most k”, for fixed
k, can be disproved in polynomial time (of |V |) by using a certificate of polynomial
size (of |V |), when f is given by an oracle. To prove the statement, we have a natural
certificate, a branch-decomposition of width at most k. However it is nontrivial to
disprove the statement. We use the notion called tangles , which is dual to the notion
of branch-width and was introduced by Robertson and Seymour [48].

A class T of subsets of V is called a tangle of f of order k if it satisfies the following
four axioms.

(T1) For all A ∈ T , we have f(A) < k.

(T2) If f(A) < k, then either A ∈ T or V \ A ∈ T .

(T3) If A,B,C ∈ T , then A ∪B ∪ C 6= V .

(T4) For all v ∈ V , we have V \ {v} /∈ T .

We call that A is small if A is contained in a tangle. Informally speaking, the following
proposition shows that a subset of a small set is small.

Proposition 2.5. Let T be a tangle of f of order k. If A ∈ T , B ⊆ A, and f(B) < k,
then B ∈ T .

Proof. By (T2), either B ∈ T or V \ B ∈ T . Since (V \ B) ∪ A ∪ A = V , the tangle
T can not contain V \B by (T3). Hence B ∈ T .

Robertson and Seymour [48] showed that tangles are related to branch-width.

Theorem 2.6 (Robertson and Seymour [48, (3.5)]). The following are equiva-
lent:

(i) there is no tangle of f of order k + 1,

(ii) the branch-width of f is at most k.

Therefore to show that the branch-width of f is larger than k for fixed k, it
is enough to provide a tangle T of f of order k + 1. However, T might contain
exponentially many subsets of V . So, we need to devise a way to encode a tangle into
a certificate of polynomial size. If f satisfies that f({v}) − f(∅) ≤ 1 for all v ∈ V ,
then there is a method to encode a tangle into a certificate of polynomial size as
follows.
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Theorem 2.7. Let V be a finite set and f : 2V → Z be a symmetric submodular
function such that f({v})− f(∅) ≤ 1 for all v ∈ V . For fixed k, there is a certificate
of size at most a polynomial in |V |, that can be used to prove, in time polynomial in
|V |, that f has branch-width larger than k, assuming that f is given by an oracle.

Proof. Let n = |V |. We may assume that n > 1 because branch-width of f is f(∅)
if n ≤ 1. We may assume that f(∅) = 0. Let T be a tangle of f of order k + 1. Let
fmin(X, Y ) = minX⊆Z⊆V \Y f(Z) for disjoint subsets X, Y of V . Let

P = {(X, Y ) : X ∩ Y = ∅, |X| = |Y | = fmin(X, Y ) ≤ k}.

We claim that for each (X, Y ) ∈ P , there is a unique maximal set Z ∈ T , denoted
by Z = µ(X, Y ), such that X ⊆ Z ⊆ V \ Y and f(Z) = fmin(X, Y ). Suppose
that Z1 and Z2 are contained in T and X ⊆ Z1 ⊆ V \ Y , X ⊆ Z2 ⊆ V \ Y , and
f(Z1) = f(Z2) = fmin(X, Y ). By submodularity,

f(Z1 ∪ Z2) + f(Z1 ∩ Z2) ≤ f(Z1) + f(Z2) = 2fmin(X, Y ).

Since both f(Z1∪Z2) and f(Z1∩Z2) are bigger than or equal to fmin(X, Y ), they are
equal to fmin(X, Y ). Since Z1∪Z2∪ (V \ (Z1∪Z2)) = V , we obtain that Z1∪Z2 ∈ T .
Thus µ : P → 2V is well-defined.

We provide (P, µ) to our algorithm as a certificate showing that branch-width of

f is larger than k. Since |P | ≤
(

n
k

)2
, a description of (P, µ) has polynomial size in n.

Now we describe a polynomial-time algorithm that decides whether there is a
tangle giving (P, µ).

By using submodular function minimization algorithms like [51] or [37], we can
calculate fmin in polynomial time, and therefore we can check whether P is correct.

To ensure that (P, µ) is obtained by a tangle, our algorithm tests the following:

(1) µ(X1, Y1) ∪ µ(X2, Y2) ∪ µ(X3, Y3) 6= V for all (Xi, Yi) ∈ P for i ∈ {1, 2, 3}.

(2) for all (A,B) ∈ P , there exists no Z such that A ⊆ Z ⊆ V \ B, f(Z) = k, and
Z 6⊆ µ(A,B) and V \ Z 6⊆ µ(B,A).

Equivalently for all x ∈ V \ (µ(A,B) ∪ B) and y ∈ V \ (µ(B,A) ∪ A), if x 6= y,
then fmin(A ∪ {x}, B ∪ {y}) > k.

(3) |µ(X, Y )| 6= |V | − 1 for all (X, Y ) ∈ P .

These can be done in polynomial time. We claim that if (P, µ) is obtained from a
tangle T , then (P, µ) will satisfy those tests. The first test is trivially true from the
axiom of tangles. Now let us consider the second test. Suppose A ⊆ Z ⊆ V \ B,
f(Z) = k. Then, either Z ∈ T or V \ Z ∈ T . In either case, we obtain Z ⊆ µ(A,B)
or V \ Z ⊆ µ(B,A). The third test is true because V \ {v} /∈ T for all v ∈ T .
Therefore if at least one of them fails, then (P, µ) is not obtained from a tangle. We
now assume that (P, µ) passed those tests.

We claim that we can construct a tangle T of f of order k+1 from (P, µ) uniquely
as follows:
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For all Z such that f(Z) ≤ k, we choose (A,B) ∈ P such that

|A| = |B| = f(Z) and A ⊆ Z ⊆ V \B.

If Z ⊆ µ(A,B), then Z ∈ T . Otherwise, V \ Z ∈ T .

Let us first show that this is well-defined. Let Z be a subset of V such that f(Z) ≤ k.
By Proposition 2.4 and (3) of Proposition 2.3, we may choose A ⊆ Z such that
fmin(A, V \ Z) = |A| = f(Z), and then choose B ⊆ V \ Z such that fmin(A,B) =
|A| = |B| = fmin(A, V \ Z) = f(Z) ≤ k. Thus there exists a wanted pair (A,B) ∈
P . Suppose that there are two wanted pairs (A1, B1), (A2, B2) ∈ P such that Z ⊆
µ(A1, B1) but Z 6⊆ µ(A2, B2). We obtain that µ(B2, A2) ∪ µ(A1, B1) = V , because
V \ Z ⊆ µ(B2, A2) by the second test. This contradicts to the first test.

We now claim that the axioms of tangles are satisfied by T . Axioms (T1) and (T2)
are true by construction. To show (T3), assume that Ai ∈ T for all i ∈ 1, 2, 3. There
exist (Xi, Yi) ∈ P for each i such that Ai ⊆ µ(Xi, Yi), and therefore A1 ∪ A2 ∪ A3 ⊆
µ(X1, Y1) ∪ µ(X2, Y2) ∪ µ(X3, Y3) 6= V . To obtain (T4), suppose that V \ {v} ∈ T .
Then, there exists (X, Y ) ∈ P such that V \ {v} ⊆ µ(X, Y ). Hence µ(X, Y ) = V or
µ(X, Y ) = V \ {v}, but we obtain a contradiction because of (1) and (3).

Suppose that we can calculate f by using an input of size in polynomial of |V | in
polynomial time. By the previous theorem, we conclude that deciding whether the
branch-width is at most k for fixed k is in NP∩co-NP. But, it is still open whether it
is in P. But it is known to be in P for some symmetric submodular functions. One
example will be discussed in Chapter 7.

2.4 Approximating branch-width

In this section, we would like to show a polynomial-time algorithm that, for fixed k,
outputs a branch-decomposition of bounded width or confirms that the branch-width
is larger than k.

Definition 2.8. Let V be a finite set and let f : 2V → Z be a symmetric submodular
function satisfying f(∅) = 0. We say that W ⊆ V is well-linked with respect to f if
for every partition (X, Y ) of W and every Z with X ⊆ Z ⊆ V \ Y , we have

f(Z) ≥ min(|X|, |Y |).

This notion is analogous to the notion of well-linkedness [45] related to tree-width
of graphs.

Theorem 2.9. Let V be a finite set with |V | ≥ 2, and let f : 2V → Z be a symmetric
submodular function such that f(∅) = 0. If with respect to f there is a well-linked set
of size k, then bw(f) ≥ k/3.

Proof. Let W be a well-linked set of size k, and suppose that (T,L) is a branch
decomposition of f . We will show that (T,L) has width at least k/3. We may
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assume that T does not have a vertex of degree 2, by suppressing any such vertices.
For each edge e = uv of T , let Auv be the set of elements of V that are mapped by L
into the connected component of T \ e containing u, and let Buv = V \ Auv.

We may assume that W 6= ∅; choose w ∈ W . Since W is well-linked with respect
to f , f({w}) ≥ 1, and therefore the width of (T,L) is at least 1. Consequently we
may assume that k > 3.

Suppose first that min(|Auv∩W |, |Buv∩W |) < k/3 for every edge uv of T . Direct
every edge uv from u to v if |Auv∩W | < k/3 and |Buv∩W | ≥ k/3. By the assumption,
each edge is given a unique direction. Since the number of vertices is more than the
number of edges in T , there is a vertex t ∈ V (T ) such that every edge incident with
t has head t.

If t is a leaf of T , let s be the neighbor of t. Since ts has head t, it follows that
|Bst ∩W | ≥ k/3. But |Bst| = 1 < k/3, a contradiction.

So, t has three neighbours x, y, z in T such that |Axt∩W | < k/3, |Ayt∩W | < k/3,
and |Azt ∩W | < k/3. But |W | = |Axt ∩W | + |Ayt ∩W | + |Azt ∩W | < k = |W |, a
contradiction.

We deduce that there exists uv ∈ E(T ) such that |Auv∩W | ≥ k/3 and |Buv∩W | ≥
k/3. Hence f(Auv) ≥ min(|Auv ∩W |, |Buv ∩W |) ≥ k/3, and the width of (T,L) is at
least k/3.

Theorem 2.10. Let V be a finite set, let f : 2V → Z be a symmetric submodular
function such that f({v}) ≤ 1 for all v ∈ V and f(∅) = 0, and let k ≥ 0 be an integer.
If with respect to f , there is no well-linked set of size k, then bw(f) ≤ k.

Proof. We may assume that bw(f) > 0, and so |V | ≥ 2. We may assume that k > 0.
For two partial branch-decompositions (T,L) and (T ′,L′) of f , we say that (T,L)
extends (T ′,L′) if T ′ is obtained by contracting some edges of T and for every v ∈ V ,
L′(v) is the vertex of T ′ that corresponds to L(v) under the contraction.

We will prove that, if there is no well-linked set of size k with respect to f , then
for every partial branch-decomposition (Ts,Ls) of f with width at most k, there is a
branch-decomposition of f of width at most k extending (Ts,Ls). Since k ≥ 1 and f
trivially admits a partial branch-decomposition of width 1 (using the two-vertex tree
with vertices u, v, and mapping all vertices of V except one to u, and the last to v),
this implies the statement of the theorem.

Pick a partial branch-decomposition (T,L) of f extending (Ts,Ls) such that the
width of (T,L) is at most k and the number of leaves of T is maximum.

We claim that (T,L) is a branch-decomposition of f . It is enough to show that
L is a bijection. Suppose therefore that there is a leaf t of T such that B = L−1({t})
has more than one element.

We claim that f(B) = k. Suppose that f(B) < k. Let v ∈ B. Construct a
subcubic tree T ′ by adding two vertices t1 and t2 and edges t1t, t2t to T . Let L′(v) = t1
and L′(w) = t2 for all w ∈ B \ {v} and L′(x) = L(x) for all x ∈ V \B. Then (T ′,L′)
is a partial branch-decomposition extending (T,L). Moreover f({v}) ≤ 1 ≤ k and
f(B \ {v}) ≤ f(B) + f({v}) ≤ k, and so the width of (T ′,L′) is at most k. But the
number of leaves of T ′ is greater than that of T , a contradiction.
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Let f ∗ be an interpolation of f . By Proposition 2.3, f ∗(X,B) is the rank function
of a matroid on V \B. Let X be a base of this matroid. Then |X| = f ∗(V \B,B) =
f(B) = k.

Since X is not well-linked, there exists Z ⊆ V such that

f(Z) < min(|Z ∩X|, |(V \ Z) ∩X|).

Since f(Z \B) = f ∗(Z \B,B ∪ (V \Z)) ≥ f ∗(Z ∩X,B) = |Z ∩X| > f(Z), it follows
that Z ∩B 6= ∅. Similarly B \ Z = (V \ Z) ∩B 6= ∅.

Construct a subcubic tree T ′ by adding two vertices t1 and t2 and edges t1t, t2t to
T . Let L′(x) = t1 if x ∈ B ∩ Z, L′(x) = t2 if x ∈ B \ Z and L′(x) = L(x) otherwise.

By submodularity,

|(V \ Z) ∩X|+ f(B) > f(Z) + f(B) ≥ f(Z ∪B) + f(Z ∩B)

= f((V \ Z) \B) + f(Z ∩B)

≥ f ∗((V \ Z) ∩X,B) + f(Z ∩B)

= |(V \ Z) ∩X|+ f(Z ∩B),

and so f(Z∩B) < f(B) ≤ k and similarly f(B \Z) < f(B) ≤ k. Therefore (T ′,L′) is
a partial branch-decomposition extending (T,L) of width at most k. But the number
of leaves of T ′ is greater than that of T , a contradiction.

Corollary 2.11. For all k ≥ 0, there is a polynomial-time algorithm that, with
input a set V with |V | ≥ 2 and a symmetric submodular function f : 2V → Z with
f({v}) ≤ 1 for all v ∈ V and f(∅) = 0, outputs either a well-linked set of size k or a
branch-decomposition of width at most k.

The proof of Theorem 2.10 provides an algorithm that either finds a well-linked set
of size k, or constructs a branch-decomposition of f of width at most k. By combining
with Theorem 2.9, we get an algorithm that either concludes that bw(f) > k or finds
a branch-decomposition of width at most 3k + 1.

Let us analyze the running time of the algorithm of Theorem 2.10. To do so,
we must be more precise about how the input function f and f ∗ are accessed. We
consider two different situations, as follows:

• In the first case, we assume that only f is given as input, and in the sense that
we can compute f(X) for a set X; and we need to compute values of f ∗ from
this input.

• In the second case, we assume that an interpolation f ∗ of f is given as input
(in the same sense, that for any pair (X, Y ) we can compute f ∗(X,Y )), and we
need to compute f from f ∗.

For the first analysis, let γ be the time to compute f(X) for any set X. In this
case we shall use f ∗ = fmin. To calculate fmin, we use the submodular function
minimization algorithm [37], whose running time is O(n5γ logM) where M is the
maximum value of f and n = |V |. Thus, we can calculate fmin in O(n5γ log n) time.
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Finding a base X can be done by calculating f ∗ at most O(n) times, and therefore
takes time O(n6γ log n). To check whether X is well-linked, we try all partitions of
X; 2k−1 tries (a constant). And finding the set Z for a given partition of X can be
done in time O(n5γ log n) by submodular function minimization algorithms. Since
the process is cycled through at most O(n) times (because if (T,L) is a partial branch-
decomposition then |V (T )| ≤ 2n− 2), it follows that in this case the time complexity
is O(n7γ log n).

For the second analysis, let δ be the time to compute f ∗(X) for any set X. Finding
a base X can be done in time O(nδ). Finding Z to show that X is not well-linked can
be done in time O(n5δ log n). Thus, the time complexity in this case is O(n6δ log n).

In summary, then, we have shown the following two statements.

Corollary 2.12. For given k, there is an algorithm as follows. It takes as input a
finite set V with |V | ≥ 2 and a symmetric submodular function f : 2V → Z, such that
f({v}) ≤ 1 for all v ∈ V and f(∅) = 0. It either concludes that bw(f) > k or outputs
a branch-decomposition of f of width at most 3k+1; and its running time (excluding
evaluating f) and number of evaluations of f are both O(|V |7 log |V |).

Corollary 2.13. For given k, there is an algorithm as follows. It takes as input
a finite set V with |V | ≥ 2 and a function f ∗ which is an interpolation of some
symmetric submodular function f : 2V → Z, such that f({v}) ≤ 1 for all v ∈ V and
f(∅) = 0. It either concludes that bw(f) > k or outputs a branch-decomposition of f
of width at most 3k+ 1; and its running time is O(|V |6δ log |V |), where δ is the time
for each evaluation of f ∗.

2.5 Application to matroid branch-width

The connectivity function of a matroid is a special kind of symmetric submodular
function, and we have been able to modify our general algorithm so that it runs
much more quickly for functions of this type. There are two separate modifications.
First, there is an interpolation of the connectivity function λ of a matroid that can be
evaluated faster than λmin. Second, we can apply the matroid intersection algorithm
instead of the general submodular function minimization algorithms.

Let us review matroid theory first. For general matroid theory, we refer to Oxley’s
book [44]. We call M = (E, I) a matroid if E is a finite set and I is a collection of
subsets of E, satisfying

(i) ∅ ∈ I

(ii) If A ∈ I and B ⊆ A, then B ∈ I.

(iii) For every Z ⊆ E, maximal subsets of Z in I all have the same size r(Z). We
call r(Z) the rank of Z.

An element of I is called independent in M. We let E(M) = E. We call B ⊆ E a
base if it is maximally independent. A matroid may also be defined by axioms on the
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set of bases. We call B′ ⊆ E a cobase if E \ B′ is a base. The dual matroid M∗ of
M is the matroid on E(M) such that the set of cobases of M is equal to the set of
bases of M∗.

A matroid M = (E, I) is binary if there exists a matrix N over GF(2) such that
E is a set of column vectors of N and I = {X ⊆ E : X is linearly independent}.

For e ∈ E(M), M\ e is the matroid (E \ {e}, I ′) such that

I ′ = {X ⊆ E(M) \ {e} : X ∈ I}.

This operation is called deletion of e. For e ∈ E(M), M/e = (M∗ \ e)∗ and this
operation is called contraction of e. A matroid N is called a minor of M if N can
be obtained from M by applying a sequence of deletions and contractions.

The connectivity function λM of M is

λM(X) = r(X) + r(E \X)− r(E) + 1.

Note that λM is a symmetric submodular function. A branch-decomposition (T,L)
of λM is called a branch-decomposition of M. The branch-width bw(M) of M is the
branch-width of λM .

The following proposition is due to Jim Geelen (private communication).

Proposition 2.14. Let M be a matroid with rank function r, with connectivity func-
tion

λ(X) = r(X) + r(E(M) \X)− r(E(M)) + 1.

Let B be a base of M. Then

λB(X, Y ) = r(X ∪ (B \ Y )) + r(Y ∪ (B \X))− |B \X| − |B \ Y |+ 1

is an interpolation of λ.

Proof. We verify the three conditions of the definition of an interpolation.
1) If Y = E(M) \X, then

λB(X, Y ) = r(X)+ r(Y )− r(B∩X)− r(B∩Y )+1 = r(X)+ r(Y )−|B|+1 = λ(X).

2) Let X1 ⊆ X2 and Y1 ⊆ Y2. Then

r(X2 ∪ (B \ Y2)) ≥ r(X1 ∪ (B \ Y2)) ≥ r(X1 ∪ (B \ Y1))− (|B \ Y1| − |B \ Y2|).

Therefore,

r(X2 ∪ (B \ Y2))− |B \ Y2| ≥ r(X1 ∪ (B \ Y1))− |B \ Y1|.

Similarly,

r(Y2 ∪ (B \X2))− |B \X2| ≥ r(Y1 ∪ (B \X1))− |B \X1|.

By adding both inequalities, we deduce that λB(X2, Y2) ≥ λB(X1, Y1).
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3) Let X1 ∩ Y1 = ∅ and X2 ∩ Y2 = ∅. It is easy to show that

(P ∩R) ∪ (Q ∩ S) ⊆ (P ∪Q) ∩ (R ∪ S)

for any choice of sets P , Q, R, S. Since r is submodular and increasing,

r(X1 ∪ (B \ Y1)) + r(X2 ∪ (B \ Y2))

≥ r((X1 ∪ (B \ Y1)) ∪ (X2 ∪ (B \ Y2))) + r((X1 ∪ (B \ Y1)) ∩ (X2 ∪ (B \ Y2)))

≥ r((X1 ∪X2) ∪ (B \ (Y1 ∩ Y2))) + r((X1 ∩X2) ∪ (B \ (Y1 ∪ Y2))).

Similarly

r(Y1 ∪ (B \X1)) + r(Y2 ∪ (B \X2))

≥ r((Y1 ∪ Y2) ∪ (B \ (X1 ∩X2))) + r((Y1 ∩ Y2) ∪ (B \ (X1 ∪X2))).

But also
|B \X1|+ |B \X2| = |B \ (X1 ∩X2)|+ |B \ (X1 ∪X2)|.

By adding, we deduce that

λB(X1, Y1) + λB(X2, Y2) ≥ λB(X1 ∩X2, Y1 ∪ Y2) + λ(X1 ∪X2, Y1 ∩ Y2).

Now, we discuss a method to avoid the general submodular function minimization
algorithm. To apply Corollary 2.13 to matroid branch-width, we needed a submodular
function minimization algorithm that, given a matroid M and two disjoint subsets X
and Y , will output Z ⊆ E(M) such that X ⊆ Z ⊆ E(M) \Y and λ(Z) is minimum.
We claim that that this can be done by the matroid intersection algorithm. Let
M1 = M/X \ Y and M2 = M\X/Y , with rank functions r1, r2 respectively. Then
by the matroid intersection algorithm, we can find U ⊆ E(M) \ X \ Y minimizing
r1(U) + r2(E(M) \ X \ Y \ U). Using the fact r1(U) = r(U ∪ X) − r(X), r2(U) =
r(U ∪ Y ) − r(Y ), we construct a set Z with X ⊆ Z ⊆ E(M) \ Y that minimizes
λ(Z). And this can be done in O(n3) time (if M is input in terms of its rank oracle),
where n = |E(M)|.

We deduce:

Corollary 2.15. For given k, there is an algorithm that, with input an n-element
matroid M, given by its rank oracle, either concludes that bw(M) > k or outputs a
branch-decomposition of M of width at most 3k− 1. Its running time and number of
oracle calls is at most O(n4).

Proof. Pick a base B of M arbitrarily. We use λB as an interpolation of λ. For a
given partition (A,B), finding a base X can be done in time O(n). Finding Z to prove
that X is not well-linked can be done in O(23k−2n3). Therefore, the time complexity
is O(n+ n(n+ 23k−2n3)) = O(8kn4).

We note that previous algorithm by P. Hliněný [32] to approximate matroid
branch-width was only for matroids representable over a finite field.



Chapter 3

Rank-width and Vertex-minors

3.1 Clique-width

The notion of clique-width was first introduced by Courcelle and Olariu [19]. Let k
be a positive integer. We call (G, lab) a k-graph if G is a graph and lab is a mapping
from its vertex set to {1, 2, . . . , k}. (In this paper, all graphs are finite and have no
loops or parallel edges.) We call lab(v) the label of a vertex v.

We need the following definitions of operations on k-graphs.

(1) For i ∈ {1, . . . , k}, let ·i denote a k-graph with a single vertex labeled by i.

(2) For i, j ∈ {1, 2, . . . , k} with i 6= j, we define a unary operator ηi,j such that

ηi,j(G, lab) = (G′, lab)

where V (G′) = V (G), and E(G′) = E(G) ∪ {vw : v, w ∈ V, lab(v) = i, lab(w) =
j}. This adds edges between vertices of label i and vertices of label j.

(3) We let ρi→j be the unary operator such that

ρi→j(G, lab) = (G, lab′)

where

lab′(v) =

{
j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by i into j.

(4) Finally, ⊕ is a binary operation that makes the disjoint union. Note that G⊕G 6=
G.

A well-formed expression t in these symbols is called a k-expression. The k-graph
produced by performing these operations in order therefore has vertex set the set
of occurrences of the constant symbols (·i) in t; and this k-graph (and any k-graph
isomorphic to it) is called the value of t, denoted by val(t). If a k-expression t has

19
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value (G, lab), we say that t is a k-expression of G. The clique-width of a graph G,
denoted by cwd(G), is the minimum k such that there is a k-expression of G.

For instance, K4 (the complete graph with four vertices) can be constructed by

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(·1 ⊕ ·2))⊕ ·2))⊕ ·2)).

Therefore, K4 has a 2-expression, and cwd(K4) ≤ 2. It is easy to see that cwd(K4) >
1, and therefore cwd(K4) = 2.

Some other examples: cographs, which are graphs with no induced path of length
3, are exactly the graphs of clique-width at most 2; the complete graph Kn (n > 1)
has clique-width 2; and trees have clique-width at most 3 [19].

For some classes of graphs, it is known that clique-width is bounded and algorithms
to construct a k-expression have been found. For example, cographs [10], graphs of
clique-width at most 3 [9], and P4-sparse graphs (every five vertices have at most one
induced subgraph isomorphic to a path of length 3) [18] have such algorithms.

3.2 Rank-width and clique-width

In this section, we define the rank-width of a graph and show that a set of graphs has
bounded rank-width if and only if it has bounded clique-width.

For a matrix M = (mij : i ∈ C, j ∈ R) over a field F , if X ⊆ R and Y ⊆ C, let
M [X, Y ] denote the submatrix (mij : i ∈ X, j ∈ Y ). For a graph G, let A(G) be its
adjacency matrix over GF(2).

Definition 3.1. Let G be a graph. For two disjoint subsets X, Y ⊆ V (G), we define
ρ∗G(X, Y ) = rk(A(G)[X, Y ]) where rk is the matrix rank function; and we define the
cut-rank function ρG of G by letting ρG(X) = ρ∗G(X,V (G) \X) for X ⊆ V (G).

We will show that ρG is symmetric submodular and ρ∗G is an interpolation of ρG.

Proposition 3.2. Let M = (mij : i ∈ C, j ∈ R) be a matrix over a field F . Then for
all X1, X2 ⊆ R and Y1, Y2 ⊆ C, we have

rk(M [X1, Y1]) + rk(M [X2, Y2]) ≥ rk(M [X1 ∪X2, Y1 ∩ Y2]) + rk(M [X1 ∩X2, Y1 ∪ Y2]).

Proof. See [41, Proposition 2.1.9], [56, Lemma 2.3.11], or [55].

Corollary 3.3. Let G be a graph. If (X1, Y1), (X2, Y2) ∈ 3V (G) then

ρ∗G(X1, Y1) + ρ∗G(X2, Y2) ≥ ρ∗G(X1 ∩X2, Y1 ∪ Y2) + ρ∗G(X1 ∪X2, Y1 ∩ Y2).

Moreover, if X1, X2 ⊆ V (G), then

ρG(X1) + ρG(X2) ≥ ρG(X1 ∩X2) + ρG(X1 ∪X2).

Proof. Let M be the adjacency matrix of G over GF(2). Then

ρG(X) = rk(M [X,V (G) \X]).



CHAPTER 3. RANK-WIDTH AND VERTEX-MINORS 21

Apply Proposition 3.2.

A rank-decomposition of G is a branch-decomposition of ρG, and the rank-width
of G, denoted by rwd(G), is the branch-width of ρG.

The following proposition provides a link between clique-width and rank-width.

Proposition 3.4. For a graph G, rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

Proof. We may assume that |V (G)| ≥ 2, because if |V (G)| ≤ 1, then rwd(G) = 0 and
cwd(G) ≤ 1.

A rooted binary tree is a subcubic tree with a specified vertex, called the root ,
such that every non-root vertex has one, two or three incident edges and the root has
at most two incident edges. A vertex u of a rooted binary tree is called a descendant
of a vertex v if v belongs to the path from the root to u; and u is called a child of v
if u, v are adjacent in T and u is a descendant of v.

First we show that rwd(G) ≤ cwd(G). Let k = cwd(G). Let t be a k-expression
with value (G, lab) for some choice of lab. We recall that a k-expression is a well-
formed expression with four types of symbols; the constants, two unary operators,
and the binary operator forming disjoint union. The parentheses of the expression
form a tree structure. Thus there is a rooted binary tree T , each vertex v of which
corresponds to a k-expression, say N(v); and letting V0, V1, V2 denote the sets of
vertices in T with zero, one and two children respectively, we have for each vertex
v ∈ V (T ):

• if v ∈ V0 then N(v) is a 1-term expression consisting just of a constant term,

• if v ∈ V1 with child u, then N(v) is obtained from N(u) by applying one of the
two unary operators,

• if v ∈ V2 with children u1, u2, then N(v) is obtained from N(u1), N(u2) by
applying ⊕,

• if v is the root then N(v) = (G, lab).

In particular, each vertex v ∈ V0 gives rise to a unique vertex w of G; let us write
this L(w) = v. Then L is a bijection between V (G) and the set of leaves of T .
Consequently (T,L) is a branch-decomposition of ρG. Let us study its width. Let
u, v ∈ V (T ), where u is a child of v, and let T1, T2 be the components of T \ e,
where e is the edge uv and u ∈ V (T1). Let Xi = {L−1(t) : t ∈ V0 ∩ V (Ti)} for
i = 1, 2. Thus (X1, X2) is a partition of V (G), and we need to investigate ρG(X1).
Let N(u) = (G1, lab1). Thus V (G1) = X1. If x, y ∈ X1 and lab1(x) = lab1(y), then
x, y are adjacent in G to the same members of X2, from the properties of the iterative
construction of (G, lab); and since the function lab1 has at most k different values, it
follows that X1 can be partitioned into k subsets so that the members of each subset
have the same neighbors in X2. Consequently ρG(X1) ≤ k. Since this applies for
every edge of T , we deduce that (T,L) is a branch-decomposition of ρG with width
at most k. Hence rwd(G) ≤ k = cwd(G).
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Now we show the second statement of the theorem, that cwd(G) ≤ 2rwd(G)+1 − 1.
Let k = rwd(G) and (T,L) be a rank-decomposition of G of width k. By subdividing
one edge of T , and suppressing all other vertices of T with degree 2, we may assume
that T is a rooted binary tree; its root has degree 2, and all other vertices have degree
1 or 3.

For v ∈ V (T ), let Dv = {x ∈ V (G) : L(x) is a descendant of v in T}, and let Gv

denote the subgraph of G induced on Dv. We claim that for every v ∈ V (T ), there is
a map labv and a (2k+1 − 1)-expression tv with value (Gv, labv), such that

(i) if labv(x) = 1 then x ∈ Dv is nonadjacent to every vertex of G \Dv,

(ii) if x, y ∈ Dv and there exists z ∈ V (G) \Dv such that x is adjacent to z but y
is not, then labv(x) 6= labv(y),

(iii) for each x ∈ Dv, labv(x) ∈ {1, 2, . . . , 2k}.

We prove this by induction on the number of vertices of T that are descendants of v.
If v is a leaf, let tv = ·1. Then tv satisfies the above conditions. Thus we may assume
that v has exactly two children v1, v2.

By the inductive hypothesis, there are (2k+1 − 1)-expressions t1, t2 with values
(Gvi

, labvi
) for i = 1, 2, satisfying the statements above. Let F be the set of pairs

(i, j) with i, j ∈ {1, 2, . . . , 2k}, such that there is an edge xy of G, with x ∈ Dv1 ,
labv1(x) = i, y ∈ Dv2 and labv2(y) = j. It follows from the second condition above
that if (i, j) ∈ F then every vertex x ∈ Dv1 with labv1(x) = i is adjacent in G to every
vertex y ∈ Dv2 with labv2(y) = j. Let

t∗ =

(
◦

(i,j)∈F
ηi,j+2k−1

)(
tv1 ⊕

(
2k

◦
i=2

ρi→i+2k−1

)
(tv2)

)
.

Then t∗ is a (2k+1 − 1)-expression with value (Gv, lab
∗) say, and it satisfies the first

two displayed conditions above. However, it need not yet satisfy the third. Let us
choose a (2k+1 − 1)-expression tv with value (Gv, labv) say, satisfying the first two
conditions above, and satisfying the following:

• {labv(x) : x ∈ Dv} is minimal,

• subject to this condition, maxx∈Dv labv(x) (= r say) is as small as possible.

(We call these the “first and second optimizations”.) For i = 1, . . . , r, let Xi = {x ∈
Dv : labv(x) = i}. The definition of r implies that Xr 6= ∅. If there exists i with
2 ≤ i < r such that Xi = ∅, then applying the operation ρr→i to tv produces a k-
expression contradicting the second optimization. Thus, X2, . . . , Xr are all nonempty.
For 1 ≤ i ≤ r, let Yi be the set of vertices of V (G) \Dv with a neighbor in Xi. From
the first condition (i), Y1 = ∅. From the second condition (ii), every vertex in Xi

is adjacent to every member of Yi for all i with 1 ≤ i ≤ r. If there exist i, j with
1 ≤ i < j ≤ r such that Yi = Yj, then applying ρj→i to tv produces a k-expression
contradicting the first optimization. Thus Y1, . . . , Yr are all distinct.
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Let M be the matrix A(G)[Dv, V (G) \ Dv]. Then M has r − 1 distinct nonzero
rows. Since (T,L) has width k, it follows that M has rank at most k, and therefore
M has at most 2k − 1 distinct nonzero rows (this is an easy fact about any matrix
over GF(2)). We deduce that r ≤ 2k, and therefore tv satisfies the third condition
above.

This completes the proof that the k-expressions tv exist as described above. In
particular, if v is the root of T then Gv = G, and so tv is a (2k+1 − 1)-expression of
G. We deduce that cwd(G) ≤ 2k+1 − 1.

The above proof gives an algorithm that converts a rank-decomposition of width
k into a (2k+1 − 1)-expression. Let n = |V (G)|, and let (T,L) be the input rank-
decomposition. At each non-leaf vertex v of T , we first construct F , in O((2k)2) =
O(1) time. Then merging sets with the same neighbors outside Dv will take time
O
(
22kn

)
= O(n). The number of non-leaf vertices v of T is O(n). Therefore, the

time complexity is O(n2). Note that we may assume that checking the adjacency
of two vertices can be done in constant time, because we preprocess the input to
construct an adjacency matrix in time O(n2).

3.3 Graphs having rank-width at most 1

We call a graph G distance-hereditary if and only if for every connected induced
subgraph H of G, the distance between every pair of vertices in H is the same as
in G. Howorka [36] defined distance-hereditary graphs, and Bandelt and Mulder [2]
found a recursive characterization of distance-hereditary graphs, which we will use
here. In this section, we show that a graph is distance-hereditary if and only if it has
rank-width at most 1.

Two distinct vertices v, w are called twins of G if for every x ∈ V (G) \ {v, w}, v
is adjacent to x if and only if w is adjacent to x. We call v a pendant vertex of G if
it has only one incident edge in G.

Proposition 3.5. Let G be a graph. If v, w ∈ V (G) are twins of G and G \ v has
at least one edge different from vw, then rwd(G \ v) = rwd(G). Note that we do not
require that vw ∈ E(G).

Proof. It is enough to show that rwd(G \ v) ≥ rwd(G). Since |V (G \ v)| ≥ 2, there
is a rank-decomposition (T,L) of G \ v of width rwd(G \ v). Let x = L(w) and let
y ∈ V (T ) be such that xy ∈ E(T ).

Let T ′ be a tree obtained from T by deleting xy, adding two new vertices x′, z,
and adding three new edges xz, zx′, zy. Let L′(x′) = v and L′(u) = L(u) for all
u 6= x′.

So, (T ′,L′) is a rank-decomposition of G. For every edge e except zx′ and zx in
T ′, the width of e in (T ′,L′) is equal to the width of e in (T,L), because v and w are
twins. Both the width of zx and the width of zx′ are at most 1. Since G has at least
one edge e 6= vw and v, w are twins, G \ v has at least one edge and rwd(G \ v) ≥ 1,
and therefore the width of (T ′,L′) is rwd(G\v). Therefore, rwd(G\v) ≥ rwd(G).
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Proposition 3.6. If G has rank-width at most 1 and |V (G)| ≥ 2, then G has a pair
of vertices v and w such that either they are twins or w has no neighbor different
from v.

Proof. If |V (G)| = 2, then the claim is trivial, and so we may assume that |V (G)| ≥ 3.
Let (T,L) be a rank-decomposition of G of width at most 1. Since T has at least

three leaves, there exists a vertex x of T that is adjacent to two leaves L(v), L(w)
of T . Let y be the vertex of T adjacent to x different from L(v) and L(w). The
partition of V (G) induced by xy is ({v, w}, V (G) \ {v, w}). So, the width of xy is
ρG({v, w}) ≤ 1. That means either v, w are twins or v has no neighbor different from
w or w has no neighbor different from v.

Proposition 3.7. G is distance-hereditary if and only if the rank-width of G is at
most 1.

Proof. Bandelt and Mulder [2] showed that every distance-hereditary graph can be
obtained by creating twins, adding an isolated vertex, or adding a pendant vertex to
a distance-hereditary graph or is a graph with one vertex. So, the rank-width of every
distance-hereditary graphs is at most 1 by Proposition 3.5. Conversely, if a graph has
rank-width at most 1, then by Proposition 3.6, it is distance-hereditary.

Golumbic and Rotics [30] proved that distance-hereditary graphs have clique-
width at most 3, and this can be proved as a corollary of Proposition 3.7.

Corollary 3.8. Distance-hereditary graphs have clique-width at most 3.

Proof. By Proposition 3.4, clique-width of a graph G is at most 2rwd(G)+1 − 1.

3.4 Local complementations and vertex-minors

We define local complementation, pivoting , vertex-minors , and pivot-minors . In fact,
vertex-minor containment was called l-reduction by Bouchet [8], but the author thinks
“vertex-minor” is a better name, because of the many analogies with matroid minors
discussed in Section 3.5. For two sets A and B, let A∆B = (A \B) ∪ (B \ A).

Definition 3.9. Let G = (V,E) be a graph and v ∈ V . The graph obtained by
applying local complementation at v to G is

G ∗ v = (V,E∆{xy : xv, yv ∈ E, x 6= y}).

For an edge uv ∈ E, the graph obtained by pivoting uv is defined by G ∧ uv =
G ∗ u ∗ v ∗ u. We call H locally equivalent to G if G can be obtained by applying a
sequence of local complementations to G. We call H a vertex-minor of G if H can be
obtained by applying a sequence of vertex deletions and local complementations to G.
We call H a pivot-minor of G if H can be obtained by applying a sequence of vertex
deletions and pivotings. A vertex-minor H of G is called a proper vertex-minor if
H has fewer vertices than G and similarly a pivot-minor H of G is called a proper
pivot-minor if H has fewer vertices than G.
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Figure 3.1: Local complementation

A pivoting is well-defined because G∗u∗v∗u = G∗v∗u∗v if u and v are adjacent.
To prove this, we prove the following proposition that describes pivoting directly.

Proposition 3.10. For a graph H and u, v ∈ V (H), let Huv be a graph obtained by
exchanging u and v in H. For X, Y ⊆ V (H), let H ∗ (X,Y ) be the graph (V (H), E ′)
where E ′ = E(H)∆{xy : x ∈ X, y ∈ Y, x 6= y}. Let G = (V,E) be a graph. For
x ∈ V , let N(x) be the set of neighbors of x in G. For uv ∈ E, let V1 = N(u)∩N(v),
V2 = N(u) \N(v) \ {v}, and V3 = N(v) \N(u) \ {v}. (See Figure 3.2.) Then

G ∧ uv = (G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1))uv.

In other words, pivoting uv is an operation that,

(1) for each (x, y) ∈ (V1×V2)∪(V2×V3)∪(V3×V1), adds a new edge xy if xy /∈ E(G)
or deletes it otherwise,

(2) and then, exchanges u and v.

G G ∧ uv

u v uv

V3

V1

V2
V3V2

V1

Figure 3.2: Pivoting
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Proof. Note that V1, V2, V3 are disjoint subsets of V (G). For a graph H and X ⊆
V (H), let H ∗ (X)2 = H ∗ (X,X).

Let us first consider the neighbors of u and v inG∗u∗v∗u. The set of neighbors of u
in G is N(u) = V1∪V2∪{v}. The set of neighbors of v in G∗u is N(v)∆(N(u)\{v}) =
V2∪V3∪{u}. The set of neighbors of u in G∗u∗v is N(u)∆(V2∪V3) = V1∪V3∪{v}.
Therefore, G ∗ u ∗ v ∗ u = G ∗ (V1 ∪ V2 ∪ {v})2 ∗ (V2 ∪ V3 ∪ {u})2 ∗ (V1 ∪ V3 ∪ {v})2.

Now, we use the simple facts that G ∗ (X ∪ Y )2 = G ∗ (X)2 ∗ (Y )2 ∗ (X, Y ) for
X ∩ Y = ∅, G ∗ (X, Y ) ∗ (Z,W ) = G ∗ (Z,W ) ∗ (X, Y ), G ∗ (X, Y ) ∗ (X, Y ) = G, and
G∗({x})2 = G. So, G∗(V1∪V2∪{v})2 = G∗(V1)

2∗(V2)
2∗(V1, V2)∗(V1, {v})∗(V2, {v}).

By applying these, we obtain the following.

G ∗ u ∗ v ∗ u
= G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1)

∗ (V1, {v}) ∗ (V2, {v}) ∗ (V2, {u}) ∗ (V3, {u}) ∗ (V1, {v}) ∗ (V3, {v})
= G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1) ∗ (V2, {v}) ∗ (V2, {u}) ∗ (V3, {v}) ∗ (V3, {u})
= (G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1))uv

Corollary 3.11. If G is a graph and uv ∈ E(G), then G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v.

Proof. This is immediate from Proposition 3.10.

Corollary 3.12. If a graph G is bipartite and uv ∈ E(G), G ∧ uv is also bipartite.

Proof. Let V1, V2, and V3 be sets defined in Proposition 3.10. Since G is bipartite,
V1 = ∅. It does not break bipartiteness to add edges between V2 and V3.

For a graph H, let x 'H y denote that either x = y or they are adjacent in H. Let
a⊕ b denote (a∧¬b)∨ (¬a∧ b). This operation is usually called the logical “exclusive
or” operation. (Note that we use the ∧ symbol with two meanings: one for pivoting
and another for the logical “and” operation.)

The next corollary is a reformulation of the above proposition.

Corollary 3.13. Let G be a graph and let uv ∈ E(G). For all x, y ∈ V (G), x 'G∧uv y
if and only if (x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u).

Proof. If x = y, then it is clear.
Suppose {x, y} ∩ {u, v} = ∅ and x 6= y. Let V1, V2, and V3 be sets defined in

Proposition 3.10. We add or remove an edge xy if and only if there exist i, j ∈ {1, 2, 3}
such that x ∈ Vi, y ∈ Vj, and i 6= j. It is equivalent to say that (x 'G u ∧ y 'G

v)⊕ (x 'G v ∧ y 'G u) is true.
Now, consider when one of x or y is u or v. We may assume that x = u without
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loss of generality. Then

(x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u)

= (u 'G y)⊕ (y 'G v)⊕ (y 'G u) because u is adjacent to v.

= y 'G v

= y 'G∧uv u because we exchanged u and v.

= x 'G∧uv y

Equivalent formulations of the following proposition were independently shown by
Arratia, Bollabás, and Sorkin [1, Lemma 10] and Genest [29, Proposition 1.3.5]. But
our proof does not require much case checking.

Proposition 3.14. If vv1, vv2 ∈ E(G) are two distinct edges incident with v, then

G ∧ vv1 ∧ v1v2 = G ∧ vv2.

Proof. First of all, G ∧ vv1 ∧ v1v2 is well-defined because v1 and v2 are adjacent in
G ∧ vv1. Let G′ = G ∧ vv1. Corollary 3.13 implies that x 'G∧uv y if and only if

(x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u).

For simplicity, we write ' instead of 'G.

x 'G′∧v1v2 y = (x 'G′ y)⊕ (x 'G′ v1 ∧ y 'G′ v2)⊕ (x 'G′ v2 ∧ y 'G′ v1) (3.1)

x 'G′ y = (x ' y)⊕ (x ' v ∧ y ' v1)⊕ (x ' v1 ∧ y ' v) (3.2)

x 'G′ v1 = x ' v (3.3)

y 'G′ v2 = (y ' v2)⊕ (y ' v1)⊕ (y ' v ∧ v2 ' v1) (3.4)

x 'G′ v2 = (x ' v2)⊕ (x ' v1)⊕ (x ' v ∧ v2 ' v1) (3.5)

y 'G′ v1 = y ' v (3.6)

Now, let us apply (3.2) — (3.6) to (3.1). We use the fact that a∧(b⊕c) = (a∧b)⊕(a∧c).

x 'G′∧v1v2 y = (x 'G′ y)⊕ (x 'G′ v1 ∧ y 'G′ v2)⊕ (x 'G′ v2 ∧ y 'G′ v1)

= (x ' y)⊕ (x ' v ∧ y ' v1)⊕ (x ' v1 ∧ y ' v)

⊕ (x ' v ∧ y ' v2)⊕ (x ' v ∧ y ' v1)⊕ (x ' v ∧ y ' v ∧ v2 ' v1)

⊕ (x ' v2 ∧ y ' v)⊕ (x ' v1 ∧ y ' v)⊕ (x ' v ∧ y ' v ∧ v2 ' v1)

= (x ' y)⊕ (x ' v ∧ y ' v2)⊕ (x ' v2 ∧ y ' v)

= x 'G∧vv2 y

Therefore, x 'G∧vv1∧v1v2 y if and only if x 'G∧vv2 y.

The following observation is fundamental.
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Proposition 3.15. Let G′ = G ∗ v. Then for every X ⊆ V (G),

ρG(X) = ρG′(X).

Proof. We may assume that v ∈ X by the symmetry of cut-rank.
Let M = A(G)[X,V (G) \X] and M ′ = A(G′)[X,V (G) \X]. It is easy to see that

M ′ is obtained from M by adding the row of v to the rows of its neighbors in X.
Therefore, ρG(X) = rk(M) = rk(M ′) = ρG′(X).

Corollary 3.16. If H is locally equivalent to G, then the rank-width of H is equal
to the rank-width of G. If H is a vertex-minor of G, then the rank-width of H is at
most the rank-width of G.

Proof. The first statement is obvious. Since vertex deletion does not increase cut-
rank, it does not increase rank-width, and therefore the second statement is true.

3.5 Bipartite graphs and binary matroids

In this section, we discuss the relation between branch-width of binary matroids and
rank-width of bipartite graphs. We will also discuss further properties relating binary
matroids and bipartite graphs. As an example, we will show the implication of the
grid theorem for binary matroids by Geelen, Gerards, and Whittle [28]. The notion
of matroids was reviewed in Section 2.5.

Let G = (V,E) be a bipartite graph with a bipartition V = A ∪ B. Let
Bin(G,A,B) be the binary matroid on V , represented by the A× V matrix(

IA A(G)[A,B]
)
,

where IA is the A × A identity matrix. If M = Bin(G,A,B), then G is called a
fundamental graph of M.

Here is a major observation, which gives a relation between connectivity of binary
matroids and cut-rank of bipartite graphs.

Proposition 3.17. Let G = (V,E) be a bipartite graph with a bipartition V = A∪B
and let M = Bin(G,A,B). Then for every X ⊆ V , λM(X) = ρG(X) + 1.

Proof. Let M = A(G). First note that

M [X,V \X] =

(
0 M [X ∩ A, (V \X) ∩B]

M [X ∩B, (V \X) ∩ A] 0

)
.

Therefore, ρG(X) = rk(M [X,V \X]) = rk(M [X∩B, (V \X)∩A])+rk(M [X∩A, (V \
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X) ∩B]). Consequently,

λM(X) = r(X) + r(V \X)− r(V ) + 1

= rk

(
0 M [(V \X) ∩ A,X ∩B]

IX∩A M [X ∩ A,X ∩B]

)
+ rk

(
0 M [X ∩ A, (V \X) ∩B]

I(V \X)∩A M [(V \X) ∩ A, (V \X) ∩B]

)
− |A|+ 1

= rk(M [(V \X) ∩ A,X ∩B]) + rk(M [X ∩ A, (V \X) ∩B]) + 1

= ρG(X) + 1.

An easy corollary of Proposition 3.17 is the following.

Corollary 3.18. Let G = (V,E) be a bipartite graph with a bipartition V = A∪B and
let M = Bin(G,A,B). Then the branch-width of M is one more than the rank-width
of G.

Proof. This is trivial because (T,L) is a branch-decomposition of M of width k + 1
if and only if it is a rank-decomposition of G of width k.

Now, let us discuss the relation between matroid minors and graph vertex-minors.

Proposition 3.19. Let G = (V,E) be a bipartite graph with a bipartition V = A∪B
and let M = Bin(G,A,B). Then

(1) Bin(G,B,A) = M∗,

(2) For uv ∈ E(G), Bin(G ∧ uv,A∆{u, v}, B∆{u, v}) = M.

(3) Bin(G \ v, A \ {v}, B \ {v}) =

{
M/v if v ∈ A,
M\ v if v ∈ B.

Proof. Let M be the adjacency matrix of G. Then, M is represented by a matrix(
I M [A,B]

)
.

(1): It is known that M∗ is represented by a matrix
(
M [B,A] I

)
. Therefore,

M∗ = Bin(G,B,A)
(2): We may assume that u ∈ A, v ∈ B. Let R = (rij : i ∈ A, j ∈ V ) =(

I M [A,B]
)

be a matrix over GF(2). (So, rij = 1 if j ∈ B and ij ∈ E(G) or i = j,
and rij = 0 otherwise.) We know that elementary row operations on R do not change
the associated matroid M.

By adding the row vector of u, that is (ruj : j ∈ V ), to the rows of neighbors of
u in A, we obtain another matrix R′ = (r′ij : i ∈ A, j ∈ V ) representing the same
matroid. We first observe that R′[A, (A \ {u}) ∪ {v}}] is an identity matrix, because
ruv = 1 and when we obtain R′, we changed all 1’s into 0’s in the column of v. We
also observe that the column vector of u, v in R′ is equal to the column vector of v, u
in R respectively. Moreover for i 6= u and j ∈ B \ {v}, r′ij 6= rij if and only if ruj = 1
and riv = 1, or equivalently iv, ju ∈ E(G). By Proposition 3.10, we know that for
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i ∈ A \ {u} and j ∈ B \ {v}, ij belongs to exactly one of E(G) and E(G∧ uv) if and
only if iv, ju ∈ E(G). (Because G is bipartite, iu, jv /∈ E(G).) Moreover the set of
neighbors of u, v in G ∧ uv is equal to the set of neighbors of v, u in G respectively.
Therefore, we conclude that M = Bin(G ∧ uv,A∆{v, w}, B∆{v, w}).

(3): If v ∈ B, by deleting the column of v in
(
I M [A,B]

)
, we obtain a matrix

representation of M\ v and therefore M\ v = Bin(G \ v, A,B \ {v}).
If v ∈ A, then M∗ = Bin(G,B,A), and therefore M∗ \ v = Bin(G,B,A \ {v})

and M/v = Bin(G,A \ {v}, B).

Corollary 3.20. Let M be a binary matroid and G be the fundamental graph of M
with a bipartition V (G) = A ∪B such that M = Bin(G,A,B). If v has no neighbor
in G, then

M\ v = M/v = Bin(G \ v, A \ {v}, B \ {v}).

Otherwise let w be a neighbor of v.

(1) M\ v =

{
Bin(G ∧ vw \ v, A∆{v, w}, B∆{v, w} \ {v}) if v ∈ A,
Bin(G \ v, A \ {v}, B \ {v}) otherwise.

(2) M/v =

{
Bin(G ∧ vw \ v, A∆{v, w} \ {v}, B∆{v, w}) if v ∈ B,
Bin(G \ v, A \ {v}, B \ {v}) otherwise.

Note that the matroid Bin(G ∧ vw \ v, A∆{v, w} \ {v}, B∆{v, w} \ {v}) is inde-
pendent of the choice of w by Proposition 3.14 and (2) of Proposition 3.19.

Proof. If v has no neighbor in G, then v is a loop or a coloop of M, and therefore
M\v = M/v. By (3) of Proposition 3.19, we deduce that Bin(G\v, A\{v}, B\{v}) =
M\ v = M/v.

Now we assume that w is a neighbor of v. By (1) of Proposition 3.19, it is enough
to show (1). If v ∈ B, then by (3) of Proposition 3.19, we obtain that M \ v =
Bin(G \ v, A,B \ {v}). If v ∈ A, then M = Bin(G ∧ vw,A∆{v, w}, B∆{v, w}), and
therefore M\ v = Bin(G ∧ vw,A∆{v, w}, B∆{v, w} \ {v}).

Corollary 3.21. If G, H are bipartite graphs with bipartitions A ∪ B = V (G) and
A′ ∪ B′ = V (H) and Bin(H,A′, B′) = Bin(G,A,B), then H can be obtained by
applying a sequence of pivotings to G, and therefore H is locally equivalent to G.

Proof. We proceed by induction on |A′∆A|.
Let M = Bin(G,A,B) = Bin(H,A′, B′). If A′ = A, then G = H because M

determines every fundamental circuit with respect to A.
Now, we may assume that A′ 6= A. Since A and A′ are bases of M, we may pick

w ∈ A′ \A and v ∈ A \A′ such that w is in the fundamental circuit of v with respect
to A′, and therefore vw ∈ E(H). Let H ′ = H ∧ vw. By (2) of Proposition 3.19,
M = Bin(H ′, A′∆{v, w}, B′∆{v, w}). By induction, H ′ can be obtained by applying
a sequence of pivotings to G. Since H = H ′ ∧ vw, H can be obtained by applying a
sequence of pivotings to G.
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Corollary 3.22.

(1) Let N , M be binary matroids, and H, G be fundamental graphs of N , M respec-
tively. If N is a minor of M, then H is a pivot-minor of G, and therefore H is
a vertex-minor of G.

(2) Let G be a bipartite graph with a bipartition A∪B = V (G). If H is a pivot-minor
of G, then there is a bipartition A′ ∪ B′ = V (H) of H such that Bin(H,A′, B′)
is a minor of Bin(G,A,B).

Proof. (1) We proceed by induction on |E(M) \ E(N )|. By Corollary 3.21, we may
assume that M 6= N . By induction, it is enough to show it when N = M \ v or
N = M/v for v ∈ V (G). By Corollary 3.20, either G ∧ vw \ v for some w ∈ V (G)
or G \ v is a fundamental graph of N . By Corollary 3.21, H can be obtained from
either G ∧ vw \ v or G \ v by applying a sequence of pivotings.

(2): By (2) and (3) of Proposition 3.19, we obtain a bipartition (A′, B′) of H such
that Bin(H,A′, B′) is a minor of Bin(G,A,B).

By Proposition 3.19, theorems about branch-width of binary matroids give corol-
laries about rank-width of bipartite graphs. One of the recent theorems about branch-
width of binary matroids was proved by Geelen, Gerards, and Whittle. Let us recall
their theorem in the context of binary matroids. The n × n grid is a graph on the
vertex set {1, 2, . . . , n} × {1, 2, . . . , n} such that (x1, y1) and (x2, y2) are adjacent if
and only if |x1 − x2|+ |y1 − y2| = 1.

Theorem 3.23 (Grid theorem for binary matroids [28]). For every positive
integer k, there is an integer l such that if M is a binary matroid with branch-width
at least l, then M contains a minor isomorphic to the cycle matroid of the k×k grid.

To make corollaries about rank-width from this theorem, it is helpful to replace
the k × k grid by a planar graph whose cycle matroid has a simpler fundamental
graph. We define a planar graph Rk = (V,E) (Figure 3.3) as following:

V = {v1, v2, · · · , vk2},
E = {vivi+1 : 1 ≤ i ≤ k2 − 1} ∪ {vivi+k : 1 ≤ i ≤ k2 − k}.

We can obtain a minor of Rk isomorphic to the k × k grid by deleting edges vikvik+1

for all 1 ≤ i ≤ k− 1. To show that Rk is isomorphic to a minor of the l× l grid for a
big l, let us cite a useful lemma by Robertson, Seymour, and Thomas.

Lemma 3.24 (Robertson, Seymour, and Thomas [50, (1.5)]). If H is a planar
graph with |V (H)| + 2|E(H)| ≤ n, then H is isomorphic to a minor of the 2n × 2n
grid.

By this lemma, Rk is isomorphic to a minor of the 6k2 × 6k2 grid. Therefore,
Theorem 3.23 is still true if Rk is used instead of the k × k grid.

Now, let us construct a fundamental graph Sk of the cycle matroid of Rk. Since
edges of Rk represent elements of the cycle matroid of Rk, they are vertices of Sk. Let
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Figure 3.3: R4 and S4

ai = vivi+1 and bi = vivi+k. LetA = {ai : 1 ≤ i ≤ k2−1} andB = {bi : 1 ≤ i ≤ k2−k}
so that A is the set of edges of a spanning tree of Rk. For each bj ∈ B, aibj ∈ E(Sk)
if and only if ai is in the fundamental cycle of bj with respect to the spanning tree
of Rk with the edge set A. In summary, Sk is a bipartite graph with V (Sk) = A ∪B
such that aibj ∈ E(Sk) if and only if i ≤ j < i + k (Figure 3.3). By Corollary 3.22,
we obtain the following.

Corollary 3.25. For every positive integer k, there is an integer l such that if a
bipartite graph G has rank-width at least l, then it contains a vertex-minor isomorphic
to Sk.

This corollary will be used in Chapter 5 to prove a weaker version of Seese’s
conjecture.

3.6 Inequalities on cut-rank and vertex-minors

Submodularity plays an important role in many places of combinatorics. In this
section, we prove inequalities concerning the cut-rank function.

Proposition 3.26. Let G = (V,E) be a graph and let v ∈ V and Y1 ⊆ V . Let
M = A(G) be the adjacency matrix of G over GF(2). Then

ρG∗v\v(Y1) = rk

(
1 M [{v}, V \ Y1 \ {v}]

M [Y1, {v}] M [Y1, V \ Y1 \ {v}]

)
− 1.

Moreover, if w is a neighbor of v, then

ρG∧vw\v(Y1) = rk

(
0 M [{v}, V \ Y1 \ {v}]

M [Y1, {v}] M [Y1, V \ Y1 \ {v}]

)
− 1.

Proof. We will use elementary row operations on matrices to prove the claim. Let
N be the set of neighbors of v in G. Let JB

A be a matrix (1)i∈A,j∈B. We will write
J instead of JB

A if it is not confusing. Let V = V (G). Let Y2 = V \ Y1 \ {v}. Let
L11 = M [Y1 ∩ N, Y2 ∩ N ], L12 = M [Y1 ∩ N, Y2 \ N ], L21 = M [Y1 \ N, Y2 ∩ N ], and
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L22 = M [Y1 \N, Y2 \N ]. Then

ρG∗v\v(Y1) = rk(A(G ∗ v)[Y1, Y2])

= rk

(
L11 + J L12

L21 L22

)

= rk

1 1 1 1 · · · 1 0 0 0 · · · 0
0 L11 + J L12

0 L21 L22

− 1

= rk

1 1 1 1 · · · 1 0 0 0 · · · 0
J L11 L12

0 L21 L22

− 1

= rk

(
1 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

)
− 1.

Let W be the set of neighbors of w. We may assume that w ∈ Y1 by symmetry.
Consequently w ∈ Y1 ∩ (N \W ). Let N1 = N \W \ {w}, N2 = N ∩W , N3 = W \N ,
N4 = V \N \W \ {w}. Let Mij = M [Y1 ∩Ni, Y2 ∩Nj] for all i, j ∈ {1, 2, 3, 4}. Then

ρG∧vw\v(Y1) = rk(A(G ∧ vw)[Y1, Y2])

= rk


1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0
M11 M12 + J M13 + J M14

M21 + J M22 M23 + J M24

M31 + J M32 + J M33 M34

M41 M42 M43 M44



= rk


1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0
0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0
0 M11 M12 + J M13 + J M14

0 M21 + J M22 M23 + J M24

0 M31 + J M32 + J M33 M34

0 M41 M42 M43 M44

− 1

= rk


1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0
0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0
J M11 M12 M13 M14

J M21 + J M22 + J M23 M24

0 M31 + J M32 + J M33 M34

0 M41 M42 M43 M44

− 1

= rk


0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0
1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0
J M11 M12 M13 M14

J M21 M22 M23 M24

0 M31 M32 M33 M34

0 M41 M42 M43 M44

− 1
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= rk

(
0 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

)
− 1.

The following lemma is analogous to an inequality on connectivity functions of
matroids [27, (5.2)]. Later we will show an equivalent statement in Lemma 6.11 with
another proof.

Lemma 3.27. Let G be a graph and v ∈ V (G). Suppose that (X1, X2) and (Y1, Y2)
are partitions of V (G) \ {v}. Then

ρG\v(X1) + ρG∗v\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1.

If w is a neighbor of v, then

ρG\v(X1) + ρG∧vw\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1,

ρG∗v\v(X1) + ρG∧vw\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1.

Proof. We use Proposition 3.26 and apply Proposition 3.2. Let M = A(G) be the
adjacency matrix of G over GF(2). Then

ρG\v(X1) + ρG∧vw\v(Y1)

= rk(M [X1, X2] + rk(M [Y1 ∪ {v}, Y2 ∪ {v}])− 1

≥ rk(M [X1 ∩ Y1, X2 ∪ {v} ∪ Y2] + rk(M [X1 ∪ {v} ∪ Y1, Y2 ∩X2])− 1

= ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1.

Moreover,

ρG\v(X1) + ρG∗v\v(Y1)

= rk(M [X1, X2] + rk

(
1 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

)
− 1

≥ rk(M [X1 ∩ Y1, X2 ∪ {v} ∪ Y2]) + rk(M [X1 ∪ {v} ∪ Y1, Y2 ∩X2])− 1

= ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1.

Since G ∗ v ∧ vw = G ∧ vw ∗ w, we obtain that

G ∗ v ∧ vw \ v = G ∧ vw \ v ∗ w.

Let H = G ∗ v. We deduce that

ρH\v(X1) + ρH∧vw\v(Y1) ≥ ρH(X1 ∩ Y1) + ρH(X2 ∩ Y2)− 1.

Therefore ρG∗v\v(X1) + ρG∧vw\v∗w(Y1) ≥ ρG∗v(X1 ∩ Y1) + ρG∗v(X2 ∩ Y2)− 1. We note
that ρH∗x(Z) = ρH(Z) for every graph H, x ∈ V (H), and Z ⊆ V (H).
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3.7 Tutte’s linking theorem

In this section, we prove a theorem analogous to Tutte’s linking theorem [57]. In
the following theorem, we show that the minimum cut-rank of cuts separating two
disjoint sets X, Y of vertices of a graph G is equal to the maximum cut-rank of X in
all vertex-minors of G having X ∪ Y as the set of vertices.

Theorem 3.28. Let G be a graph and X, Y be disjoint subsets of V (G). The following
are equivalent.

(1) min
X⊆Z⊆V (G)\Y

ρG(Z) ≥ k.

(2) There exists a vertex-minor G′ of G such that V (G′) = X ∪ Y and ρG′(X) ≥ k.

(3) There exists a pivot-minor G′ of G such that V (G′) = X ∪ Y and ρG′(X) ≥ k.

Proof. (2)⇒(1): We may assume that G′ is an induced subgraph of G by applying
local complementations to G. For all Z satisfying X ⊆ Z ⊆ V (G) \ Y , we have

k ≤ ρG′(X) = ρ∗G(X, Y ) ≤ ρ∗G(Z, V (G) \ Z) = ρG(Z).

(3)⇒(2): Trivial.
(1)⇒(3): We proceed by induction on |V (G) \ (X ∪ Y )|. Suppose there is no

such graph G′. If X ∪ Y = V (G), then it is trivial. Let x ∈ V (G) \ (X ∪ Y ).
If x has no neighbor, then ρG\x(Z) = ρG(Z) for all Z ⊆ V (G) \ {x}. Therefore,
minX⊆Z⊆V (G)\Y ρG(Z) = minX⊆Z⊆V (G)\{x}\Y ρG\x(Z).

So, we may assume that x has a neighbor y. By induction, there exists A ⊆
V (G) \ {x} such that ρG\x(A) ≤ k − 1. Also, there exists B ⊆ V (G) \ {x} such that
ρG∧xy\x(B) ≤ k− 1. By Lemma 3.27, either ρG(A∩B) ≤ k− 1 or ρG(A∪B) ≤ k− 1.
Consequently, minX⊆Z⊆V (G)\Y ρG(Z) ≤ k − 1.

We can deduce Tutte’s linking theorem for binary matroids from the above theo-
rem. Here is the statement of Tutte’s linking theorem for binary matroids.

Corollary 3.29. Let M = (E, I) be a binary matroid and let X, Y be disjoint subsets
of E. Then

min
X⊆Z⊆E\Y

λM(Z) ≥ k

if and only if there is a minor M′ of M such that E(M′) = X ∪Y and λM′(X) ≥ k.

Proof. Let G be a bipartite graph with a bipartition A ∪ B = V (G) such that
Bin(G,A,B) = M. There exists a minor M′ of M such that E(M′) = X ∪ Y and
λM′(X) ≥ k if and only if there exists a pivot-minor H of G such that V (H) = X∪Y
and ρH(X) ≥ k− 1 by Corollary 3.22. The remaining proof is routine by Proposition
3.17 and Proposition 3.28.



Chapter 4

Testing Vertex-minors

For fixed graph H, Robertson and Seymour gave a O(|V (G)|3)-time algorithm to test
whether the input graph G contains H as a minor in [49]. We may ask the same
question for vertex-minors, but are not yet able to answer this question completely.
However, we show a polynomial-time algorithm that works only for graphs of bounded
rank-width, by using a logic formula describing vertex-minors. To construct these
logic formulas, we use the notion of isotropic systems and their minors . Informally
speaking, isotropic systems are equivalence classes of graphs by local equivalence.
Therefore, it enables us to describe vertex-minors in terms of minors of isotropic
systems. In Section 4.1, we review the notion of isotropic systems. In Section 4.2, we
review monadic second-order logic formulas. In Section 4.3, we discuss an algorithm
evaluating monadic second-order logic formulas. By combining these sections, we will
build monadic-second order logic formulas describing vertex-minors in Section 4.4.

4.1 Review on isotropic systems

In this section, the notion of isotropic systems and a few useful theorems will be
reviewed. All materials are from Bouchet’s papers [4, 5, 7]. We change a little
notation for readability; in particular, Bouchet used capital letters to denote vectors,
and we use small letters.

4.1.1 Definition of isotropic systems

Let us begin with a definition for vector spaces. For a vector space W with a bilinear
form 〈 , 〉, a subspace L of W is called totally isotropic if and only if 〈x, y〉 = 0 for all
x, y ∈ L.

Let K = {0, α, β, γ} be the two-dimensional vector space over GF(2) with the
bilinear form 〈 , 〉 such that α+ β + γ = 0 and

〈x, y〉 =

{
1 if x 6= y and x, y 6= 0

0 otherwise.

36
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Let V be a finite set. Let KV be the set of functions from V to K, and so KV is
a vector space over GF(2). We attach the following bilinear form to KV :

for x, y ∈ KV , 〈x, y〉 =
∑
v∈V

〈x(v), y(v)〉 ∈ GF(2).

Definition 4.1 (Bouchet [4]). We call S = (V, L) an isotropic system if V is a
finite set and L is a totally isotropic subspace of KV with dim(L) = |V |. We call V
the element set of S.

Let us define some notation. For X ⊆ V , let pX : KV → KX be the canonical
projection such that

(pX(a))(v) = a(v) for all v ∈ X and a ∈ KV .

For a ∈ KV and X ⊆ V , a[X] is a vector in KV such that

a[X](v) =

{
a(v) if v ∈ X,
0 otherwise.

We note that pX(a) should not be confused with a[X]. While pX(a) is a vector
in KX , a[X] is a vector in KV . Let L be a subspace of KV and v ∈ V . Let
x ∈ K \ {0} = {α, β, γ}.

• Let L⊥ be the subspace of KV such that

L⊥ = {z ∈ KV : 〈z, y〉 = 0 for all y ∈ L}.

• Let L|vx be the subspace of KV \{v} such that

L|vx = {pV \{v}(a) : a ∈ L, a(v) = 0 or x}.

• Let L|⊆X , L|X be the subspaces of KX such that

L|⊆X = {pX(a) : a ∈ L, a(v) = 0 for all v ∈ V \X}
L|X = {pX(a) : a ∈ L}

We remark that every totally isotropic subspace L of KV has dimension at most |V |
because

2 dim(L) ≤ dim(L) + dim(L⊥) = 2|V |.

Therefore |V | is the maximum possible dimension that totally isotropic subspaces can
achieve.

Two vectors a, b ∈ KV are called supplementary if 〈a(v), b(v)〉 = 1 for all v ∈ V .
We call a ∈ KV complete if a(v) 6= 0 for all v ∈ V . For X ⊆ V and a complete vector



CHAPTER 4. TESTING VERTEX-MINORS 38

a of KX , L|Xa is the subspace of KV \X such that

L|Xa = {pV \X(b) : b ∈ L, b(v) ∈ {a(v), 0} for all v ∈ X}.

Note that L|v1
x1
|v2
x2
|v3
x3
· · · |vk

xk
= L|{v1,v2,...,vk}

x where x ∈ K{x1,x2,...,xk} such that x(vi) = xi.

Definition 4.2 (Bouchet [4, (8.1)]). Let S = (V, L) be an isotropic system and
v ∈ V . For x ∈ K \ {0}, S|vx = (V \ {v}, L|vx) is called an elementary minor of S. An
isotropic system S ′ is called a minor of S if S ′ can be obtained from S by applying a
sequence of elementary minor operations; in other words,

S ′ = S|v1
x1
|v2
x2
|v3
x3
· · · |vk

xk

for x1, x2, . . . xk ∈ K \ {0} and distinct v1, v2, . . . , vk ∈ V .

Bouchet proved that an elementary minor of an isotropic system is again an
isotropic system. We show the proof for the completeness of this thesis.

Proposition 4.3 (Bouchet [4, (8.1)]). Let S = (V, L) be an isotropic system and
v ∈ V . For each x ∈ K \ {0}, S|vx is an isotropic system.

Proof. It is easy to see that L|vx is a subspace of KV \{v}, because a + b ∈ L|vx for all
a, b ∈ L|vx. Moreover L|vx is totally isotropic, because if 〈a(v), b(v)〉 = 0, then

〈pV \{v}(a), pV \{v}(b)〉 = 〈a, b〉

for all a, b ∈ KV .
We claim that dim(L|vx) = |V | − 1. We have dim(L|vx) ≤ |V | − 1, because L|vx is a

totally isotropic subspace of KV \{v}. Let B be a basis of L. Since dim(L) = |V |, B
should contain at least one vector with a nonzero value at v. However we may assume
that at most two vectors in B have nonzero values at v because α + α = β + β =
γ + γ = α+ β + γ = 0.

If B has only one vector a with a(v) 6= 0, then {pV \{v}(b) : b(v) = 0, b ∈ B} is
independent in L|vx and we deduce that dim(L|vx) ≥ |V | − 1.

Now let us assume that B has exactly two vectors a1, a2 with a1(v), a2(v) 6= 0.
Let B \ {a1, a2} = {a3, a4, . . . , a|V |}. We may assume that a1(v) 6= a2(v) because
we can exchange a2 by a2 + a1. We may assume that a1(v) = x or a2(v) = x
because otherwise a1(v) + a2(v) = x. We may assume that a2(v) = x. We claim
that {pV \{v}(ai) : 2 ≤ i ≤ |V |} is independent in L|vx. Suppose not. There exists
W such that ∅ 6= W ⊆ {2, 3, . . . , |V |} and

∑
i∈W pV \{v}(ai) = 0. It is clear that

{pV \{v}(ai) : 3 ≤ i ≤ |V |} is independent, and therefore 2 ∈ W . Since B is a basis of
L, (∑

i∈W

ai

)
(w) =

{
x if w = v,

0 otherwise.

Then we obtain 〈a1,
∑

i∈W ai〉 = 1, which is a contradiction because L is totally
isotropic and

∑
i∈W ai ∈ L. Therefore, dim(L|vx) ≥ |V | − 1.
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4.1.2 Fundamental basis and fundamental graphs

The connection between isotropic systems and graphs was also studied by Bouchet [5].

Definition 4.4 (Bouchet [5]). We call x ∈ KV an Eulerian vector of an isotropic
system S = (V, L) if

(i) x is complete and

(ii) ∅ 6= P ⊆ V implies x[P ] /∈ L.

Proposition 4.5 (Bouchet [5, (4.1)]). For every complete vector c of KV , there
is an Eulerian vector a of S, supplementary to c.

Proof. Let S = (V, L) be an isotropic system. We proceed by induction on |V |. Let
v ∈ V . By symmetry, we may assume that c(v) = γ. If |V | ≤ 1, then it is trivial.
Suppose that S does not have an Eulerian vector. For x ∈ KV \{v} and y ∈ K, we let
x⊕ y ∈ KV be a vector such that pV \{v}(x⊕ y) = x and (x⊕ y)(v) = y.

Let a be an Eulerian vector of S|vγ. Since a ⊕ α is not Eulerian, there exists a
nonempty set X ⊆ V such that (a ⊕ α)[X] ∈ L. Since a is an Eulerian vector of
S|vγ, we conclude that v ∈ X. Similarly we have a nonempty set Y ⊆ V such that
(a⊕ β)[Y ] ∈ L and v ∈ Y . By adding two vectors, we obtain

(a⊕ α)[X] + (a⊕ β)[Y ] = (a[X∆Y ])⊕ γ ∈ L,

and therefore a[X∆Y ] ∈ L|vγ. Since a is an Eulerian vector of S|vγ, X∆Y = ∅ and
therefore X = Y . But 〈(a⊕α)[X], (a⊕β)[Y ]〉 = 〈α, β〉 = 1, contrary to the fact that
L is totally isotropic.

Proposition 4.6 (Bouchet [5, (4.3)]). Let a be an Eulerian vector of an isotropic
system S = (V, L). For every v ∈ V , there exists a unique vector bv ∈ L such that

(i) bv(v) 6= 0,

(ii) bv(w) ∈ {0, a(w)} for w 6= v.

Moreover, the set {bv : v ∈ V } is a basis of L. We call {bv : v ∈ V } the fundamental
basis of L with respect to a.

Proof. Existence: Let δv
x denote a vector in KV such that δv

x(w) = 0 if w 6= v and
δv
x(v) = x. Let W be a vector space spanned by {δw

a(w) : w ∈ V }. It is clear that

dim(W ) = |V |. Let L+W = {x+ y : x ∈ L, y ∈ W}. Since a is Eulerian, L∩W = ∅
and therefore

dim(L+W ) = dim(L) + dim(W ) = 2|V |,

and so KV = L+W . Let z ∈ K \{0, a(v)}. We can express δv
z = x+y for some x ∈ L

and y ∈ W . For all w 6= v, 0 = 〈δv
z , δ

w
a(w)〉 = 〈x, δv

a(w)〉 and therefore x(w) ∈ {0, a(w)}.
Moreover 1 = 〈δv

z , δ
v
a(v)〉 = 〈x, δv

a(v)〉 implies that x(v) 6= 0. We let bv = x.
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Uniqueness: Suppose bv, b
′
v satisfy two conditions. Then,

0 = 〈bv, b′v〉 = 〈bv(v), b′v(v)〉.

So, bv(v) = b′v(v) and therefore bv − b′v = a[P ] for some P ⊆ V . Since a is Eulerian,
P = ∅ and bv = b′v.

Independence: Suppose it is dependent. There exists ∅ 6= I ⊆ V such that∑
v∈I bv = 0. Choose w ∈ I.

∑
v∈I bv(w) = bw(w) +

∑
v∈I,v 6=w bv(w) = bw(w) or

bw(w) + a(w). Both are non-zero, because bw(w) 6= a(v). A contradiction.

It is straightforward to construct an isotropic system from every graph.

Proposition 4.7 (Bouchet [5, (3.1)]). Let G = (V,E) be a graph and a, b be a
pair of supplementary vectors of KV . Let nG(v) be the set of neighbors of v. Let L
be the subspace of KV spanned by {a[nG(v)] + b[{v}] : v ∈ V }. Then S = (V, L) is an
isotropic system. We call (G, a, b) a graphic presentation of S.

Proof. It is enough to show that L is totally isotropic and dim(L) = |V |.
For distinct v, w ∈ V ,

〈a[nG(v)] + b[{v}], a[nG(w)] + b[{w}]〉 = 〈a[nG(v)], b[{w}]〉+ 〈b[{v}], a[nG(w)]〉 = 0

because a[nG(v)](w) 6= 0 if and only if a[nG(w)](v) 6= 0. Therefore L is totally
isotropic.

We claim that, for a subset W of V , if s =
∑

w∈W (a[nG(w)] + b[{w}]) = 0, then
W = ∅. Suppose v ∈ W . Then s(v) ∈ {b(v), b(v) + a(v)}. Since b(v) 6= 0 and
b(v) + a(v) 6= 0, we conclude that s 6= 0.

So {a[nG(v)] + b[{v}] : v ∈ V } is independent and therefore dim(L) = |V |.

It is interesting that the reverse direction also holds. Suppose an isotropic system
S = (V, L) is given with an Eulerian vector a. Let {bv : v ∈ V } be the fundamental
basis of S = (V, L) with respect to a. Let G = (V,E) be a graph such that vw ∈ E
if and only if v 6= w and bv(w) 6= 0. Since 〈bv, bw〉 = 0, bv(w) 6= 0 if and only if
bw(v) 6= 0, and therefore G is undirected. We call G a fundamental graph of S with
respect to a. In fact, if S has a graphic presentation (G, a, b), then G is a fundamental
graph of S with respect to a.

Bouchet [5, (7.6)] showed that if (G, a, b) is a graphic presentation of an isotropic
system S = (V, L) and v ∈ V , then

(G ∗ v, a+ b[{v}], a[nG(v)] + b)

is also a graphic presentation of S. Thus, local complementations do not change the
associated isotropic system. If G and H are locally equivalent, associated isotropic
systems can be chosen to be same by an appropriate choice of supplementary vectors.
He also showed that if uv ∈ E(G), then

(G ∧ uv, a[V \ {u, v}] + b[{u, v}], b[V \ {u, v}] + a[{u, v}])
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is a graphic presentation of S. This fact will be used in Section 6.6.
A minor of an isotropic system is closely related to a vertex-minor of its funda-

mental graph as follows.

Proposition 4.8 (Bouchet [5, (9.1)]). Let G be a graph and nG(v) be the set
of neighbors of v in G. If (G, a, b) is a graphic presentation of an isotropic system
S = (V, L), then one of the following is a graphic presentation of an elementary minor
S|vx.

(i) (G \ v, pV \{v}(a), pV \{v}(b)) if either x = a(v) or x = b(v) and v is an isolated
vertex of G,

(ii)
(
G ∧ vw \ v, pV \{v}(a[V \ {v, w}] + b[{v, w}]), pV \{v}(b[V \ {v, w}] + a[{v, w}])

)
if x = b(v) and there is a neighbor w of v in G,

(iii) (G ∗ v \ v, pV \{v}(a), pV \{v}(b+ a[nG(v)])) otherwise.

Proof. We know that (G, a, b), (G ∗ v, a + b[{v}], a[nG(v)] + b), and (G ∧ vw, a[V \
{v, w}]+ b[{v, w}], b[V \{v, w}]+a[{v, w}]) (if vw ∈ E(G)) are graphic presentations
of S. Therefore it is enough to show (i).

If v is an isolated vertex of G and x = b(v), then b[{v}] ∈ L. Since every vector
c ∈ L satisfies 〈c, b[{v}]〉 = 0, c(v) ∈ {0, b(v)} for all c ∈ L. Moreover if c(v) = b(v)
for c ∈ L, then c− b[{v}] ∈ L. Therefore S|va(v) = S|vb(v).

Now we may assume that x = a(v). Let a′ = pV \{v}(a) and b′ = pV \{v}(b). For
all w ∈ V \ {v}, since a[nG(w)] + b[{w}] ∈ L, (a[nG(w)] + b[{w}])(v) ∈ {0, x}, and
pV \{v}(a[nG(w)] + b[{w}]) = a′[nG′(w)] + b′[{w}], we have a′[nG\v(w)] + b′[{w}] ∈ L|vx.
Therefore (G \ v, a′, b′) is a graphic presentation of S|vx.

Corollary 4.9. If we have two isotropic systems S1 and S2 such that S1 is a minor of
S2, then every fundamental graph of S1 is a vertex-minor of each fundamental graph
of S2. Conversely, if G1 is a vertex-minor of a fundamental graph of an isotropic
system S2, then there exists a minor of S2 having G1 as a fundamental graph.

Note that the choice of w in Proposition 4.8 does not affect the isotropic system
because of Proposition 3.14.

4.1.3 Connectivity

For a subspace L of KV , let λ(L) = |V | − dim(L). We recall from Subsection 4.1.1
that for X ⊆ V , we define L|⊆X = {pX(a) : a ∈ L, a(v) = 0 for all v ∈ V \X}.

Definition 4.10 (Bouchet [7]). For an isotropic system S = (V, L), we call c :
V → Z a connectivity function if c(X) = λ(L|⊆X) = |X| − dim(L|⊆X).

If L is a totally isotropic subspace of KV , then L|⊆X is also a totally isotropic
subspace of KX . Thus, dim(L|⊆X) ≤ |X|, and therefore c(X) ≥ 0.

Bouchet observed the following proposition stating that the connectivity function
of an isotropic system is equal to the cut-rank function of its fundamental graph.
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Proposition 4.11 (Bouchet [7, Theorem 6]). Let a be an Eulerian vector of an
isotropic system S = (V, L) and let c be the connectivity function of S. Let G be the
fundamental graph of S with respect to a. Then, c(X) = ρG(X) for all X ⊆ V .

Proof. Let M be the adjacency matrix of G over GF(2). Let A = M [X,V \X]. We
have

rk(A) = |X| − nullity(A),

where the nullity of A is the dimension of the null space {P ∈ 2X : AP = 0}. (We
consider 2X as a vector space over GF(2).)

Let {bv : v ∈ V } be the fundamental basis of L with respect to a. Let ϕ : 2V → L
be a linear transformation with ϕ(P ) =

∑
v∈P bv. Then, ϕ is an isomorphism and

therefore we have the following:

dim(L|⊆X) = dim({x ∈ L : pV \X(x) = 0})
= dim(ϕ−1({x ∈ L : pV \X(x) = 0}))

= dim

({
P ⊆ V :

∑
v∈P

pV \X(bv) = 0

})

= dim

({
P ⊆ X :

∑
v∈P

(nG(v) \X) = ∅

})
= dim({P ∈ 2X : AP = 0})
= nullity(A).

Therefore, c(X) = |X| − dim(L|⊆X) = |X| − nullity(A) = rk(A) = ρG(X).

By this property, we notice that c(X) = c(V \X) and c(X) + c(Y ) ≥ c(X ∩ Y ) +
c(X ∪ Y ). Since c is symmetric submodular, it is straightforward to define branch-
decomposition and branch-width of an isotropic system S = (V, L). We call (T,L)
a branch-decomposition of S if it is a branch-decomposition of c. The branch-width
bw(S) of S is the branch-width of c. It is easy to see that branch-width of an isotropic
system is equal to rank-width of its fundamental graph by Proposition 4.11.

4.2 Monadic second-order logic formulas

In this section, we review basics of monadic second-order logic formulas (MS logic
formulas), transformations of relational structures expressed in this language, and its
extensions. We will also discuss its relation to clique-width. For the main definitions
and results on MS logic formulas and some examples of formulas, the reader is referred
to the book chapter [15] written by Courcelle. Since we are interested only in the
application to rank-width, we will not review in full detail, and therefore definitions
will be simplified.



CHAPTER 4. TESTING VERTEX-MINORS 43

4.2.1 Relational structures

Let D be a finite set. A function A : Dm → {true, false} is called a relation symbol
on D with arity m. Similarly a function A : (2D)m → {true, false} is called a set
predicate on D with arity m.

A pair S = 〈D, {A1, A2, . . . , Ak}〉 is called a relational structure if

(i) D is a finite set,

(ii) Ai is either a set predicate on D or a relation symbol on D for each i.

We would write S = 〈D,A1, A2, . . . , Ak〉 if it is not ambiguous.
In general, we are interested in logic formulas described on relational structures

so that we can express properties of our objects. We give two examples in which we
construct relational structures from objects so that we preserve all information about
objects.

Example 4.12 (Graphs; Courcelle [14, Definition 1.7]). Let G = (V,E) be a
graph. Let edg be a relation symbol on V with arity two such that edg(v1, v2) is true
if and only if v1 and v2 are adjacent in G. Then, G is represented by a relational
structure 〈V, edg〉.

Example 4.13 (Matroids; Hliněný [33, 34]). Let M = (E, I) be a matroid. Let
Indep be a set predicate on E with arity one such that Indep(F ) is true if and only if
F is independent in M. Then, M is represented by a relational structure 〈E, Indep〉.

As you can see, there could be many ways to describe an object in terms of
relational structures. For instance, we could introduce Base(F ) to test whether F is
a base of M for matroids so that we express M by a relational structure 〈E,Base〉.
Graphs also have many ways to be described as relational structures. In the next
example, we describe another way of expressing graphs.

Example 4.14 (Graphs; Courcelle [14, Definition 1.7]). Let G = (V,E) be a
graph. Let inc be a relation symbol on V ∪ E with arity three such that inc(x, y, z) is
true if and only if x and z are the ends of y. Then, G is represented by a relational
structure 〈V ∪ E, inc〉.

To distinguish different relational structures on the same object, we sometimes
write that a relational structure 〈D, {A1, A2, . . . , Ak}〉 is a {A1, A2, . . . , Ak}-structure.
For instance, in Example 4.12, we describe graphs by {edg}-structures, but in Exam-
ple 4.14, graphs were described by {inc}-structures; however, both keep all informa-
tion on graphs.

We will discuss relational structures expressing isotropic systems in Section 4.4.

4.2.2 Monadic second-order logic formulas

Let 〈D, {A1, A2, . . . , Ak}〉 be a relational structure. A variable is called a first-order
variable if it denotes an element of D, and is called a set variable if it denotes a
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subset of D. Monadic second-order logic formulas (MS logic formulas) on this rela-
tional structure are logic formulas written by using ∃, ∀, ∧, ¬, ∨, ∈, true, and Ai

with first-order variables and set variables. More formally, we may recursively define
monadic second-order logic formulas on the relational structure 〈D, {A1, A2, . . . , Ak}〉
as follows.

(i) true is an MS logic formula.

(ii) If x and y are first-order variables, then x = y is an MS logic formula.

(iii) If x is a first-order variable and Y is a set variable, then x ∈ Y is an MS logic
formula.

(iv) If Ai is a relation symbol with arity m, then Ai(x1, x2, . . . , xm) is an MS logic
formula with m first-order variables x1, x2, . . . , xm.

(v) If Ai is a set predicate with arity m, then Ai(X1, X2, . . . , Xm) is an MS logic
formula with m set variables X1, X2, . . . , Xm.

(vi) If ϕ is an MS logic formula, then so is ¬ϕ.

(vii) If ϕ1 and ϕ2 are MS logic formulas, then so are (ϕ1 ∧ ϕ2) and (ϕ1 ∨ ϕ2).

(viii) If x is a first-order variable and ϕ is an MS logic formula with no ∃x and no ∀x,
then ∃xϕ and ∀xϕ are MS logic formulas.

(ix) If X is a set variable and ϕ is an MS logic formula with no ∃X and no ∀X, then
∃X ϕ, ∀X ϕ are MS logic formulas.

We call a variable x a free variable of an MS logic formula ϕ if ϕ does not have ∃x or
∀x in its expression but it uses x. If an MS logic formula ϕ has no free variable, then
we call ϕ a closed MS logic formula. By convention, uppercase alphabets denote set
variables and lowercase alphabets denote first-order variables.

Example 4.15. Let 〈E, Indep〉 be a relational structure representing a matroid M as
in Example 4.13. For a subset X of E, we can write an MS logic formula ϕ(X) on
this relational structure describing whether X is a base of M. To make it short, we
write A ⊆ B for ∀z((¬z ∈ A) ∨ (z ∈ B)). Then,

ϕ(X) = Indep(X) ∧ ∀Y (¬(Indep(Y ) ∧X ⊆ Y ) ∨ Y ⊆ X).

In this formula, X is a free variable and Y is not. Since ϕ(X) has a free variable,
ϕ(X) is not closed.

We now extend MS logic formulas. We define a set predicate Even such that
Even(X) is true if and only |X| is even. By allowing Even(X) to the definition of
MS logic formulas, we obtain a definition of modulo-2 counting monadic second-order
logic formulas (C2MS logic formulas). Similarly for p > 1, let Cardp(X) be a set
predicate meaning |X| ≡ 0 (mod p). If we allow Cardp(X) in the definition of MS
logic formulas, we obtain a definition of counting monadic second-order logic formulas
(CMS logic formulas).
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4.2.3 MS theory and MS satisfiability problem for graphs

Let C be a set of graphs. We may consider C as a set of {edg}-structures (see Example
4.12). A MS satisfiability problem for C is the following decision problem:

Given a closed MS logic formula ϕ, is there a graph in C satisfying ϕ?

This problem is called decidable if there is an algorithm that answers the problem
for all MS logic formulas. We may reformulate decidability of the above problem as
decidability of the following problem:

Given a closed MS logic formula ϕ, do all graphs in C satisfy ϕ?

If this problem is decidable, then we say that C has a decidable monadic second-order
theory (decidable MS theory). If ϕ is a closed MS logic formula, then so is ¬ϕ, and
therefore C has a decidable MS theory if and only if it has a decidable satisfiability
problem. Similarly we define C2MS satisfiability problem, CMS satisfiability problem,
decidable C2MS theory , and decidable CMS theory by using appropriate logic formulas
in definitions.

The above definitions use closed MS logic formulas on {edg}-structures of graphs.
If we use {inc}-structures of graphs instead (see Example 4.14), then we obtain the
definition of MS2 satisfiability problem and decidable MS2 theory of graphs.

In Chapter 5, we will discuss the following conjecture by D. Seese [52]: if a set of
graphs has a decidable MS satisfiability problem, then it has bounded rank-width.

4.2.4 Transductions of relational structures

We now introduce MS transductions , transformations of relational structures that can
be formalized in MS logic (or its extensions). We will only need its restricted form. For
more about MS transductions, we refer the reader to surveys by B. Courcelle [13, 15].

Let R = {A1, A2, . . . , Ak} and Q = {B1, B2, . . . , Bl} be two finite sets of relation
symbols or set predicates. A function

τ : {all R-structures} → 2{all Q-structures}

with parameters Y1, Y2, . . . , Yj is called a monadic second-order transduction (MS
transduction) if there is a triple ∆ = (ϕ, ψ, {θB1 , θB2 , · · · , θBl

}) of MS logic formulas
on R-structures such that the following two conditions are equivalent for every R-
structure S = 〈DS, R〉:

(1) A Q-structure T = 〈DT , Q〉 is in τ(S).

(2) There exist Y1, Y2, . . . , Yj ⊆ DS satisfying the following four conditions. (If
Y1, . . . , Yj satisfy these four conditions, we write T = def∆(S, (Y1, Y2, . . . , Yj)).)

• ϕ(Y1, Y2, . . . , Yj) is true on S,

• DT = {x ∈ DS : ψ(Y1, Y2, . . . , Yj, x) is true on S},
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• if Bi is a relation symbol with arity m, then θBi
is an MS logic formula on

R-structures with arity m+ j such that

Bi(x1, x2, . . . , xm) = θBi
(Y1, Y2, . . . , Yj, x1, x2, . . . , xm),

• if Bi is a set predicate with arity m, then θBi
is an MS logic formula on

R-structures with arity m+ j such that

Bi(X1, X2, . . . , Xm) = θBi
(Y1, Y2, . . . , Yj, X1, X2, . . . , Xm).

The triple ∆ = (ϕ, ψ, {θB1 , θB2 , · · · , θBl
}) is called a definition scheme of an MS

transduction τ . If a definition scheme ∆ defines an MS transduction τ , then we write
τ = def∆.

If we allow logic formulas in definition scheme to be C2MS logic formulas or CMS
logic formulas, then we obtain definitions of C2MS transductions , C2MS definition
schemes , or CMS transductions , CMS definition schemes respectively. We note that
every MS transduction is a C2MS transduction and every C2MS transduction is a
CMS transduction.

Example 4.16 (Induced subgraph). Let G = (V,E) be a graph and Y be a subset
of V . We write G[Y ] be a subgraph of G induced by V , which is a graph obtained by
deleting vertices in V \Y . In this example, we would like to show an MS transduction
τ that maps a graph into the set of its induced subgraphs. We assume that G is given
by its {edg}-structure. We have one parameter Y to define induced subgraphs. We
first show its definition scheme ∆ = (ϕ, ψ, θedg).

(i) ϕ(Y ) = true, (Every Y would induce an induced subgraph.)

(ii) ψ(Y, x) = (x ∈ Y ), (The set of vertices of G[Y ] is Y .)

(iii) θedg(Y, x, y) = edg(x, y). (Edges are preserved if x, y ∈ Y .)

Let τ : {all R-structures} → 2{all Q-structures} be an MS transduction with pa-
rameters Y1, Y2, . . . , Yj. Let S be a R-structure and β be an MS logic formula on
Q-structures with free variables x1, x2, . . . , xk, X1, X2, . . . , Xl. Suppose that we want
to evaluate β on a Q-structure T ∈ τ(S). Since the definition scheme of τ describes
all set predicates and relational symbols of Q-structures in terms of MS logic formulas
in R-structures, we obtain the following proposition.

Proposition 4.17 (Courcelle [13, 15]). Let

τ : {all R-structures} → 2{all Q-structures}

be an MS transduction with parameters Y1, Y2, . . . , Yj, given by a definition scheme
∆ = (ϕ, ψ, (θB)B∈Q). Let S be a R-structure and β be an MS logic formula on Q-
structures with free variables x1, x2, . . . , xk, X1, X2, . . . , Xl.

Then there is an MS logic formula β# on R-structures such that S satisfies
β#(Y1, Y2, . . . , Yj, x1, x2, . . . , xk, X1, X2, . . . , Xl) if and only if
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• ϕ(Y1, Y2, . . . , Yj) is true on S, (so that def∆(S, (Y1, . . . , Yj)) is well-defined)

• β(x1, x2, . . . , xk, X1, X2, . . . , Xl) is true on T = 〈DT , Q〉 = def∆(S, (Y1, . . . , Yj)),

• xi ∈ DT for all i (or ψ(xi) is true on S), and

• Xi ⊆ DT for all i.

We call β# the backwards translation of β relative to the MS transduction τ .
Similarly C2MS transductions will induce a C2MS logic formula β# on T ∈ τ(S) for
a C2MS logic formula β on S.

We describe two terminologies. For an MS transduction τ : {all R-structures} →
2{all Q-structures} and a set C of R-structures, the set ∪S∈Cτ(S) is called the image
of C under τ . For two MS (or, C2MS) transductions τ1 : {all R-structures} →
2{all Q-structures} and τ2 : {all Q-structures} → 2{all P -structures}, we define the compo-
sition of τ1 and τ2 as a function τ2 ◦ τ1 : {all R-structures} → 2{all P -structures} such
that (τ2 ◦ τ1)(S) = ∪T∈τ1(S)τ2(T ).

Proposition 4.18 (Courcelle [13, 15]).

(1) If a set of relational structures has a decidable MS satisfiability problem (respec-
tively, C2MS satisfiability problem), then so does its image under an MS trans-
duction (respectively, under a C2MS transduction).

(2) The composition of two MS transductions (respectively, of two C2MS transduc-
tions) is an MS transduction (respectively, a C2MS transduction).

Proof. We only prove (1). Let C be a set of relational structures having a decidable
MS satisfiability problem, and τ be an MS transduction with parameters Y1, . . . , Yp.
For a given closed MS formula β, we want to know whether there exist S ∈ C and
T ∈ τ(S) such that β is true on T . Since β has no free variables, it is equivalent
to ask whether there exists S ∈ C such that ∃Y1∃Y2 · · · ∃Yp β

#(Y1, Y2, . . . , Yp) is true
on S. Since C has a decidable MS satisfiability problem, there is an algorithm that
answers this problem.

4.3 Evaluation of CMS formulas

In this section, we review why and how CMS formulas can be evaluated in linear time
on a set of graphs of bounded clique-width if graphs are given by their k-expressions.

The quantifier height qh(ϕ) of a CMS formula ϕ is defined recursively as follows.

(i) qh(ϕ) = 0 if ϕ is atomic, which means that ϕ is of the form x = y or x ∈ X or
Cardp(X) or A(u1, · · · , un) or A(U1, · · · , Un).

(ii) qh(¬ϕ) = qh(ϕ).

(iii) qh(ϕ1 ∧ ϕ2) = qh(ϕ1 ∨ ϕ2) = max{qh(ϕ1), qh(ϕ2)}.
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(iv) qh(∃uϕ) = qh(∀uϕ) = qh(∃U ϕ) = qh(∀U ϕ) = 1 + qh(ϕ).

Let CpMSh(R, ∅) be the set of all closed CMS formulas on R-structures having quan-
tifier height at most h with no Cardq for all q larger than p. Clearly this set is infinite
because if it contains a formula ϕ, then it contains also all formulas of the form
ϕ∨ϕ∨ · · ·∨ϕ. However all these formulas are equivalent. In [21, Proposition A.8], it
is explained that there is an algorithm to transform every formula ϕ in CpMSh(R, ∅)
to its canonical formula Can(ϕ) in CpMSh(R, ∅) such that ϕ and Can(ϕ) have the
same truth value for every R-structure and moreover the set of canonical formulas,
Can(CpMSh(R, ∅)), is finite. However, the cardinality of Can(CpMSh(R, ∅)) is a tower
of exponentials of height proportional to h.

For every p,R, h as above and every R-structure S, we let

Thp,R,h(S) = {ϕ ∈ Can(CpMSh(R, ∅)) : S satisfies ϕ}.

We call it the (p,R, h)-theory of S. There are thus finitely many (p,R, h)-theories
because it is a subset of a finite set, and each of them is a finite set of formulas.

A k-graph G = (VG, EG, labG) may be represented by the relational structure

〈VG, edgG, p1G, ..., pkG〉,

(also denoted by G) such that edgG is the edge relation and piG(x) holds if and only
if lab(x) = i. The following proposition summarizes well-known results.

Proposition 4.19 (Courcelle [15, Theorem 5.7.5]). Let k be a fixed positive
integer.

(1) Let R = {edg, p1, ..., pk} with edg of arity two and pi of arity one. For all positive
integers p, h, i, j (where i, j ∈ {1, 2, . . . , k} and i 6= j), there exist mappings fk,⊕,
fk,ηi,j

, fk,ρi→j
on subsets of Can(CpMSh(R, ∅)) such that for all k-graphs G and

H,

Thp,R,h(ηi,j(G)) = fk,ηi,j
(Thp,R,h(G)),

Thp,R,h(ρi→j(G)) = fk,ρi→j
(Thp,R,h(G)),

Thp,R,h(G⊕H) = fk,⊕(Thp,R,h(G),Thp,R,h(H)).

(2) If a graph G is given as val(t) for a k-expression t, then Thp,R,h(G) can be com-
puted in time proportional to the size of t.

(3) For every closed CMS logic formula on {edg}-structures, there is a O(n)-time
algorithm that evaluates this formula on the n-vertex input graph of clique-width
at most k, if the input graph is given by its k-expression.

Proof. (1) Let us observe that the mapping ηi,j is a quantifier-free transduction, which
means that its definition scheme consists of MS logic formulas without quantifiers
and without parameters. From the proof of Proposition 4.17, it follows that the
backwards translation (denoted by #) associated with ηi,j does not increase quantifier
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height and does not introduce new Cardp set predicates. Hence for every formula
ϕ in CpMSh(R, ∅), we have ηi,j(G) satisfies ϕ if and only if G satisfies ϕ#. It is
also equivalent to a statement that G satisfies Can(ϕ#). Note that ϕ# belongs to
CpMSh(R, ∅).

Hence, we can take, for every subset Φ of Can(CpMSh(R, ∅)),

fk,ηi,j
(Φ) = {ϕ ∈ Can(CpMSh(R, ∅)) : Can(ϕ#) ∈ Φ}.

The proof is similar for ρi→j.
The case of ⊕ is a particular case of a result by Feferman, Vaught and Shelah.

The proof is in [12, Lemma (4.5)]. There is a nice survey by Makowsky [40] dealing
with the history and the numerous consequences of this result.

(2) Consider a graph G = val(t) where t is a k-expression.
Each set Thp,R,h(val(·i)) can be computed from the definitions. Then, using (1)

one can compute Thp,R,h(val(t)) by induction on the structure of t.
(3) To know whether G satisfies ϕ, we compute the set Thp,R,h(val(t)) by (2) where

p and h are the smallest integers such that ϕ ∈ CpMSh(R, ∅). Then one determines
whether Can(ϕ) belongs to Thp,R,h(val(t)), which gives the answer.

This method applies to optimization and enumeration (counting) problems for-
malized in monadic second-order logic. We refer the reader to [40].

4.4 Vertex-minors through isotropic systems

We describe relational structures for expressing isotropic systems. Let S = (V, L) be
an isotropic system. Let ᾱ, β̄, γ̄ be vectors in KV such that ᾱ(v) = α, β̄(v) = β, and
γ̄(v) = γ for all v ∈ V . A triple (X, Y, Z) of pairwise disjoint subsets of V is called a
set representation of a ∈ KV if a = ᾱ[X] + β̄[Y ] + γ̄[Z].

Let Member be a set predicate on V with arity three such that Member(X, Y, Z)
is true if and only if (X, Y, Z) is a set representation of a vector in L. Then, the
isotropic system S is represented by a relational structure 〈V,Member〉.

We will show that there is a C2MS transduction that maps a graph to the set
of its all vertex-minors by using isotropic systems. This will imply that for a fixed
graph H, there is a C2MS logic formula that describes whether H is isomorphic to a
vertex-minor of G.

4.4.1 Fundamental graphs by C2MS logic formulas

We briefly recall Subsection 4.1.2. We know that a graph G = (V,E) with two
supplementary vectors a, b ∈ KV determines the isotropic system S = (V, L) such
that L is a subspace of KV spanned by {a[nG(v)] + b[{v}] : v ∈ V }. We call (G, a, b)
a graphic presentation of the isotropic system S and at the same time G is called a
fundamental graph of S. Conversely, an isotropic system S = (V, L) with its Eulerian
vector a ∈ KV determines the fundamental graph G of S.
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In this section, we have two main objectives. First, we show that there is a C2MS
transduction that maps a graph G to the set of all isotropic systems having G as a
fundamental graph. Second, we show that there is an MS transduction that maps an
isotropic system S to the set of all fundamental graphs of S.

Proposition 4.20. There is a C2MS transduction

τg : {all {edg}-structures} → 2{all {Member}-structures}

with six parameters Xa, Ya, Za, Xb, Yb, Zb such that for a graph G, τg(G) is the set of
all isotropic systems having G as a fundamental graph.

Proof. It is enough to show that given a {edg}-structure of a graph G = (V,E) with
arbitrary two supplementary vectors a and b in KV , we can describe the {Member}-
structure of the isotropic system having (G, a, b) as a graphic presentation. In other
words, we need to show a C2MS definition scheme for this C2MS transduction.

Let Xa, Ya, Za, Xb, Yb, Zb be six parameters of the C2MS transduction. We have
a C2MS logic formula answering whether (Xa, Ya, Za), (Xb, Yb, Zb) are set representa-
tions of supplementary vectors a and b respectively as follows:

ϕ = (Xa ∩ Ya = ∅) ∧ (Ya ∩ Za = ∅) ∧ (Za ∩Xa = ∅)
∧ (Xb ∩ Yb = ∅) ∧ (Yb ∩ Zb = ∅) ∧ (Zb ∩Xb = ∅)

∧ (∀x, x ∈ Xa ∨ x ∈ Ya ∨ x ∈ Za) ∧ (∀x, x ∈ Xb ∨ x ∈ Yb ∨ x ∈ Zb)

∧ (Xa ∩Xb = ∅) ∧ (Ya ∩ Yb = ∅) ∧ (Za ∩ Zb = ∅).

Note that we write X ∩ Y = ∅ instead of ∀x,¬(x ∈ X ∧ x ∈ Y ) to simplify the
formula.

Now we want to express Member(X, Y, Z) in terms of edg ofG by using (Xa, Ya, Za)
and (Xb, Yb, Zb). By definition, Member(X, Y, Z) is true if and only if X, Y, Z are
pairwise disjoint subsets and w = ᾱ[X] + β̄[Y ] + γ̄[Z] ∈ L. To have w ∈ L, there
should exist a linear combination of vectors in the basis {a[nG(v)] + b[{v}] : v ∈ V },
and so there should exist U ⊆ V such that

∑
v∈U a[nG(v)] +

∑
v∈U b[{v}] = w. Since

KV is a vector space over GF(2), we do not need a scalar product.
Suppose we have a C2MS logic formula µ1(U,Xa, Ya, Za, Xc, Yc, Zc) on {edg}-

structures expressing that (Xc, Yc, Zc) is a set representation of
∑

v∈U a[nG(v)] and
we also have a C2MS logic formula µ2(U,Xb, Yb, Zb, Xd, Yd, Zd) on {edg}-structures
expressing that (Xd, Yd, Zd) is a set representation of

∑
v∈U b[{v}]. We claim that

we have a C2MS logic formula µ(U,Xa, Ya, Za, Xb, Yb, Zb, X, Y, Z) expressing that
(X,Y, Z) is a set representation of

∑
v∈U a[nG(v)] +

∑
v∈U b[{v}]. Simply we can

encode addition of elements in K into C2MS logic formulas. Let

σ(X,Xc, Yc, Zc, Xd, Yd, Zd)

= ∀x, x ∈ X ⇔
(
(x ∈ Zc ∧ x ∈ Yd) ∨ (x ∈ Yc ∧ x ∈ Zd)

∨ (¬(x ∈ Xc ∪ Yc ∪ Zc) ∧ x ∈ Xd) ∨ (¬(x ∈ Xd ∪ Yd ∪ Zd) ∧ x ∈ Xc)
)
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be a C2MS logic formula expressing that if w is a sum of two vectors of set represen-
tations (Xc, Yc, Zc) and (Xd, Yd, Zd), then X = {v : w(v) = α}. By symmetry of the
addition table of K, we can write µ(U,Xa, Ya, Za, Xb, Yb, Zb, X, Y, Z) as follows:

∃Xc∃Yc∃Zc∃Xd∃Yd∃Zd µ1(U,Xa, Ya, Za, Xc, Yc, Zc) ∧ µ2(U,Xb, Yb, Zb, Xd, Yd, Zd)∧
σ(X,Xc, Yc, Zc, Xd, Yd, Zd) ∧ σ(Y, Yc, Zc, Xc, Yd, Zd, Xd) ∧ σ(Z,Zc, Xc, Yc, Zd, Xd, Yd).

So we can express Member(X,Y, Z) as θ = ∃U µ(U,Xa, Ya, Za, Xb, Yb, Zb, X, Y, Z).

number of α’s number of β’s number of γ’s sum in K
even even even 0
odd odd odd 0
odd even even α
even odd odd α
even odd even β
odd even odd β
even even odd γ
odd odd even γ

Table 4.1: Addition table of K

Now it is enough to show µ1 and µ2. Let ν(Uα, x,Xa, U) = ∀v(v ∈ Uα ⇔ x ∈
Xa ∧ edg(x, v) ∧ v ∈ U) expressing that for fixed x, Uα = {v ∈ U : (a[n({v})])(x) =
α}. Let Σ(A,B,C) = ¬Even(A) ∧ Even(B) ∧ Even(C)) ∨ (Even(A) ∧ ¬Even(B) ∧
¬Even(C)) expressing that |A|α + |B|β + |C|γ = α by using Table 4.1. Now we
express µ1(U,Xa, Ya, Za, Xc, Yc, Zc) as follows:

∃Uα∃Uβ∃Uγ∀x ν(Uα, x,Xa, U) ∧ ν(Uβ, x, Ya, U) ∧ ν(Uγ, x, Za, U)

∧(x ∈ Xc ⇔ Σ(Uα, Uβ, Uγ))∧(x ∈ Yc ⇔ Σ(Uβ, Uγ, Uα))∧(x ∈ Zc ⇔ Σ(Uγ, Uα, Uβ)).

Similarly we can express µ2(U,Xb, Yb, Zb, Xd, Yd, Zd) as follows:

∃Vα∃Vβ∃Vγ∀x (Vα = U ∩Xb) ∧ (Vβ = U ∩ Yb) ∧ (Vγ = U ∩ Yd)∧
(x ∈ Xd ⇔ Σ(Vα, Vβ, Vγ)) ∧ (x ∈ Yd ⇔ Σ(Vβ, Vγ, Vα)) ∧ (x ∈ Zd ⇔ Σ(Vγ, Vα, Vβ)).

Thus we obtain a C2MS definition scheme (ϕ, true, θ) that defines a C2MS trans-
duction τg mapping a graph G into all isotropic systems having G as a fundamental
graph.

We now consider the reverse direction.

Proposition 4.21. There is an MS transduction

τs : {all {Member}-structures} → 2{all {edg}-structures}

with three parameters (Xe, Ye, Ze) such that for an isotropic system S, τs(S) is the set
of all fundamental graphs of S.



CHAPTER 4. TESTING VERTEX-MINORS 52

Proof. We would like to show that given a {Member}-structure of an isotropic system
S = (V, L) with a set representation (Xe, Ye, Ze) of an Eulerian vector a of S, we can
describe the {edg}-structure of the fundamental graph of S with respect to a.

We have an MS logic formula expressing that (Xe, Ye, Ze) is a set representation
of an Eulerian vector of S (Definition 4.4) as follows:

ϕ = (Xe ∩ Ye = Ye ∩ Ze = Ze ∩Xe = ∅) ∧ (∀x, x ∈ Xe ∨ x ∈ Ye ∨ x ∈ Ze)∧
∀X∀Y ∀Z

(
(X ⊆ Xe ∧ Y ⊆ Ye ∧ Z ⊆ Ze ∧MemberS(X, Y, Z)) ⇒ X = Y = Z = ∅

)
.

By Proposition 4.7, for every v in V , there exists a unique vector bv in L such that

bv(v) 6= 0 for all v and bv(w) ∈ {0, a(w)} for v 6= w.

These vectors satisfy the following properties: a(v) 6= bv(v) 6= 0 for all v, and bv(w) 6=
0 if and only if bw(v) 6= 0 for v 6= w. The graph G = (V,E) is called a fundamental
graph with respect to a if E = {vw : bv(w) 6= 0}. We may obtain different graphs
using other Eulerian vectors, but they are locally equivalent.

We can easily translate this into MS logic formulas. We let ν1(X, Y, Z,Xe, Ye, Ze, v)
be the formula:

Member(X, Y, Z) ∧ v ∈ X ∪ Y ∪ Z
∧ ∀w[w 6= v ⇒ {(w ∈ X ⇒ w ∈ Xe) ∧ (w ∈ Y ⇒ w ∈ Ye) ∧ (w ∈ Z ⇒ w ∈ Ze)}],

expressing that (X,Y, Z) is a set representation of bv. Now we can write an MS logic
formula describing edg of the fundamental graph with respect to a in terms of Member
as θ(v, w) = (v 6= w) ∧ ∃X∃Y ∃Z[ν1(X, Y, Z,Xe, Ye, Ze, v) ∧ w ∈ X ∪ Y ∪ Z].

Hence we have constructed a definition scheme (ϕ, true, θ) for the MS transduction
τs with three parameters Xe, Ye, Ze such that τs transforms an isotropic system into
the set of its fundamental graphs.

4.4.2 Minors and vertex-minors by C2MS logic formulas

Proposition 4.22. There exists an MS transduction

τm : {all {Member}-structures} → 2{all {Member}-structures}

with three parameters Vα, Vβ, Vγ that maps an isotropic system to the set of its minors.

Proof. From Definition 4.2, an isotropic system S ′ = (V ′, L′) is a minor of S = (V, L)
if there are three pairwise disjoint subsets Vα = {x1, x2, . . . , xa}, Vβ = {y1, y2, . . . , yb},
Vγ = {z1, z2, . . . , zc} of V such that S ′ = S|x1

α |x2
α · · · |xa

α |
y1

β |
y2

β · · · |yb

β |z1
γ |z2

γ · · · |zc
γ . Then,

V ′ = V \ (Vα ∪ Vβ ∪ Vγ) and

L′ = {pV ′(a) : a ∈ L and for all v ∈ V, if a(v) 6= 0, then v ∈ Va(v)}. (4.1)

Note that the canonical projection function pV ′(a) is defined in page 37.
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We describe MemberS′(X, Y, Z) by an MS formula µ1(Vα, Vβ, Vγ, X, Y, Z) on S.
A triple (X, Y, Z) is a set representation of a vector in L′ if and only if there

exists a set representation (Xa, Ya, Za) of a vector a in L such that the following four
conditions hold.

(i) X, Y , Z are pairwise disjoint,

(ii) (X ∪ Y ∪ Z) ∩ (Vα ∪ Vβ ∪ Vγ) = ∅,

(iii) X = Xa \ Vα, Y = Ya \ Vβ, Z = Za \ Vγ,

(iv) Vα ⊆ Xa∪(V \(Ya∪Za)), Vβ ⊆ Ya∪(V \(Xa∪Za)), and Vγ ⊆ Za∪(V \(Xa∪Ya)).

Conditions (i)–(iii) express that (X, Y, Z) is a set representation of pV ′(a); condition
(iv) translates condition (4.1) expressing that pV ′(a) ∈ L′. Hence, the desired formula
µ1(Vα, Vβ, Vγ, X, Y, Z) can be written as µ2 ∧ ∃Xa∃Ya∃Za(Member(Xa, Ya, Za) ∧ µ3)
where µ2 with free variables Vα, Vβ, Vγ, X, Y, Z expresses conditions (i) and (ii) and µ3

with free variables Vα, Vβ, Vγ, X, Y, Z,Xa, Ya, Za expresses conditions (iii) and (iv).

Theorem 4.23.

(1) There exists a C2MS transduction with six parameters Vα, Vβ, Vγ, Xe, Ye, Ze that
maps a graph into the set of its vertex-minors.

(2) There exists a C2MS transduction with three parameters Xe, Ye, Ze that maps a
graph into the set of its locally equivalent graphs.

Proof. (1) We have C2MS transductions τg, τs, and τm from Proposition 4.20, 4.21,
and 4.22. Then, the composition τs ◦ τm ◦ τg is a C2MS transduction by Proposition
4.18 and it maps a graph to the set of its vertex-minors by Corollary 4.9. But this
will give a C2MS transduction with twelve parameters. However we can eliminate
parameters of τg by choosing one particular pair of supplementary vectors, in other
words, setting Xa = Yb = V , Ya = Za = Xb = Zb = ∅. This is possible because
we can choose one particular isotropic system in Corollary 4.9 to find all vertex-
minors. Eliminating those parameters actually means that we obtain another C2MS
transduction τ ′g by replacing x ∈ Xa, x ∈ Ya by true and x ∈ Ya, x ∈ Za, x ∈ Xb, and
x ∈ Zb by false in the C2MS definition scheme for τg.

(2) Since local complementations do not change the associated isotropic system,
if two graphs are locally equivalent graphs then there is an isotropic system having
both as fundamental graphs. So it is clear that τs ◦ τg is a C2MS transduction that
maps a graph to the set of its locally equivalent graphs. As we discussed in the proof
of (1), we can also eliminate parameters of τg.

Corollary 4.24. For every graph H, there is a closed C2MS logic formula ϕH ex-
pressing that a given graph contains a vertex-minor isomorphic to H.
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Proof. For every graph H with vertices v1, . . . , vn, we can write a closed MS logic
formula κH that is true on a graph G if and only if G is isomorphic to H as follows:

∃x1, . . . ,∃xn(“x1, . . . , xn are pairwise distinct”

∧ “every vertex is equal to xi for some i”

∧ “for all i, j, edg(xi, xj) holds if and only if vivj ∈ E(H)”)

Let τv be a C2MS transduction that maps a graph into the set of its vertex-minors
(Theorem 4.23). Its backwards translation (Proposition 4.17) relative to τv is a
C2MS formula κ#

H with free variables Vα, Vβ, Vγ,Xe, Ye, Ze. It is valid in a graph
G if and only if its vertex-minor defined by the sets Vα, Vβ, Vγ,Xe, Ye, Ze is isomor-
phic to H. Hence G has a vertex-minor isomorphic to H if and only if it satisfies
∃Vα∃Vβ∃Vγ∃Xe∃Ye∃Ze,κ#

H .

Theorem 4.25. For fixed k and fixed graph H, there exists a O(|V (G)|)-time algo-
rithm that answers whether an input graph G of clique-width at most k has a vertex-
minor isomorphic to H, if G is given by its k-expression.

Proof. We combine the previous corollary with Proposition 4.19.

In Chapter 7, we will discuss how to eliminate the requirement of k-expressions as
an input by constructing it from the adjacency list of the input graph G in O(|V (G)|3)
time.



Chapter 5

Seese’s Conjecture

In this chapter, we prove a weakened statement of Seese’s conjecture [52]. We express
Seese’s conjecture in terms of rank-width as following.

Conjecture 5.1 (Seese [52]). If a set of graphs has a decidable monadic second-
order (MS) theory, then it has bounded rank-width.

The conjecture has been proved for various graph classes: planar graphs [52],
graphs of bounded degree, graphs without a fixed graph as a minor, graphs of which
every subgraph has the bounded average degree [16], interval graphs, line graphs [17].
We did not solve this conjecture, but we show a weaker statement: if a set of graphs
has a decidable C2MS theory, then it has bounded rank-width.

We briefly summarize the proof. Courcelle [17] showed that Seese’s conjecture is
true if and only if it is true for bipartite graphs. In Section 3.5, we have various con-
nection relating branch-width of binary matroids to rank-width of bipartite graphs.
Moreover, the grid theorem of binary matroids by Geelen, Gerards, and Whittle [28]
implies the analogous one, Corollary 3.25, stating that bipartite graphs of sufficiently
large rank-width contain a vertex-minor isomorphic to Sk (defined in page 32).

Theorem 6.28 shows that there is a C2MS transduction that maps a graph into
the set of all its vertex-minors. Combining with Proposition 4.18, we conclude that
if a set C of bipartite graphs of unbounded rank-width has a decidable C2MS theory,
then its image under the above C2MS transduction contains graphs isomorphic to Sk

for all k.
We explicitly construct a C2MS transduction τ2 that maps a graph isomorphic to

Sk into the k×k grid. Then, the image of C under τ2 ◦τ1 contains a graph isomorphic
to the k × k grid for all k. We use the following theorem of Seese.

Theorem 5.2 (Seese [52, Theorem 5]). Let K be a set of graphs such that for
every planar graph H there is a planar graph G ∈ K such that H is isomorphic to a
minor of G. Then, K does not have a decidable monadic second-order theory.

Therefore, we conclude that, by Proposition 4.18, a set of graphs of unbounded
rank-width does not have a decidable monadic second-order theory.

55
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5.1 Enough to consider bipartite graphs

Courcelle showed that Seese’s conjecture is true if and only if it is true for bipartite
graphs in [17] by using a certain graph transformation from graphs to bipartite graphs.
We will see that his argument also works for our weakened problem obtained by
relaxing “decidable MS theory” to “decidable C2MS theory”, but will use graph
theoretic arguments to show that this transduction preserves boundedness of rank-
width without using a deep theorem on MS transductions.

The following lemma describes a graph transformation from graphs G to bipartite
graphs B(G) found by Courcelle [17]. He proved that there exist two functions f1 and
f2 such that f1(rwd(G)) ≤ rwd(B(G)) ≤ f2(rwd(G)). We show that rwd(B(G)) =
max(2 rwd(G), 1) if V (G) 6= ∅.
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Figure 5.1: K3 and B(K3)

Lemma 5.3. Let G = (V,E) be a graph such that V 6= ∅. Let B(G) = (V ×
{1, 2, 3, 4}, E ′) be a bipartite graph obtained from G as follows:

(i) if v ∈ V and i ∈ {1, 2, 3}, then (v, i) is adjacent to (v, i+ 1) in B(G),

(ii) if vw ∈ E, then (v, 1) is adjacent to (w, 4) in B(G).

Then we have rwd(B(G)) = max(2 rwd(G), 1).

To show Lemma 5.3, we will use the following lemma, that appears in [26, Lemma
2.1] in terms of matroids. This lemma will be also used in Section 6.8.

Lemma 5.4. Let G be a graph having at least three vertices. Let (T,L) be a rank-
decomposition of G of width k such that k > 0. If v is a vertex of T and e is an edge
of T , we let Xev = L−1(Xev) where Xev is the set of leaves of T in the component
of T \ e not containing v. Let A be a subset of V (G) such that A 6= Xev for every
v ∈ V (T ) and each edge e incident to v.

Suppose that for every partition (A1, A2, A3) of A, there exists i ∈ {1, 2, 3} such
that ρG(Ai) ≥ ρG(X). Then, there exists a degree-3 vertex s of T such that

(i) for each edge e of T , we have ρG(Xes \ A) ≤ k,

(ii) there is no edge f incident to s such that A ⊆ Xfs.
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Proof. We first claim that if (X1, X2) is a partition of V (G) with ρG(X1) ≤ k, then
either ρG(X1 \A) ≤ k or ρG(X2 \A) ≤ k. From the partition (A∩X1, A∩X2, ∅) of A,
either ρG(A∩X1) ≥ ρG(A) or ρG(A∩X2) ≥ ρG(A). We may assume that ρG(A∩X1) ≥
ρG(A). By submodularity, ρG(A ∪ X1) ≤ ρG(A) + ρG(X1) − ρG(A ∩ X1) ≤ k. So,
ρG(X2 \ A) = ρG(A ∪X1) ≤ k. Thus we showed the claim.

Now, we construct an orientation of T . Let e be an edge of T , and let u and v
be the ends of e. If ρG(Xev \ A) ≤ k, then we orient e from u to v. By the previous
claim, each edge receives at least one orientation.

First, assume that there exists a node v of T such that every other node can be
connected to v by a directed path on T . Since k ≥ 1, each edge incident with a leaf
has been oriented away from that leaf. Hence we may assume that v has degree 3. If
there is an edge f = vw incident to v such that A ⊆ Xfv, then Xfw = V (G) \Xfv,
ρG(Xfw \ A) = ρG(Xfw) ≤ k, and therefore f has been oriented for both directions.
So we may replace v by w. Since A 6= Xev for every vertex v ∈ V (T ) and each edge
e incident to v, this process will terminate and we may assume that there is no edge
f incident to v such that A ⊆ Xfv. Then the lemma follows with s = v.

Next, we assume that there is no vertex reachable from every other vertex. Then
there exists a pair of edges e and f and a vertex w on the path connecting e and
f such that neither e nor f is oriented toward w. Let Y1 = Xew, Y3 = Xfw, and
Y2 = V (G) \ (Y1 ∪Y2). Since e and f are oriented away from w, ρG((Y2 ∪Y3) \A) ≤ k
and ρG((Y1 ∪ Y2) \ A) ≤ k. By submodularity,

ρG(Y1 \ A) + ρG(Y3 \ A) ≤ ρG((Y2 ∪ Y3) \ A) + ρG((Y1 ∪ Y2) \ A) ≤ 2k.

This contradicts the fact that neither e nor f is oriented toward w.

Proof of Lemma 5.3. (1) Let us show that rwd(B(G)) ≤ max(2 rwd(G), 1).
If rwd(G) = 0, then G has no edges, and therefore B(G) is a disjoint union of

paths of three edges. Since a path of three edges has rank-width 1, we deduce that
rwd(B(G)) = 1 if rwd(G) = 0.

We now assume that rwd(G) > 0. Let (T,L) be a rank-decomposition of G of
width k. Let N be the set of leaves of T . Let T ′ be a tree having (V (T ) × {0}) ∪
(N × {1, 2, 3, 4, 12, 34}) as the set of vertices such that

(i) if vw ∈ E(T ), then (v, 0) is adjacent to (w, 0) in T ′,

(ii) for all v ∈ N , (v, 12) is adjacent to both (v, 1) and (v, 2),

(iii) for all v ∈ N , (v, 34) is adjacent to both (v, 3) and (v, 4),

(iv) for all v ∈ N , (v, 0) is adjacent to both (v, 12) and (v, 34).

Informally speaking, we obtain T ′ from T by replacing each leaf with a rooted binary
tree having four leaves. For each leaf (v, i) of T ′, we define L′(v, i) = (L(v), i) ∈
V (B(G)). Then (T ′,L′) is a rank-decomposition of B(G).

We claim that the width of (T ′,L′) is at most 2k.
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For each edge e = vw ∈ E(T ), let (X, Y ) be a partition of N induced by
the connected components of T \ e. Then, the edge (v, 0)(w, 0) of E(T ′) induces
a partition (X × {1, 2, 3, 4}, Y × {1, 2, 3, 4}) of N × {1, 2, 3, 4}. We observe that
L′−1(X × {1, 2, 3, 4}) = L−1(X)× {1, 2, 3, 4}. It is easy to see that

ρB(G)(L′−1(X × {1, 2, 3, 4})) = 2ρG(L−1(X)) ≤ 2k.

We now consider the remaining edges of T ′. Each of them induces a partition (X, Y )
of the leaves of T ′ such that |X| ≤ 2 or |Y | ≤ 2. So, ρB(G)(L′−1(X)) ≤ 2. Therefore
we deduce that the width of (T ′,L′) is at most 2k. Thus, rank-width of B(G) is at
most 2k.
(2) We show that rwd(B(G)) ≥ max(2 rwd(G), 1). We may assume that rwd(G) > 0,
otherwise it is trivial. For each v ∈ V (G), let Pv = {(v, 1), (v, 2), (v, 3), (v, 4)} ⊆
V (B(G)).

(a) We claim that if X ⊆ Pv and |X| ≥ 2, then ρB(G)(X) ≥ ρB(G)(Pv). We
may assume that X 6= Pv. If X = {(v, 2), (v, 3)} or X = {(v, 1), (v, 4)}, then
ρB(G)(X) = 2. By our construction, we have ρB(G)(Pv) = 0 or 2. We may assume
that ρB(G)(Pv) = 2, otherwise it is trivial. Therefore we deduce that there is a vertex
not in Pv, that is adjacent to (v, 1). So, if X = {(v, 1), (v, 2)}, X = {(v, 1), (v, 3)},
or X = {(v, 1), (v, 2), (v, 3)}, then ρB(G) = 2. By symmetry, we deduce our claim. In
particular, this claim implies that for every partition (X1, X2, X3) of Pv, there exists
i ∈ {1, 2, 3} such that ρB(G)(Xi) ≥ ρB(G)(Pv).

(b) We say that an edge e of T crosses Pv if for a partition (X, Y ) of the set of
leaves of T induced by T \ e, the following four sets are nonempty: L−1(X) ∩ Pv,
L−1(X) \ Pv, L−1(Y ) ∩ Pv, and L−1(Y ) \ Pv.

(c) Let k = rwd(B(G)). Let (T,L) be a rank-decomposition of B(G) of width at
most k with the minimum number of vertices v of V (G) having an edge of T crossing
Pv.

We claim that no edge of T crosses Pv for all v ∈ V (G). Suppose there is an
edge of T that crosses Pv for some v ∈ V (G). Let s be a vertex satisfying Lemma
5.4, let e1, e2, and e3 be the edges of T incident with s, and let Xi denote Xeis

for each i ∈ {1, 2, 3}. We may assume that ρB(G)(X1 ∩ Pv) ≥ ρB(G)(Pv). Then by
submodularity,

ρB(G)((X2 ∪X3) \ Pv)

= ρB(G)(X1 ∪ Pv) ≤ ρB(G)(X1) + ρB(G)(Pv)− ρB(G)(X1 ∩ Pv) ≤ ρB(G)(X1) ≤ k.

Now we construct a rank-decomposition (T ′,L′) of B(G); let T ′ be a tree obtained
from the minimum subtree of T containing both e1 and leaves in L(V (B(G))\Pv) by

(i) subdividing e1 with a new vertex b,

(ii) adding new vertices r1, r2, r3, r4, r12, r34,

(iii) adding new edges br12, br34, r12r1, r12r2, r34r3, r34r4, and
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(iv) contracting one of incident edges of each degree-2 vertex until no degree-2 ver-
tices are left.

For each x ∈ V (B(G)) \ Pv, we define L′(x) to be a leaf of T ′ induced by L(x). For
i ∈ {1, 2, 3, 4}, we define L′((v, i)) = ri.

Then (T ′,L′) is a rank-decomposition of B(G). It is easy to see that the width of
(T ′,L′) is at most k by Lemma 5.4. Moreover, the number of vertices w of V (G) having
an edge of T ′ crossing Pw is exactly one less than that for T . This is a contradiction,
because we choose (T,L) to have the minimum number of those vertices.

(d) Therefore, for every vertex v ∈ V (G), there exists an edge ev of T such that
L(Pv) is exactly the set of leaves in one component Xv of T \ ev. Let bv be one end
of ev in X.

Let TG be the minimal subtree of T containing bv for all v ∈ V (G). Let LG be a
function from V (G) to the set of leaves of TG such that LG(v) = bv. It is easy to see
that (TG,LG) is a rank-decomposition of G.

(e) We claim that the width of (TG,LG) is at most k/2. Let e be an edge of TG

and (X, Y ) be a partition of leaves of TG induced by TG \ e. We note that T \ e
induces a partition (X ′, Y ′) of leaves of T such that L−1(X ′) = L−1

G (X)×{1, 2, 3, 4}.
We deduce that 2ρG(L−1

G (X)) = ρB(G)(L−1
G (X) ∗ {1, 2, 3, 4}) ≤ k.

(f) Therefore, k ≥ 2 rwd(G).

Lemma 5.5 (Courcelle [17, Proposition 3.2, 3.3]). Let B(G) be the function
defined in Lemma 5.3. Let τ(G) = {B(G)}. Then τ is an MS transduction.

Sketch of proof. In order to simplify the paper, we skipped the general definition of
MS transductions in this paper. In general, the definition of MS transductions allows
duplicating a fixed number of times (here four times) a given structure before defining
the new structure inside it by a definition scheme. For detailed definition, see [17].
From that definition, it is clear.

5.2 Proof using vertex-minors

In this section, we prove the following theorem.

Theorem 5.6. If a set of graphs has a decidable C2MS theory, then it has bounded
rank-width.

The proof will use a family of bipartite graphs Sk and we will build the k×(2k−2)
grid by a fixed MS transduction from Sk. The graph Sk was used in Corollary 3.25.

Lemma 5.7. Let C be a set of bipartite graphs of unbounded rank-width. Then there
are infinitely many values of k such that Sk is isomorphic to a vertex-minor of a graph
in C.

Proof. Suppose not. There exists an integer k such that no graph in C has a vertex-
minor isomorphic to Sk. This implies, by Corollary 3.25, that C has bounded rank-
width. A contradiction.
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Proposition 5.8. There exists an MS transduction τ on graphs such that the k ×
(2k − 2) grid belongs to τ(Sk) for all k > 1.

Proof. Our objective is to find an MS transduction on graphs such that its image of
Sk contains the k×(2k−2) grid for all k. Suppose we are given a graph G isomorphic
to Sk for some k as a relational structure 〈V, edg〉.

Let (A,B) be a bipartition of G such that A has a vertex of degree one. Let s be
a neighbor of a vertex of degree one.

Two vertices v and w of B are called consecutive if |nG(v) \ nG(w)| = 1 and
|nG(w) \ nG(v)| = 1. A subset X of B is called the tail of v if it is a maximal subset
of B satisfying the following two conditions:

(i) v, s /∈ X,

(ii) for all x ∈ X and y ∈ B, if x, y are consecutive and y 6= v, then y ∈ X.

We call that v is a successor of w if v and w are consecutive and the tail of w is
a subset of the tail of v. Two vertices v ∈ A and w ∈ B are called matched if
(informally) they have the same number in Figure 5.2. We may define it as follows:

(i) they are adjacent,

(ii) for all y, if y is a successor of w, then y is not adjacent to v,

(iii) if v′ ∈ A satisfies the above two conditions and nG(v) ⊆ nG(v′), then v = v′.

A vertex w ∈ B is called a far successor of v ∈ B if (informally) the number given
to w is the number given to v added by k. Even though we do not know k by an MS
logic formula, we can define this as follows: there exist x ∈ A, y ∈ B, and z ∈ A such
that

(i) v is not adjacent to z but adjacent to x,

(ii) x and y are matched,

(iii) w and z are matched,

(iv) w is a successor of y.

Let T be the minimal subset of B containing s such that if x ∈ T then the far
successor of x is in T .

We are now ready to describe edges of the k×(2k−2) grid by an MS logic formula
in terms of edg of G. We define the set of vertices of the grid as the set of vertices of
G having a matched vertex. In fact, each vertex of Sk has either one matched vertex
or none. Two vertices v, w of the grid are adjacent if and only if one of the following
four conditions is true:

(i) v, w ∈ B, and v is a successor of w, and v /∈ T ,
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Figure 5.2: Getting the grid from Sk

(ii) v, w ∈ A, and their matched vertices are adjacent in the grid by the previous
condition,

(iii) v ∈ A, w ∈ B, and they are either matched or the matched vertex of w is a far
successor of v,

(iv) after swapping v and w, one of above conditions is true.

We skip the detailed MS logic formula, but since each step of this proof can be written
as an MS logic formula, we show that there exists an MS transduction τ on graphs
such that τ(Sk) contains the k × (2k − 2) grid.

We are now ready to prove our main theorem of this chapter.

Proof of Theorem 5.6. Suppose that C is a set of graphs having unbounded rank-
width. Let τ1 be an MS transduction given by Lemma 5.5, that maps a graph G to
{B(G)}. Let τ2 be a C2MS transduction given by Theorem 4.23 that maps a graph
to the set of its vertex-minors. Let τ3 be an MS transduction on graphs given by
Proposition 5.8, such that τ3(Sk) contains the k × (2k − 2) grid. Let τ = τ3 ◦ τ2 ◦ τ1.
By (2) of Proposition 4.18, τ is a C2MS transduction. Let I be the image of C under
the C2MS transduction τ .

Let B = {B(G) : G ∈ C}. By Lemma 5.3, we know that B has unbounded rank-
width. Since B is a set of bipartite graphs and has unbounded rank-width, there are
infinitely many values of k such that Sk is isomorphic to a vertex-minor of a graph
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Figure 5.3: Sketch of the proof via vertex-minors

in B by Corollary 3.25, and therefore there are infinitely many values of k such that
the k × (2k − 2) grid is contained in I. Furthermore, every planar graph is a minor
of the k × (2k − 2) grid in I for sufficiently large k (Lemma 3.24).

By Theorem 5.2 of Seese, I does not have a decidable MS theory and therefore I
does not have a decidable C2MS theory, because every MS logic formula is a C2MS
logic formula.

By (1) of Proposition 4.18, C does not have a decidable C2MS theory.

5.3 Proof using matroid minors

We give another proof of Theorem 5.6 based on binary matroids instead of isotropic
systems and using results by Hliněný and Seese [35]. They showed that if a set of
matroids representable over a fixed finite field has a decidable monadic second-order
theory, then it has bounded branch-width. We assume that matroids are given by
their {Indep}-structures, described in Example 4.13.

Since binary matroids are closely related to bipartite graphs, it is natural to show
the following proposition.

Proposition 5.9. There is a C2MS transduction with two parameters A and B that
maps a bipartite graph G to the set of all binary matroids having G as a fundamental
graph.

Proof. Let N be the adjacency matrix of G. Suppose that (A,B) is a bipartition of
G and M = Bin(G,A,B). (Bin is defined in Section 3.5.) The binary matroid M
has a standard representation P =

(
IA N [A,B]

)
. It is enough to show that we can

express Indep(U) of M by a C2MS logic formula in terms of the edg relation of G.
A subset U of V (G) is independent in M if and only if columns of P are linearly

independent. Thus, it is equivalent to say that there is no subset W of U such that
the sum of column vectors of P indexed by elements of W is zero. We claim that we
can write a C2MS logic formula Zero(W ) expressing that the sum of column vectors
of P indexed by elements of W is zero. Since each row of P corresponds to an element
of A, Zero(W ) is true if and only if for each x ∈ A, the number of neighbors of x in
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Figure 5.4: Sketch of the proof via matroid minors

W is odd if x ∈ W , and even otherwise. We may easily write this in a C2MS logic
formula.

The following two proposition is proved in [35] but stated in different terminolo-
gies. We recall the notation Gk×k for the k × k grid.

Proposition 5.10 (Hliněný and Seese [35, Lemma 6.4, 6.5]). There is an MS
transduction that maps a matroid to the set of its minors.

Proposition 5.11 (Hliněný and Seese [35, Lemma 6.6, 6.7]). Let M(Gk×k) be
the cycle matroid of the k × k grid. There is an MS transduction τp : {matroids} →
2{graphs} such that τp(M(Gk×k))) contains the (k − 2)× (k − 2) grid when k > 6 and
k is even.

Second proof of Theorem 5.6. Suppose that C is a set of graphs having unbounded
rank-width. Let τ1 be an MS transduction given by Lemma 5.5, that maps a graph
G to {B(G)}. Let τ2 be a C2MS transduction given by Proposition 5.9 that maps
a graph to the set of binary matroids having it as a fundamental graph. Let τ3
be an MS transduction that maps a matroid to the set of its minors. Let τ4 be
an MS transduction from matroids to graphs such that τ3(M(Gk×k)) contains the
(k − 2)× (k − 2) grid when k is even and k > 6.

By Corollary 3.18 and Lemma 5.3, τ2◦τ1(C) has unbounded branch-width because
C has unbounded rank-width.

By Theorem 3.23, τ3 ◦ τ2 ◦ τ1(C) contains cycle matroids M(Gk×k) for infinitely
many values of k. Since τ3 ◦ τ2 ◦ τ1(C) is minor-closed, we know that τ3 ◦ τ2 ◦ τ1(C)
contains M(Gk×k) for all k.

Therefore I = τ4 ◦ τ3 ◦ τ2 ◦ τ1(C) contains the (k − 2)× (k − 2) grid for infinitely
many values of k.

By Theorem 5.2 of Seese, I does not have a decidable MS theory and therefore I
does not have a decidable C2MS theory, because every MS logic formula is a C2MS
logic formula.

By (2) of Proposition 4.18, τ4 ◦ τ3 ◦ τ2 ◦ τ1 is a C2MS transduction. By (1) of
Proposition 4.18, we conclude that C does not have a decidable C2MS theory.



Chapter 6

Well-quasi-ordering with
Vertex-minors

In this chapter, our main objective is to prove the following.

Theorem 6.1. Let k be a constant. If {G1, G2, G3, · · · } is an infinite sequence of
graphs of rank-width at most k, then there exist i < j such that Gi is isomorphic to
a pivot-minor of Gj, and therefore isomorphic to a vertex-minor of Gj.

In general, we call a binary relation ≤ on X a quasi-order if it is reflexive and
transitive. For a quasi-order ≤, we say “≤ is a well-quasi-ordering” or “X is well-
quasi-ordered by ≤” if for every infinite sequence a1, a2, . . . of elements of X, there
exist i < j such that ai ≤ aj. We may reiterate Theorem 6.1 as follows: a set of
graphs of rank-width at most k is well-quasi-ordered by a vertex-minor relation (or
pivot-minor relation) up to isomorphisms.

Here is a corollary of Theorem 6.1. Note that this corollary has an elementary
proof in Section 6.8, and will be used to construct a polynomial-time algorithm to
recognize graphs of rank-width at most k for a fixed k in Chapter 7.

Corollary 6.2. For a fixed k, there is a finite list of graphs G1, G2, . . . , Gm such that
for every graph H, rank-width of H is at most k if and only if Gi is not isomorphic
to a vertex-minor of H for all i.

Proof. Let X = {G1, G2, . . .} be a set of graphs satisfying that for every graph H,
rank-width of a graph H is at most k if and only if Gi is not isomorphic to a vertex-
minor of H for all i. We choose X minimal by set inclusion. There are no Gi, Gj ∈ S
such that Gi is isomorphic to a vertex-minor of Gj, because if so, then we may remove
Gj from X. By assumption, the rank-width of G \ v for v ∈ V (G) is at most k, and
therefore the rank-width of Gi is at most k + 1. By Theorem 6.1, X is finite.

We say that an isotropic system S1 = (V1, L1) is simply isomorphic to another
isotropic system S2 = (V2, L2) if there exists a bijection µ : V1 → V2 such that
L1 = {a ◦ µ : a ∈ L2}. A bijection µ is called a simple isomorphism. It is clear that
if S1 is simply isomorphic to S2, then every fundamental graph of S1 is isomorphic to
a graph locally equivalent to a fundamental graph of S2.

64
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We say that an isotropic system S1 is an αβ-minor of an isotropic system S =
(V, L) if there are a subset X ⊆ V and a vector a ∈ KX such that

a(v) ∈ {α, β} for all v ∈ X and S1 = S|Xa .

Every αβ-minor of an isotropic system S is a minor of S, but not vice versa. Simi-
larly we may define a βγ-minor and an αγ-minor , but by symmetry among nonzero
elements of K, it is enough to consider an αβ-minor in this paper. By restricting an
elementary minor operation, we will prove the following lemma in Section 6.6, which
links pivot-minors of graphs and αβ-minors of isotropic systems.

Lemma 6.22. For i ∈ {1, 2}, let Si be the isotropic system whose graphic presentation
is (Gi, ai, bi) such that

ai(v), bi(v) ∈ {α, β}

for all v ∈ V (Gi). If S1 is an αβ-minor of S2, then G1 is a pivot-minor of G2.

Instead of dealing with graphs, we will prove the following stronger proposition
on isotropic systems.

Proposition 6.20. Let k be a constant. If {S1, S2, S3, · · · } is an infinite sequence
of isotropic systems of branch-width at most k, then there exist i < j such that Si is
simply isomorphic to an αβ-minor of Sj.

By using Proposition 6.20, Theorem 6.1 is deduced.

Proof of Theorem 6.1. Let Si be an isotropic system whose graphic presentation is
(Gi, ai, bi) where ai(v) = α, bi(v) = β for all v ∈ V (Gi). Each Si has branch-width
at most k, since its branch-width is equal to rank-width of Gi. By Proposition 6.20,
there exist i < j such that Si is simply isomorphic to a αβ-minor of Sj, and therefore
by Lemma 6.22, Gi is isomorphic to a pivot-minor of Gj.

We recall a linked branch-decomposition from Section 2.1. Let f : V → Z be a
symmetric submodular function. For a branch-decomposition (T,L) of f , let e1 and
e2 be two edges of T . Let E be the set of leaves of T in the component of T \ e1
not containing e2, and let F be the set of leaves of T in the component of T \ e2 not
containing e1. Let P be the shortest path in T containing e1 and e2. We call e1 and
e2 linked if

min
h∈E(P )

(width of h of (T,L)) = min
L−1(E)⊆Z⊆V \L−1(F )

f(Z).

We call a branch-decomposition (T,L) is linked if each pair of edges of T is linked.
Since we define the branch-decomposition of isotropic systems and the rank-width of
graphs as branch-decompositions of the connectivity functions and the cut-rank func-
tions respectively, we may define linkedness for branch-decompositions of isotropic
systems as well as rank-decompositions of graphs. The following lemma was shown
by Geelen, Gerards, and Whittle [27]. It was the first step to prove well-quasi-ordering
of matroids representable over a fixed finite field having bounded branch-width. Its
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analogous result by Thomas [54] was used to prove well-quasi-ordering of graphs of
bounded tree-width in Robertson and Seymour [47].

Lemma 6.3 (Geelen et al. [27, Theorem (2.1)]). An isotropic system (V, L) of
branch-width n has a linked branch-decomposition of width n if |V | > 1. Equivalently,
a graph (V,E) of rank-width n has a linked rank-decomposition of width n if |V | > 1.

We also use Robertson and Seymour’s “lemma on trees,” proved in [47]. It enabled
them to prove that a set of graphs of bounded tree-width are well-quasi-ordered by
the graph minor relation. It was also used by Geelen et al. [27] to prove that a
set of matroids representable over a fixed finite field and having bounded branch-
width is well-quasi-ordered by the matroid minor relation. We need a special case
of “lemma on trees,” in which a given forest is subcubic, that was also useful for
branch-decompositions of matroids in Geelen et al. [27].

The following definitions are in Geelen et al. [27]. A rooted tree is a finite directed
tree where all but one of the vertices have indegree 1. A rooted forest is a collection
of countably many vertex disjoint rooted trees. Its vertices with indegree 0 are called
roots and those with outdegree 0 are called leaves . Edges leaving a root are root edges
and those entering a leaf are leaf edges .

An n-edge labeling of a graph F is a map from the set of edges of F to the set
{0, 1, . . . , n}. Let λ be an n-edge labeling of a rooted forest F and let e and f be
edges in F . We say that e is λ-linked to f if F contains a directed path P starting
with e and ending with f such that λ(g) ≥ λ(e) = λ(f) for edge g on P .

A binary forest is a rooted orientation of a subcubic forest with a distinction
between left and right outgoing edges. More precisely, we call a triple (F, l, r) a
binary forest if F is a rooted forest where roots have outdegree 1 and l and r are
functions defined on non-leaf edges of F , such that the head of each non-leaf edge e
of F has exactly two outgoing edges, namely l(e) and r(e).

Lemma 6.4 (Lemma on subcubic trees; Robertson and Seymour [47]). Let
(F, l, r) be an infinite binary forest with an n-edge labeling λ. Moreover, let ≤ be a
quasi-order on the set of edges of F with no infinite strictly descending sequences,
such that e ≤ f whenever f is λ-linked to e. If the set of leaf edges of F is well-
quasi-ordered by ≤ but the set of root edges of F is not, then F contains an infinite
sequence (e0, e1, . . .) of non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,

(ii) l(e0) ≤ l(e1) ≤ l(e2) ≤ · · · ,

(iii) r(e0) ≤ r(e1) ≤ r(e2) ≤ · · · .

Proof. See Geelen et al. [27, (3.2)].

Informally speaking, at the last stage of proving Proposition 6.20, we need an
object describing a piece of isotropic systems such that the number of ways to merge
those objects into one isotropic system is finite up to simple isomorphisms. More
precisely, we call a triple P = (V, L,B) a scrap if V is a finite set, L is a totally
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isotropic subspace of KV , and B is an ordered basis of L⊥/L. An ordered basis is a
basis with a linear ordering, and therefore B is of the form {b1 +L, b2 +L, . . . , bk +L}
with bi ∈ L⊥. We denote V (P ) = V . Note that L⊥/L is a vector space containing
vectors of the form a + L with a ∈ L⊥ and a + L = b + L if and only if a − b ∈ L.
Also note that |B| = dim(L⊥/L) = dim(L⊥)− dim(L) = 2(|V | − dim(L)) = 2λ(L).

Two scraps P1 = (V, L,B) and P2 = (V ′, L′, B′) are called isomorphic if there
exists a bijection µ : V → V ′ such that L = {a ◦ µ : a ∈ L′} and bi +L = (b′i ◦ µ) +L
where B = {b1 + L, b2 + L, . . . , bk + L} and B′ = {b′1 + L′, b′2 + L′, . . . , b′k + L′}.

For x ∈ K \ {0} and v ∈ V , let δv
x ∈ KV such that δv

x(v) = x and δv
x(w) = 0 for

all w 6= v. We will slightly abuse δv
x without referring V if it is not ambiguous. If

P = (V, L,B) is a scrap with δv
x /∈ L⊥ \ L, then we denote

P |vx = (V \ {x}, L|vx, {pV \{v}(bi) + L|vx}i)

where each bi ∈ L⊥ is chosen to satisfy that B = {bi + L}i and bi(v) ∈ {0, x}. We
will prove that P |vx is a well-defined scrap in Proposition 6.10. Note that δv

x /∈ L⊥ \L
is required to write P |vx.

A scrap P ′ is called a minor of a scrap P if P ′ = P |v1
x1
|v2
x2
· · · |vl

xl
for some vi and

xi. Similarly a scrap P ′ is called an αβ-minor of a scrap P if P ′ = P |v1
x1
|v2
x2
· · · |vl

xl
for

some vi and xi ∈ {α, β}.
Two scraps P1 = (V, L,B) and P2 = (V ′, L′, B′) are called disjoint if V ∩ V ′ = ∅.

A scrap P = (V, L,B) is called a sum of two disjoint scraps P1 = (V1, L1, B1) and
P2 = (V2, L2, B2) if

V = V1 ∪ V2, L1 = L|⊆V1 , and L2 = L|⊆V2 .

A sum of two disjoint scraps is not uniquely determined; we, however, will define the
connection types that will determine a sum of two disjoint scraps such that there are
only finitely many connection types. Moreover, we will prove the following.

Lemma 6.19. Let P1, P2, Q1, Q2 be scraps. Let P be the sum of P1 and P2 and Q
be the sum of Q1 and Q2. If Pi is a minor of Qi for i = 1, 2 and the connection type
of P1 and P2 is equal to the connection type of Q1 and Q2, then P is a minor of Q.

Moreover, if Pi is an αβ-minor of Qi for i ∈ {1, 2} and the connection type of P1

and P2 is equal to the connection type of Q1 and Q2, then P is an αβ-minor of Q.

Another requirement to apply Lemma 6.4 is that e ≤ f whenever f is λ-linked to
e. This condition will be satisfied by the following lemma, which is a generalization
of Tutte’s linking theorem. Tutte’s linking theorem for matroids was used by Geelen
et al. [27] and is a generalization of Menger’s theorem. Robertson and Seymour also
used Menger’s theorem in [47].

Theorem 6.12. Let V be a finite set and X be a subset of V . Let L be a totally
isotropic subspace of KV . Let k be a constant. Let b be a complete vector of KV \X .

For all Z ⊇ X, λ(L|⊆Z) ≥ k if and only if there is a complete vector a ∈ KV \X

such that λ(L|V \Xa ) ≥ k and a(v) 6= b(v) for all v ∈ V \X.
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The actual proof of Proposition 6.20 is based on a construction of a forest with
a certain k-labeling from branch-decompositions of isotropic systems, and applying
lemmas described above.

In subsequent sections, we will prove those lemmas and we will prove Proposition
6.20 in Section 6.5.

6.1 Lemmas on totally isotropic subspaces

In this section, L is a totally isotropic subspace of KV , not necessarily dim(L) = |V |.
We prove some general results on totally isotropic subspaces.

Lemma 6.5. Let L be a totally isotropic subspace of KV and v ∈ V , x ∈ K \ {0}.
Then, (L|vx)⊥ = L⊥|vx.

Proof. Suppose that y ∈ L⊥|vx. There exists ȳ ∈ L⊥ such that ȳ(v) ∈ {0, x} and
y = pV \{v}(ȳ). For every z ∈ L|vx, there exists z̄ ∈ L such that z̄(v) ∈ {0, x} and
pV \{v}(z̄) = z. Since 〈y, z〉 = 〈ȳ, z̄〉 − 〈ȳ(v), z̄(v)〉 = 0, y ∈ (L|vx)⊥.

Conversely, suppose that y /∈ L⊥|vx. Let y⊕x ∈ KV be such that pV \{v}(y⊕x) = y
and (y ⊕ x)(v) = x. By assumption, y ⊕ x /∈ L⊥. Therefore, there exists z ∈ L such
that

〈y ⊕ x, z〉 = 1 = 〈y, pV \{v}(z)〉+ 〈x, z(v)〉.

If 〈x, z(v)〉 = 0, then pV \{v}(z) ∈ L|vx and 〈y, pV \{v}(z)〉 = 1, and therefore y /∈ (L|vx)⊥.
So, we may assume that 〈x, z(v)〉 = 1.

Let y ⊕ 0 ∈ KV such that pV \{v}(y ⊕ 0) = y and (y ⊕ 0)(v) = 0. By assumption,
y ⊕ 0 /∈ L⊥. Therefore, there exists w ∈ L such that 〈y ⊕ 0, w〉 = 1 = 〈y, pV \{v}(w)〉.
If w(v) ∈ {0, x}, then pV \{v}(w) ∈ L|vx and y /∈ (L|vx)⊥. Hence we may assume that
〈x,w(v)〉 = 1.

Now, we obtain that 〈x,w(v) + z(v)〉 = 0, and so w(v) + z(v) ∈ {0, x}. Therefore
pV \{v}(w + z) ∈ L|vx. Furthermore 〈pV \{v}(w + z), y〉 = 1. So, y /∈ (L|vx)⊥.

Lemma 6.6. If L is a totally isotropic subspace of KV and X ⊆ V , then

(L|⊆X)⊥ = L⊥|X .

Proof. We use an induction on |V \ X|. If |X| < |V | − 1, then we pick v /∈ X, and
deduce that (L|⊆V \{v}|⊆X)⊥ = (L|⊆V \{v})

⊥|X = L⊥|V \{v}|X = L⊥|X . Therefore we
may assume that V \X = {v}.

For x ∈ KX and y ∈ K, we let x⊕y denote a vector in KV such that pX(x⊕y) = x
and (x⊕ y)(v) = y.

(1) We claim that L⊥|X ⊆ (L|⊆X)⊥.
Suppose that there exists a ∈ L⊥|X . There is b ∈ K such that a ⊕ b ∈ L⊥. For

any c ∈ L|⊆X , 〈a⊕ b, c⊕ 0〉 = 0, and therefore 〈a, c〉 = 0. Thus, a ∈ (L|⊆X)⊥.
(2) We claim that (L|⊆X)⊥ ⊆ L⊥|X .
Suppose that there exists a ∈ (L|⊆X)⊥ such that a /∈ L⊥|X .
For every x ∈ K, a ⊕ x /∈ L⊥, and therefore there exists ax ⊕ cx ∈ L such that

〈ax ⊕ cx, a⊕ x〉 = 〈ax, a〉+ 〈cx, x〉 = 1. Thus, 〈a0, a〉 = 1.
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If cx = 0, then ax ∈ L|⊆X and so 〈ax, a〉 = 0 and 〈cx, x〉 = 0, contrary to the
assumption that 〈ax, a〉+ 〈cx, x〉 = 1. Therefore cx 6= 0 for all x ∈ K.

If cx = cy for x 6= y, then ax + ay ∈ L|⊆X . Thus, 0 = 〈ax + ay, a〉 = 1 +
〈cx, x〉 + 1 + 〈cy, y〉 = 〈cx, x + y〉. Since cx 6= 0 and x + y 6= 0, cx = cy = x + y and
〈ax, a〉 = 1 + 〈x+ y, x〉 = 1 + 〈x, y〉.

If cx = cy = cz for distinct x, y, z, then x + y = y + z = z + x. So, x = y = z,
which is a contradiction.

If cx = cy, cz = cw for distinct x, y, z, w, then ax = x + y = z + w = az. So,
x = y = z = w. This is a contradiction.

Therefore, there are exactly one pair x, y ∈ K such that cx = cy. Let {z, w} =
K \ {x, y}.

Since cz 6= cw and cz, cw ∈ K \ {0, x + y}, cz + cw = x + y = cx = cy. Therefore,
az +aw +ax ∈ L|⊆X and 〈az +aw +ax, a〉 = 0. Since 〈az, a〉+〈aw, a〉 = 〈cz, z〉+〈cw, w〉,

0 = 〈az + aw + ax, a〉 = 1 + 〈x, y〉+ 〈cz, z〉+ 〈cw, w〉.

If x = 0, then cz, cw ∈ {z, w}. So, 〈cz, z〉+〈cw, w〉 = 0. Thus, 〈az +aw +ax, a〉 = 1.
A contradiction.

So we may assume that x 6= 0, y 6= 0, z = 0, and then x+ y = w and 〈cw, w〉 = 0.
But, this implies that cw = w = x+ y = cx. A contradiction.

Proposition 6.7. Let V be a finite set and L be a totally isotropic subspace of KV

and v ∈ V .

dim(L|vx) =

{
dim(L) if δv

x ∈ L⊥ \ L
dim(L)− 1 otherwise.

In other words, λ(L|vx) =

{
λ(L) if δv

x /∈ L⊥ \ L
λ(L)− 1 otherwise.

Proof. For w ∈ KV \{v} and u ∈ K, let w ⊕ u denote a vector in KV such that
pV \{v}(w ⊕ u) = w and (w ⊕ u)(v) = u.

A basis of L|vx extends to a set of independent vectors in L. Thus, dim(L|vx) ≤
dim(L).

Suppose C is a basis of L. We may assume that at most one vector of C has x on
v. Let us choose y ∈ K \ {0, x} such that at most one, possibly none, of C has y on
v and all other vectors in C have either 0 or x on v.

(1) If δv
x ∈ L⊥ \ L, then, no vector in L has y on v. Thus, for every z ∈ C,

z(v) ∈ {0, x}. Since δv
x /∈ L, pV \{v}(C) is linearly independent and pV \{v}(C) ⊆ L|vx.

So, dim(L) ≤ dim(L|vx).
(2) If δv

x /∈ L⊥, then there exists z ∈ C with z(v) /∈ {0, x}. Since δv
x /∈ L,

pV \{v}(C \ {z}) is linearly independent and pV \{v}(C \ {z}) ⊆ L|vx. So, dim(L|vx) ≥
dim(L)−1. Conversely, let D be a basis of L|vx. Let z ∈ L be such that z(v) /∈ {0, x}.
For each w ∈ L|vx, there exists a unique w̄ ∈ L such that w̄ = w ⊕ 0 or w ⊕ x,
because δv

x /∈ L. Let D′ = {w̄ : w ∈ D} ∪ {z}. Then, D′ is linearly independent. So,
dim(L) ≥ dim(L|vx) + 1.
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(3) If δv
x ∈ L, then we may assume δv

x ∈ C. For all z ∈ C, if z 6= δv
x, then

z(v) = 0. Thus, pV \{v}(C \ {z}) is linearly independent and pV \{v}(C \ {z}) ⊆ L|vx.
So, dim(L|vx) ≥ dim(L) − 1. Conversely, let D be a basis of L|vx. For any vector
w ∈ L|vx, w⊕0, w⊕x ∈ L because δv

x ∈ L. Since every vector of L has either 0 or x on
v, {w⊕0 : w ∈ D}∪{δv

x} is linearly independent in L. So, dim(L) ≥ dim(L|vx)+1.

Corollary 6.8. Let V be a finite set and L be a totally isotropic subspace of KV

and v ∈ V . Let C ⊆ K \ {0}, |C| = 2. Then, either there is x ∈ C such that
λ(L|vx) = λ(L) or for all y ∈ K \ {0},

L|vy = L|⊆V \{v} and λ(L|vy) = λ(L)− 1.

Proof. Let C = {a, b}. Suppose there is no such x ∈ C. δv
a, δ

v
b ∈ L⊥ \ L. Therefore,

for all z ∈ L, z(v) = 0. Thus, L|vy = L|⊆V \{v} and λ(L|vy) = λ(L) − 1 for all
y ∈ K \ {0}.

6.2 Scraps

In this section, we prove that a minor of a scrap is well-defined. Definitions related
to scraps were described in the beginning of this chapter.

Lemma 6.9. Let P = (V, L,B) be a scrap and v ∈ V . If δv
x /∈ L⊥ \L, then there is a

sequence b1, b2, . . . , bm ∈ L⊥ such that bi(v) ∈ {0, x} and B = {b1 +L, b2 +L, . . . , bm +
L}.

Proof. LetB = {a1+L, a2+L, . . . , am+L} with ai ∈ L⊥. If δv
x ∈ L, then ai(v) ∈ {0, x}

for all i. Hence we may assume that δv
x /∈ L and so δv

x /∈ L⊥.
There is y ∈ L such that 〈y, δv

x〉 = 1. Thus, y(v) /∈ {0, x}. Let

bi =

{
ai if ai(v) ∈ {0, x},
ai + y otherwise.

Then, bi + L = ai + L and bi(v) ∈ {0, x}.

Proposition 6.10. Let P = (V, L,B) be a scrap. If δv
x /∈ L⊥ \ L, then P |vx is well-

defined and is a scrap.

Proof. Let us first show that it is well-defined. Let b1, b2, . . . , bk ∈ L⊥ be such that
bi(v) ∈ {0, x} and B = {bi + L : i = 1, 2, . . . , k}. We claim that the choice of bi does
not change P |vx. Suppose bi − b′i ∈ L and bi(v), b

′
i(v) ∈ {0, x}. Since bi − b′i ∈ L and

(bi−b′i)(v) ∈ {0, x}, pV \{v}(bi−b′i) ∈ L|vx. Therefore, pV \{v}(bi)+L|vx = pV \{v}(b
′
i)+L|vx.

Now, we claim that P |vx is a scrap.
First, we show that L|vx is a totally isotropic subspace of KV \{v}. For all a, b ∈ L|vx,

there are ā, b̄ ∈ L such that ā(v), b̄(v) ∈ {0, x}, pV \{v}(ā) = a, pV \{v}(b̄) = b, and
ā, b̄ ∈ L. Hence 〈a, b〉 = 〈ā, b̄〉 = 0.
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Next, we show that {pV \{v}(bi) + L|vx : i = 1, 2, . . . , k} is a basis of (L|vx)⊥/(L|vx).
Since bi(v) ∈ {0, x}, we have pV \{v}(bi) ∈ (L|vx)⊥ = (L⊥)|vx. Suppose that there exists
C 6= ∅ such that ∑

i∈C

(pV \{v}(bi) + L|vx) = 0 + L|vx.

Since
∑

i∈C pV \{v}(bi) ∈ L|vx, there exists z ∈ L ⊆ L⊥ such that z(v) ∈ {0, x} and
pV \{v}(z) =

∑
i∈C pV \{v}(bi). By assumption,

∑
i∈C bi /∈ L. Since pV \{v}(

∑
i∈C bi −

z) = 0,
∑

i∈C bi − z = δv
x ∈ L⊥ \ L. A contradiction. Therefore, {pV \{v}(bi) + L|vx :

i = 1, 2, . . . , k} is linearly independent. Moreover, dim((L|vx)⊥/(L|vx)) = 2(|V | − 1 −
dim(L|vx)) = 2(|V | − dim(L)) = dim(L⊥/L) because δv

x /∈ L⊥ \ L.

6.3 Generalization of Tutte’s linking theorem

In this section, we show an extension of Tutte’s linking theorem [57]. We note that
we already have one generalization of Tutte’s linking theorem into graphs in Section
3.7.

The following inequality is analogous to Lemma 3.27.

Lemma 6.11. Let V be a finite set and v ∈ V . Let L be a totally isotropic subspace
of KV . Let X1, Y1 ⊆ V \ {v}. Let x, y ∈ K \ {0}, x 6= y.

dim(L|⊆X1∩Y1) + dim(L|⊆X1∪Y1∪{v}) ≥ dim(L|vx|⊆X1) + dim(L|vy|⊆Y1).

In other words,

λ(L|vx|⊆X1) + λ(L|vy|⊆Y1) ≥ λ(L|⊆X1∩Y1) + λ(L|⊆X1∪Y1∪{v})− 1.

Proof. We may assume that V = X1 ∪ Y1 ∪ {v} by taking L′ = L|⊆X∪Y ∪{v}.
Let B be a minimum set of vectors in L such that pX1∩Y1(B) is a basis of L|⊆X1∩Y1

and for every z ∈ B, z(w) = 0 for all w /∈ X1 ∩ Y1.
Let C be a minimum set of vectors in L such that pX1(B∪C) is a basis of L|vx|⊆X1

and for every z ∈ C, z(w) = 0 for all w /∈ X1 ∪ {v} and z(v) ∈ {0, x}. We may
assume at most one vector in C has x on v.

Let D be a minimum set of vectors in L such that pY1(B ∪D) is a basis of L|vy|⊆Y1

and for every z ∈ D, z(w) = 0 for all w /∈ Y1∪{v} and z(v) ∈ {0, y}. We may assume
at most one vector in D has y on v.

We claim that B ∪ C ∪ D is linearly independent. Suppose there is B′ ⊆ B,
C ′ ⊆ C, D′ ⊆ D such that ∑

b∈B′

b+
∑
c∈C′

c+
∑
d∈D′

d = 0.

No element of C ′ has x on v, because the LHS has 0 on v. Since
∑

c∈C′ c(w) = 0
for all w ∈ V \ (X1 ∩ Y1), pX1∩Y1(

∑
c∈C′ c) ∈ L|⊆X1∩Y1 . Since pX1∩Y1(B) is a basis,
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there is B′′ ⊆ B such that pX1∩Y1(
∑

c∈C′ c) = pX1∩Y1(
∑

b∈B′′ b). So,∑
c∈C′

c+
∑
b∈B′′

b = 0.

This means that C ′ = ∅ because C ∪B is a basis.
Similarly D′ = ∅ and so B′ = ∅.
dim(L) ≥ |B|+ |C|+ |D| = dim(L|vx|⊆X1) + dim(L|vy|⊆Y1)− dim(L|⊆X1∩Y1).

Now, we translate Tutte’s linking theorem into isotropic subspaces. As a matter
of fact, we are proving Theorem 3.28 in terms of isotropic systems.

Theorem 6.12. Let V be a finite set and X be a subset of V . Let L be a totally
isotropic subspace of KV . Let k be a constant. Let b be a complete vector of KV \X .

For all Z ⊇ X, λ(L|⊆Z) ≥ k if and only if there is a complete vector a ∈ KV \X

such that λ(L|V \Xa ) ≥ k and a(v) 6= b(v) for all v ∈ V \X.

Proof. (⇐) Let Z be a subset of V such that X ⊆ Z. Let a1 = pV \Z(a), a2 = pZ\X(a).

Since L|⊆Z ⊆ L|V \Za1 , λ(L|⊆Z) ≥ λ(L|V \Za1 ).

k ≤ λ(L|V \Xa ) = λ(L|V \Za1
|Z\Xa2

) ≤ λ(L|V \Za1
) ≤ λ(L|⊆Z).

(⇒) Induction on |V \ X|. Suppose that there is no such complete vector a ∈
KV \X . We may assume that |V \X| ≥ 1.

Pick v ∈ V \X. Let K \ {0, b(v)} = {x, y}. Since there is no complete vector a′ ∈
KV \{v}\X such that λ(L|vx|

V \{v}\X
a′ ) ≥ k, there exists X1 such that X ⊆ X1 ⊆ V \ {v}

and λ(L|vx|⊆X1) < k.
Similarly, there exists Y1 such that X ⊆ Y1 ⊆ V \ {v} and λ(L|vy|⊆Y1) < k. By

Lemma 6.11, either λ(L|⊆X1∩Y1) < k or λ(L|⊆X1∪Y1∪{v}) < k. A contradiction.

Corollary 6.13. Let V be a finite set and X be a subset of V . Let L be a totally
isotropic subspace of KV . Let b be a complete vector of KV \X .

If λ(L|⊆Z) ≥ λ(L|⊆X) for all Z ⊇ X, then there is a complete vector a ∈ KV \X

such that L|V \Xa = L|⊆X and a(v) 6= b(v) for all v ∈ V \X.

Proof. By Theorem 6.12, there exists a complete vector a ∈ KV \X such that

λ(L|V \Xa ) = λ(L|⊆X) and a(v) 6= b(v) for all v ∈ V \X.

Since L|⊆X ⊆ L|V \Xa and dim(L|⊆X) = dim(L|V \Xa ), L|⊆X = L|V \Xa .

Corollary 6.14. Let P = (V, L,B) be a scrap and X ⊆ V . If

λ(P ) = λ(L|⊆X) = min
X⊆Z⊆V

λ(L|⊆Z),

then there is an ordered set B′ such that Q = (X,L|⊆X , B
′) is a scrap and an αβ-

minor of P .
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Proof. By applying Corollary 6.13 with b(v) = γ for all v ∈ V \X, there is a complete

vector a ∈ KV \X such that L|V \Xa = L|⊆X and a(v) ∈ {α, β} for all v ∈ V \X. Let
V \X = {y1, y2, . . . , ym} and ai = a(yi). Then, L|⊆X = L|y1

a1
|y2
a2
· · · |ym

am
. Let L0 = L and

Li = Li−1|yi
ai

. By Proposition 6.7, λ(L|⊆X) = λ(L) = λ(Li) implies δ
yi+1
ai+1 /∈ L⊥i \ Li.

So, P |y1
a1
|y2
a2
· · · |ym

am
= (X,L|⊆X , B

′) is well-defined and is an αβ-minor of P .

6.4 Sum

A scrap P = (V, L,B) is called a sum of two disjoint scraps P1 = (V1, L1, B1) and
P2 = (V2, L2, B2) if V = V1 ∪ V2, L1 = L|⊆V1 , and L2 = L|⊆V2 . For given two
disjoint scraps, there could be many scraps that are sums of those. In this section,
we define the connection type, which determines a sum uniquely. Let [n] denote the
set {1, 2, 3, . . . , n}.

Definition 6.15. Let P = (V, L,B) be a sum of two disjoint scraps P1 = (V1, L1, B1)
and P2 = (V2, L2, B2) where B = {b1 + L, b2 + L, . . . , bn + L}, B1 = {b11 + L1, b

1
2 +

L1, . . . , b
1
m+L1}, and B2 = {b21+L2, b

2
2+L2, . . . , b

2
l +L2}. For x1 ∈ KV1 and x2 ∈ KV2,

let x1 ⊕ x2 denote a vector in KV such that pVi
(x1 ⊕ x2) = xi for i = 1, 2. Let

C0 =

{
(X, Y ) : X ⊆ [m], Y ⊆ [l],

(∑
i∈X

b1i

)
⊕

(∑
j∈Y

b2j

)
∈ L

}

Cs =

{
(X, Y ) : X ⊆ [m], Y ⊆ [l],

(∑
i∈X

b1i

)
⊕

(∑
j∈Y

b2j

)
− bs ∈ L

}
s = 1, . . . , n

A sequence C(P, P1, P2) = (C0, C1, C2, . . . , Cn) is called the connection type of this
sum.

It is easy to see that if λ(P ), λ(P1), λ(P2) ≤ k, then the number of distinct
connection types is bounded by a function of k, because |B| = 2λ(P ) ≤ 2k and
|Bi| = 2λ(Pi) ≤ 2k for i = 1 and 2.

Proposition 6.16. The connection type is well-defined.

Proof. It is enough to show that the choice of bi, b
1
i , and b2i does not affect Ci. Suppose

bi + L = di + L, b1i + L1 = d1
i + L1, and b2i + L2 = d2

i + L2. For any (X, Y ) such that
X ⊆ [m] and Y ⊆ [l], we have

∑
i∈X(b1i − d1

i )⊕
∑

j∈Y (b2j − d2
j) ∈ L and bs − ds ∈ L,

and therefore C0 and Cs are well-defined.

Proposition 6.17. The connection type uniquely determines the sum of two disjoint
scraps P1 and P2.

Proof. Suppose not. Let P = (V, L,B), Q = (V, L′, B′) be two distinct sums of
P1 = (V1, L1, B1) and P2 = (V2, L2, B2) by the same connection type. Let B1 =
{b11 + L1, b

1
2 + L1, . . . , b

1
m + L1}, and B2 = {b21 + L2, b

2
2 + L2, . . . , b

k
k + L2}.
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We claim that L = L′. To show this, it is enough to show that L ⊆ L′. For any
a ∈ L, pV1(a) ∈ (L|⊆V1)

⊥ and pV2(a) ∈ (L|⊆V2)
⊥. Therefore there is (X, Y ) such that

x1 =
∑
i∈X

b1i − pV1(a) ∈ L1 and x2 =
∑
i∈Y

b2i − pV2(a) ∈ L2.

Since x1⊕0, 0⊕x2 ∈ L, x1⊕x2 ∈ L. We deduce that
∑

i∈X b
1
i⊕
∑

i∈Y b
2
i = a+x1⊕x2 ∈

L. Therefore, (X, Y ) ∈ C0 and a+x1⊕x2 ∈ L′. Since x1⊕0, 0⊕x2 ∈ L′, x1⊕x2 ∈ L′,
and so a ∈ L′.

Now, we show that B = B′. Let bs + L be the s-th element of B with bs ∈ L⊥.
Let b′s + L be the s-th element of B′ with b′s ∈ L⊥. Since pVi

(bs) ∈ (L|⊆Vi
)⊥ = L⊥|Vi

,
there is (X,Y ) such that

x1 =
∑
i∈X

b1i − pV1(bs) ∈ L1 and x2 =
∑
i∈Y

b2i − pV2(bs) ∈ L2.

Since x1 ⊕ 0, 0 ⊕ x2 ∈ L, x1 ⊕ x2 ∈ L, and therefore
∑

i∈X b
1
i ⊕

∑
i∈Y b

2
i − bs ∈ L.

Thus, (X, Y ) ∈ Cs, and ∑
i∈X

b1i ⊕
∑
i∈Y

b2i − b′s ∈ L′ = L.

Thus, bs + L = b′s + L = bs + L′.

Proposition 6.18. Let P1 = (V1, L1, B1), P2 = (V2, L2, B2) be two disjoint scraps.
Let P be the sum of P1 and P2 by connection type C(P, P1, P2). If v ∈ V1 and
δv
x /∈ L⊥1 \L1. then, δv

x /∈ L⊥ \L and P |vx is the sum of P1|vx and P2 by connection type
C(P, P1, P2).

Proof. If δv
x ∈ L⊥ \ L, then δv

x ∈ (L⊥)|V1 = (L|⊆V1)
⊥ = L⊥1 and δv

x /∈ L|⊆V1 . This
contradicts to δv

x /∈ L⊥1 \ L1. So, δv
x /∈ L⊥ \ L.

First, we claim that P |vx is a sum of P1|vx and P2. It is equivalent to show that

L|vx|⊆V1\{v} = L|⊆V1 |vx and L|vx|⊆V2 = L|⊆V2 .

It is easy to see that L|vx|⊆V1\{v} = L|⊆V1|vx and L|⊆V2 ⊆ L|vx|⊆V2 . Therefore, it is
enough to show that

L|vx|⊆V2 ⊆ L|⊆V2 .

Suppose z ∈ L|vx|⊆V2 . Let z̄ ∈ KV such that pV2(z̄) = z, z̄(v) ∈ {0, x}, and pV1\{v}(z̄) =
0. If z̄(v) = 0, then z ∈ L|⊆V2 . If z̄(v) = x, then pV1(z) = δv

x ∈ L⊥|V1 = L⊥1 , and
therefore δv

x ∈ L1. So, δv
x ∈ L and z + δv

x ∈ L. Since (z + δv
x)(v) = 0, z ∈ L|⊆V2 .

Now, let us show that C(P, P1, P2) = C(P |vx, P1|vx, P2). Let B1 = {b11 + L1, b
1
2 +

L1, . . . , b
1
m +L1}, and B2 = {b21 +L2, b

2
2 +L2, . . . , b

2
k +L2}. For x ∈ KV1 and y ∈ KV2 ,

let x ⊕ y denote a vector in KV such that pV1(x ⊕ y) = x and pV2(x ⊕ y) = y. We
may assume that b1i (v) ∈ {0, x} for all i by Lemma 6.9. Let b ∈ L⊥ be such that

b(v) ∈ {0, x}. Let a(X, Y ) =
(∑

i∈X b
1
i

)
⊕
(∑

j∈Y b
2
j

)
− b. Suppose we have (X, Y )



CHAPTER 6. WELL-QUASI-ORDERING WITH VERTEX-MINORS 75

such that X ⊆ [m], Y ⊆ [k], and a(X,Y ) ∈ L. Since
(∑

i∈X b
1
i (v)

)
− b(v) ∈ {0, x},

pV1\{v}(a(X, Y )) =

(∑
i∈X

pV \{v}(b
1
i )

)
⊕

(∑
j∈Y

b2j

)
− pV \{v}(b) ∈ L|vx.

Conversely, let us suppose that there is (X, Y ) such that X ⊆ [m], Y ⊆ [k], and(∑
i∈X

pV1\{v}(b
1
i )

)
⊕

(∑
j∈Y

b2j

)
− pV \{v}(b) ∈ L|vx.

Then, either a(X, Y ) ∈ L or a(X,Y ) + δv
x ∈ L. If δv

x ∈ L, then a(X, Y ) ∈ L. If
δv
x /∈ L⊥, then a(X, Y ) + δv

x /∈ L⊥ by a(X,Y ) ∈ L⊥, and therefore a(X,Y ) ∈ L.

Lemma 6.19. Let P1, P2, Q1, Q2 be scraps. Let P be the sum of P1 and P2 and Q
be the sum of Q1 and Q2. If Pi is a minor of Qi for i = 1, 2 and the connection type
of P1 and P2 is equal to the connection type of Q1 and Q2, then P is a minor of Q.

Moreover, if Pi is an αβ-minor of Qi for i ∈ {1, 2} and the connection type of P1

and P2 is equal to the connection type of Q1 and Q2, then P is an αβ-minor of Q.

Proof. Induction on |V (Q1) \ V (P1)| + |V (Q2) \ V (P2)|. We may assume |V (Q1) \
V (P1)| + |V (Q2) \ V (P2)| > 0 and V (Q1) 6= V (P1) by symmetry. There are v ∈
V (Q1)\V (P1), x ∈ K \{0}, X = V (Q1)\V (P1)\{v}, and a complete vector a ∈ KX

such that P1 = Q1|vx|Xa . If P1 is an αβ-minor of Q1, then we may assume x ∈ {α, β}
and a(w) ∈ {α, β} for all w ∈ X.

Q|vx is the sum of Q1|vx and Q2. P1 is a minor of Q1|vx. C(Q|vx, Q1|vx, Q2) =
C(Q,Q1, Q2) = C(P, P1, P2). So, P is a minor of Q|vx by induction. Thus, P is a
minor of Q.

Similarly if P1 is an αβ-minor ofQ1 and P2 is an αβ-minor ofQ2, then by induction
P is an αβ-minor of Q.

6.5 Well-quasi-ordering

Proposition 6.20. Let k be a constant. If {S1, S2, S3, . . .} is an infinite sequence of
isotropic systems of branch-width at most k, then there exist i < j such that Si is
simply isomorphic to an αβ-minor of Sj.

Proof. We may assume that each Si = (Vi, Li) satisfies that |Vi| > 1. By Lemma 6.3,
there is a linked branch-decomposition (Ti,Li) of Si of width at most k for each i. Let
F be a forest such that the i-th component is Ti. In Ti, we pick an edge and attach
a root and direct every edge so that each leaf has a directed path from the root.

For each edge e of Ti, let Xe be the set of leaves of Ti having a directed path
from e. Let Ae = L−1

i (Xe). We associate e with a scrap Pe = (Ae, Li|⊆Ae , Be) and
λ(e) = λ(Li|⊆Ae) ≤ k where Be is chosen to satisfy the following:

If f is λ-linked to e, then Pe is an αβ-minor of Pf .
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We claim that we can choose Be satisfying the above property. We prove it by
induction on the length of directed path from the root edge to e. If no other edge is
λ-linked to e, let Be be a basis of (Li|⊆Ae)

⊥/(Li|⊆Ae) in an arbitrary order. If f , other
than e, is λ-linked to e, choose f such that the distance between e and f is minimal.
We assign Be given by Bf by Corollary 6.14.

For e, f ∈ E(F ), let e ≤ f denote that a scrap Pe is isomorphic to an αβ-minor
of a scrap Pf . Clearly, ≤ has no infinite strictly descending sequences, since there
are finitely many scraps of bounded number of elements up to isomorphism. By
construction if f is λ-linked to e, then e ≤ f .

The leaf edges of F are well-quasi-ordered, because there are only finitely many
distinct scraps of one element up to isomorphisms.

Suppose the root edges are not well-quasi-ordered. By Lemma 6.4, F contains an
infinite sequence (e0, e1, . . .) of non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,

(ii) l(e0) ≤ l(e1) ≤ · · · ,

(iii) r(e0) ≤ r(e1) ≤ · · · .

Since λ(ei) ≤ k for all i, we may assume that λ(ei) is a constant for all i, by taking
a subsequence.

Since the number of distinct connection types C(Pei
, Pl(ei), Pr(ei)) is finite, we may

assume that the connection types are same for all i also by taking a subsequence.
Then, by Lemma 6.19, Pe0 is isomorphic to an αβ-minor of Pe1 , which means

e0 ≤ e1. This contradicts that {e0, e1, . . . , } is an antichain with respect to ≤.
Therefore, root edges are well-quasi-ordered, and there exist i < j such that a

scrap (Vi, Li, ∅) is isomorphic to a αβ-minor of a scrap (Vj, Lj, ∅). Thus, Si is simply
isomorphic to an αβ-minor of Sj.

6.6 Pivot-minors and αβ-minors

In this section, we shall show a relation between a pivot-minor of graphs and an
αβ-minor of isotropic systems.

Proposition 6.21. For i ∈ {1, 2}, let Si be an isotropic system whose graphic pre-
sentation is (Gi, ai, bi) such that

ai(v), bi(v) ∈ {α, β} for all v ∈ V (Gi).

If S1 = S2, then G1 can be obtained from G2 by applying a sequence of pivoting.

Proof. Let V = V (G1) = V (G2) and let S = S1 = S2 = (V, L) be an isotropic system.
We show this by induction on N(a1, a2) = |{v ∈ V : a1(v) 6= a2(v)}|.

Suppose that N(a1, a2) > 1. Let u ∈ V with a1(u) 6= a2(u).
We first claim that there exists v ∈ V such that uv ∈ E(G2) and a1(v) 6= a2(v).

Suppose not. By Proposition 4.6, there is a vector c in L such that
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(i) c(u) = b2(u) = a1(u),

(ii) c(w) ∈ {0, a2(u)} for all w 6= u.

In G2, u and w are adjacent if c(w) 6= 0. Therefore if c(w) = a2(u), then c(w) = a1(u)
by our assumption. Thus, for all x ∈ V , c(x) ∈ {0, a1(x)} and c 6= 0. A contradiction,
because a1 is an Eulerian vector.

Now, we apply pivoting uv to G2, and we obtain another graphic presentation of
S, that is,

(G2 ∧ uv, a′2, b′2)

where a′2 = a2[V \ {u, v}] + b2[{u, v}] and b′2 = b2[V \ {u, v}] + a2[{u, v}]. Since
N(a1, a

′
2) = N(a1, a2)−2, by induction G1 can be obtained from G2∧uv by applying

a sequence of pivoting, and so it can be obtained from G2 as well.
If N(a1, a2) = 0, then b1 = b2 and G1 = G2.
Hence we may assume that N(a1, a2) = 1. We claim that this is impossible. Let

v ∈ V be such that a1(v) 6= a2(v). By Proposition 4.6, we choose a unique vector
c ∈ L such that c(v) = b1(v) = a2(v) and c(w) ∈ {0, a2(w)} for all w 6= v. Then
c = a2[{w ∈ V : c(w) 6= 0}] and we obtain a contradiction, because a2 is an Eulerian
vector of S.

Lemma 6.22. For i ∈ {1, 2}, let Si be the isotropic system whose graphic presentation
is (Gi, ai, bi) such that ai(v), bi(v) ∈ {α, β} for all v ∈ V (Gi). If S1 is an αβ-minor
of S2, then G1 is a pivot-minor of G2.

Proof. We use induction on |V (G2)| − |V (G1)|.
If V (G2) = V (G1), then G1 is a pivot-minor of G2 by Proposition 6.21. Therefore

we may assume that |V (G2)| > |V (G1)|.
Let v ∈ V (G2) \ V (G1), x ∈ {α, β} and y ∈ KV (G2)\V (G1)\{v} be such that y(w) ∈

{α, β} for all w ∈ V (G2) \ V (G1) \ {v} and S1 = S2|vx|
V (G2)\V (G1)\{v}
y . Note that S1 is

an αβ-minor of S2|vx.
If a2(v) = x, then

(G2 \ v, pV \{v}(ai), pV \{v}(bi))

is a graphic presentation of S2|vx. Thus by induction, G1 is a pivot-minor of G2 \ v,
and so is a pivot-minor of G2.

Now let us assume that a2(v) 6= x, ans so a2(v) = b2(v) since b2(v), a2(v) ∈ {α, β}
and a2(v) 6= b2(v). Suppose there is u ∈ V (G2) adjacent to v. Then

(G2∧uv\v, pV \{v}(ai[V (G2)\{u, v}]+bi[{u, v}]), pV \{v}(bi[V (G2)\{u, v}]+ai[{u, v}]))

is a graphic presentation of S2|vx. Thus by induction, G1 is a pivot-minor of G2∧uv\v,
and so is a pivot-minor of G2.

Hence we may assume that v has no adjacent vertex in G2. Then δv
x is a vector

of v in the fundamental basis of S2 with respect to a2. Let L2 be such that S2 =
(V (G2), L2). It follows that δv

x ∈ L2 and so S2|vx = S2|va2(v). Thus in this case, we may

let x be a2(v).
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6.7 Application to binary matroids

We would like to show that Theorem 6.1 implies the well-quasi-ordering theorem of
Geelen, Gerards, and Whittle [27] for binary matroids. The proof uses the following
theorems.

(1) (Seymour [53]) If M1, M2 are connected binary matroids on E, with the same
connecitivy function, then M1 = M2 or M1 = M∗

2.

(2) (Higman’s lemma) Let ≤ be a quasi-order on X. For finite subsets A,B ⊆ X, we
write A ≤ B if there is an injective mapping f : A → B such that a ≤ f(a) for
all a ∈ A. Then ≤ is a well-quasi-ordering on the set of all finite subsets of X.
(For proof, see Diestel’s book [22, Lemma 12.1.3].)

For a binary matroid M with a fixed base B, we define a bipartite graph Bip(M, B)
such that V (Bip(M, B)) = E(M) and v ∈ E(M) \ B is adjacent to w ∈ B if and
only if w is in the fundamental circuit of v with respect to B. For a bipartite graph
G = (V,E) with a bipartition V = A ∪ B, Bin(G,A,B) is a binary matroid on V ,
represented by a A× V matrix

(
IA M [A,B]

)
, where IA is a A× A identity matrix

and M is the adjacency matrix of G.

Lemma 6.23. Let M1, M2 be binary matroids and let Bi be a fixed base of Mi. If
M1 is connected and Bip(M1, B1) is a pivot-minor of Bip(M2, B2), then M1 is a
minor of either M2 or M∗

2.

Proof. Let H = Bip(M1, B1) and G = Bip(M2, B2). In Corollary 3.22, it was
shown that if H is a pivot-minor of a bipartite graph G, then there is a bipartition
(A′, B′) of H such that a binary matroid M3 = Bin(H,A′, B′) is a minor of M2 =
Bin(G,B2, V (G) \B2).

Since M1 and M3 have the same connecitivity function and M1 is connected,
M3 is connected. By Seymour’s theorem [53], M1 = M3 or M1 = M∗

3.

Corollary 6.24. Let k be a constant. If {M1,M2,M3, · · · } is an infinite sequence
of binary matroids of branch-width at most k, then there exist i < j such that Mi is
isomorphic to a minor of Mj.

Proof. First, we claim that if Mi is connected for all i, then the statement is true.
Let Bi be a fixed base of Mi and Gi = Bip(Mi, Bi) for all i. The rank-width of
Gi is at most k − 1, since rank-width of Gi is equal to (branch-width of Mi)−1.
By Theorem 6.1, there is an infinite subsequence Ga1 , Ga2 , Ga3 , . . . such that Gai

is
isomorphic to a pivot-minor of Gai+1

for all i. By Lemma 6.23, Ma1 is isomorphic to
a minor of either Ma2 or M∗

a2
and Ma2 is isomorphic to a minor of either Ma3 or

M∗
a3

. It follows that Ma1 is isomorphic to a minor of Ma2 or Ma2 is isomorphic to a
minor of Ma3 or Ma1 is isomorphic to a minor of Ma3 . This proves the above claim.

Now, we prove the main statement. We may consider each Mi as a set of disjoint
connected matroids and then Mi is isomorphic to a minor of Mj if and only if there
is an injective function f from components of Mi to components of Mj such that a
is isomorphic to a minor of f(a) for every component a of Mi. By Higman’s lemma,
there exist i < j such that Mi is isomorphic to a minor of Mj.
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6.8 Excluded vertex-minors

In this section, we show that Corollary 6.2 has an elementary proof not using isotropic
systems. In other words, we show that for any fixed k, there is a finite set Ck of graphs
such that for every graph G, rwd(G) ≤ k if and only if no graph in Ck is isomorphic to
a vertex-minor of G. Since the number of graphs with bounded number of vertices is
finite up to isomorphism, it is enough to show that if a graph G has rank-width larger
than k but every proper vertex-minor of G has rank-width at most k, then |V (G)|
is bounded by a function of k. We prove a stronger statement that if rwd(G) > k
and every proper pivot-minor has rank-width at most k, then |V (G)| is bounded by
a function of k. The analogous result for matroids was proved by Geelen, Gerards,
Robertson, and Whittle [26] and we extend their method to graphs.

Let us begin with some additional definitions from [26]. Let G be a graph and
(A,B) a partition of V (G). A branching of B is a triple (T, r,L) where T is a ternary
tree with a fixed leaf node r and L is a bijection from B to the set of leaf nodes of
T different from r. For an edge e of T of the branching (T, r,L), let Te be the set of
vertices in B mapped by L to nodes in the component of T \ e not containing r. We
say B is k-branched if there is a branching (T, r,L) of B such that for each edge e of
T , ρG(Te) ≤ k. Note that if both A and B are k-branched, then the rank-width of G
is at most k.

The following lemma is proved in [26, Lemma 2.1] in terms of matroids. But their
proof relies on the fact that λM is integer-valued submodular, and since cut-rank also
has these properties, we can use basically the same argument.

Lemma 6.25. Let G be a graph of rank-width k. Let (A,B) be a partition of V (G)
such that ρG(A) ≤ k. If there is no partition (A1, A2, A3) of A such that ρ(Ai) < ρ(A)
for all i ∈ {1, 2, 3}, then B is k-branched.

Proof. (Obvious modification of the proof of Geelen et al. [26, Lemma 2.1]) Let (T,L)
be a rank-decomposition of G of width k. We may assume that T has degree-3 nodes,
as otherwise it is trivial. We may also assume that k > 0. If v is a vertex of T and
e is an edge of T , we let Xev = L−1(Xev) where Xev is the set of leaves of T in the
component of T \ e not containing v (as defined in Lemma 5.4). We may assume
that Xev 6= A for every v ∈ V (T ) and every edge e incident to v, otherwise B is
k-branched.

Let s be a vertex satisfying Lemma 5.4, let e1, e2, and e3 be the edges of T incident
with s, and let Xi denote Xeis for each i ∈ {1, 2, 3}. Note that ρG(Xi ∩ A) ≥ ρG(A)
for some i ∈ {1, 2, 3}; suppose that ρG(X1 ∩ A) ≥ ρG(A). Then by submodularity,

ρG((X2 ∪X3) ∩B) = ρG(X1 ∪ A)

≤ ρG(X1) + ρG(A)− ρG(X1 ∩ A)

≤ ρG(X1) ≤ k.

Now we construct a branching (T ′, r,L′) of B; let T ′ be a tree obtained from the
minimum subtree of T containing both e1 and nodes in L(B) by subdividing e1 with
a vertex b, adding a new leaf r adjacent to b, and contracting one of incident edges
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of each degree-2 vertex until no degree-2 vertices are left. For each x ∈ B, we define
L′(x) to be a leaf of T ′ induced by L(x). Then (T ′, r,L′) is a branching.

It is easy to see that ρG(T ′e) ≤ k for all e in T ′ by Lemma 5.4. So, B is k-
branched.

We continue to follow [26]. Let Z+ be the set of nonnegative integers. Let g :
Z+ → Z+ be a function. A graph G is called (m, g)-connected if for every partition
(A,B) of V (G), ρG(A) = l < m implies either |A| ≤ g(l) or |B| ≤ g(l).

Lemma 6.26. Let f : Z+ → Z+ be a nondecreasing function. Let G be a (m, f)-
connected graph and let v ∈ V (G) and vw ∈ E(G). Then either G \ v or G ∧ vw \ v
is (m, 2f)-connected.

Proof. The proof for matroids in Geelen et al. [26, Lemma 3.1] works for general
graphs. For the completeness of this paper, the proof is included here.

Suppose not. There are partitions (X1, X2), (Y1, Y2) of V (G) \ {v} such that

a = ρG\v(X1) < m, |X1| > 2f(a), |X2| > 2f(a),

b = ρG∧vw\v(Y1) < m, |Y1| > 2f(b), |Y2| > 2f(b).

We may assume that a ≥ b by replacing G by G∧vw. We may assume that |X1∩Y1| >
f(a) by swapping Y1 and Y2.

By Lemma 3.27, we obtain

ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2) ≤ a+ b+ 1.

Thus, either ρG(X1 ∩ Y1) ≤ a or ρG(X2 ∩ Y2) ≤ b. So, either |X1 ∩ Y1| ≤ f(a) or
|X2 ∩ Y2| ≤ f(b). By assumption, |X2 ∩ Y2| ≤ f(b).

Similarly we apply the same inequality after swapping X1 and X2. Either |X2 ∩
Y1| ≤ f(a) or |X1 ∩ Y2| ≤ f(b). Since |X1 ∩ Y2| = |Y2| − |Y2 ∩X2| > f(b), |X2 ∩ Y1| ≤
f(a).

Then |X2| = |X2∩Y1|+|X2∩Y2| ≤ f(a)+f(b) ≤ 2f(a). This is a contradiction.

Let g(n) = (6n− 1)/5. Note that g(0) = 0, g(1) = 1, and g(n) = 6g(n− 1) + 1 for
all n ≥ 1.

Lemma 6.27. Let k ≥ 1. If G has rank-width larger than k but every proper pivot-
minor of G has rank-width at most k, then G is (k + 1, g)-connected.

Proof. We continue to follow the proof of Geelen et al. [26, Lemma 4.1] with a slight
modification.

It is easy to see that G is (1, g)-connected, because if G is disconnected, then the
rank-width of G is the maximum of the rank-width of each component.

Suppose that m ≤ k and G is (m, g)-connected and G is not (m+1, g)-connected.
Then there exists a partition (A,B) with ρG(A) = m such that |A|, |B| > g(m) =
6g(m−1)+1. Since G has rank-width greater than k, either A or B is not k-branched.
We may assume that B is not k-branched. Let v ∈ A. Since G is connected, there is
a neighbor w of v in G.
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By Lemma 6.26, either G \ v or G∧ vw \ v is (m, 2g)-connected. Since both G \ v
and G ∧ vw \ v are proper pivot-minors of G, they have rank-width at most k.

We may assume that G \ v is (m, 2g)-connected by swapping G and G ∧ vw. Let
(A1, A2, A3) be a partition of A \ {v}. Since |A| > 6g(m − 1) + 1, |Ai| > 2g(m − 1)
for some i ∈ {1, 2, 3}. Since G \ v is (m, 2g)-connected and |B| > 2g(m− 1),

ρG\v(Ai) ≥ m ≥ ρG\v(A \ {v}).

Therefore by Lemma 6.25, B is k-branched in G \ v. Since B is not k-branched in G,
there exists X ⊆ B such that ρG(X) = ρG\v(X)+1. Let M = A(G) be the adjacency
matrix of G over GF(2). By submodular inequality (Proposition 3.2), we obtain

ρG\v(B) + ρG(X) = rk(M [B, V (G) \B \ {v}]) + rk(M [X,V (G) \X])

≥ rk(M [B, V (G) \B]) + rk(M [X,V (G) \X \ {v}])
= ρG(B) + ρG\v(X)

= ρG(B) + ρG(X)− 1,

and therefore ρG\v(B) = ρG(B)−1 = m−1. But this is a contradiction because G\v
is (m, 2g)-connected.

Theorem 6.28. Let k ≥ 1. If G has rank-width larger than k but every proper
pivot-minor of G has rank-width at most k, then |V (G)| ≤ (6k+1 − 1)/5.

Proof. Let v ∈ V (G). Since G is connected, pick w such that vw ∈ E(G). We may
replace G by G ∧ vw, and hence we may assume that G \ v is (k + 1, 2g)-connected.
Since G \ v has rank-width k, there exists a partition (X1, X2) of V (G) \ {v} such
that |X1|, |X2| ≥ 1

3
(|V (G)| − 1) and ρG\v(X1) ≤ k. By (k+ 1, 2g)-connectivity, either

|X1| ≤ 2g(k) or |X2| ≤ 2g(k). Therefore, |V (G)| − 1 ≤ 6g(k) and consequently
|V (G)| ≤ 6g(k) + 1 = g(k + 1).

One of the main corollary of the above theorem is the following corollary. This
corollary will be used in Chapter 7 to construct a polynomial-time algorithm to
recognize graphs of rank-width at most k.

Corollary 6.29. For each k ≥ 0, there is a finite list Ck of graphs having at most
max((6k+1 − 1)/5, 2) vertices such that a graph has rank-width at most k if and only
if no graph in Ck is isomorphic to a vertex-minor of G.

Proof. If k = 0, then we let K2 be a graph with two vertices and one edge joining
them and let C0 = {K2}. Since a graph G has rank-width 0 if and only if G has no
edge, the rank-width of G is 0 if and only if K2 is not isomorphic to a vertex-minor
of G. Now we may assume that k ≥ 1.

Let Ck be the set of graphs H with V (H) = {1, 2, . . . , n} for some integer n such
that rwd(H) > k and every proper vertex-minor has rank-width at most k. By
Theorem 6.28, Ck is finite and each graph in Ck has at most (6k+1 − 1)/5 vertices.

Suppose the rank-width of a graph G is at most k. Since every graph in Ck has
rank-width larger than k, no graph in Ck is isomorphic to a vertex-minor of G.
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Conversely, suppose that the rank-width of a graph G is larger than k. Let H be a
proper vertex-minor ofG with the minimum number of vertices such that rwd(H) > k.
Then there exists a graph H ′ ∈ Ck isomorphic to H.

Let us discuss this corollary when k = 1. We obtain C1 such that every graph in
C1 has at most 7 vertices. Then what is C1? In Section 3.3, we proved that a graph
has rank-width at most 1 if and only if it is distance-hereditary. Bouchet [4, 6] proved
that a graph is distance-hereditary if and only if it has no vertex-minor isomorphic
to the 5-cycle. So, C1 = {5-cycle}.

By Corollary 3.22, Theorem 6.28 implies the following corollary, which is a special
case of Geelen et al. [26, Theorem 1.1].

Corollary 6.30. Let k ≥ 2. If a binary matroid M has branch-width larger than k
but every proper minor of M has branch-width at most k, then |E(M)| ≤ (6k− 1)/5.



Chapter 7

Recognizing Rank-width

7.1 Approximating rank-width quickly

In this section, we show that, for fixed k, there is a O(n4)-time algorithm that, with a
n-vertex graph, outputs a rank-decomposition of width at most 3k+1 or confirms that
the input graph has rank-width larger than k. Since rank-width is defined as branch-
width of the cut-rank function, it is easy to see from Corollary 2.13 that we have
a O(n9 log n)-time algorithm using algorithms that can minimize any submodular
functions. To obtain a O(n4)-time algorithm, we construct a direct combinatorial
algorithm that minimizes the cut-rank function so that we can obtain it faster. The
main idea of this section was due to Jim Geelen (private communication).

We first define a blocking sequence, defined by J. Geelen [25]. Let G be a graph
and A,B be two disjoint subsets of V (G). A sequence v1, v2, . . . , vm of vertices in
V (G)\(A∪B) is called a blocking sequence for (A,B) in G if it satisfies the following:

(i) ρ∗G(A,B ∪ {v1}) > ρ∗G(A,B).

(ii) ρ∗G(A ∪ {vi}, B ∪ {vi+1}) > ρ∗G(A,B) for all i ∈ {1, 2, . . . ,m− 1}.

(iii) ρ∗G(A ∪ {vm}, B) > ρ∗G(A,B).

(iv) No proper subsequence satisfies (i)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 7.1. Let G be a graph and A,B be two disjoint subsets of V (G). The
following are equivalent:

(i) There is no blocking sequence for (A,B) in G.

(ii) There exists Z such that A ⊆ Z ⊆ V (G) \B and ρG(Z) = ρ∗G(A,B).

Proof. (i)→(ii): We assume that a, b /∈ V (G) \ (A ∪ B) by relabeling. Let k =
ρ∗G(A,B). We construct the auxiliary digraph D = ({a, b} ∪ (V (G) \ (A ∪ B)), E)
from G such that for x, y ∈ V (G) \ (A ∪B),

83
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i) (a, x) ∈ E if ρ∗G(A,B ∪ {x}) > k,

ii) (x, b) ∈ E if ρ∗G(A ∪ {x}, B) > k,

iii) (x, y) ∈ E if ρ∗G(A ∪ {x}, B ∪ {y}) > k.

Since there is no blocking sequence for (A,B) in G, there is no directed path from a
to b in D. Let J be a set of vertices in V (G) \ (A ∪ B) having a directed path from
a in D. We show that Z = J ∪ A satisfies ρG(Z) = k.

To prove this, we claim that ρ∗G(A ∪ X,B ∪ Y ) = k for all X ⊆ J , Y ⊆ V (G) \
(Z ∪B). We proceed by induction on |X|+ |Y |.

If |X| ≤ 1 and |Y | ≤ 1, then we have ρ∗G(A ∪X,B ∪ Y ) = k by the construction
of J .

If |X| > 1, then for all x ∈ X we have

ρ∗G(A∪X,B∪Y )+ρ∗G(A,B∪Y ) ≤ ρ∗G(A∪(X \{x}), B∪Y )+ρG(A∪{x}, B∪Y ) = 2k,

because ρ∗G(A ∪ {x}, B ∪ Y ) = k by induction. So, ρ∗G(A ∪X,B ∪ Y ) = k.
Similarly if |Y | > 1, then for all y ∈ Y we have ρ∗G(A∪X,B∪Y )+ρ∗G(A∪X,B) ≤

ρ∗G(A∪X,B∪(Y \{y}))+ρG(A∪X,B∪{y}) = 2k, and therefore ρ∗G(A∪X,B∪Y ) = k.
(ii)→(i): Suppose that there is a blocking sequence v1, v2, . . . , vm. Then, vm /∈ Z

because ρ∗G(A∪{vm}, B) > ρG(Z). Similarly v1 ∈ Z because ρ∗G(A,B∪{v1}) > ρG(Z).
Therefore there exists i ∈ {1, 2, . . . ,m − 1} such that vi ∈ Z but vi+1 /∈ Z. But this
is a contradiction, because ρG(Z) < ρ∗G(A ∪ {vi}, B ∪ {vi+1}) ≤ ρ∗G(Z, V (G) \ Z) =
ρG(Z).

Lemma 7.2. Let G be a graph (V,E) and A,B be two disjoint subsets of V such that
ρ∗G(A,B) = k and |A|, |B| ≤ l. Let n = |V |. There is a polynomial-time algorithm to
either

• obtain a graph G′ locally equivalent to G with ρ∗G′(A,B) > k, or

• obtain a set Z such that A ⊆ Z ⊆ V \B and ρG(Z) = k.

The running time of this algorithm is O(n3) if l is fixed or O(n4) if l is not fixed.

Proof. If there is no blocking sequence for (A,B) in G, then minA⊆Z⊆V \B ρ(Z) = k
by Proposition 7.1. In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence v1, v2, . . . , vm. We
will find another graph G′ locally equivalent to G such that rkG′(A,B) > k. Since
rkG(A ∪ {vm}, B) = k + 1, there is a vertex w ∈ B adjacent to vm.

(1) We claim that v1, v2, . . . , vm−1 is a blocking sequence of (A,B) in G ∧ vmw if
m > 1.

By applying Lemma 3.27 for G[A ∪ B ∪ {v1, vm}], a subgraph of G induced by
A ∪B ∪ {v1, vm}, we have

ρ∗G∧vmw(A,B∪{v1})+ρ∗G(A∪{v1}, B) ≥ ρ∗G(A,B∪{v1, vm})+ρ∗G(A∪{v1, vm}, B)−1.
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Since ρ∗G(A,B ∪ {v1, vm} ≥ ρ∗G(A,B ∪ {v1}) ≥ k + 1, ρ∗G(A ∪ {v1, vm}, B) ≥ ρ∗G(A ∪
{vm}, B) ≥ k+1, and ρ∗G(A∪{v1}, B) = k, we obtain that ρ∗G∧vmw(A,B∪{v1}) ≥ k+1.

By applying the same inequality we obtain that ρ∗G∧vmw(A ∪ {vi}, B ∪ {vi+1}) +
ρ∗G(A∪ {vi, vi+1}, B) ≥ ρ∗G(A∪ {vi}, B ∪ {vi+1, vm}) + ρ∗G(A∪ {vi, vi+1, vm}, B)− 1 ≥
2k+1 for each i ∈ {1, 2, 3, . . . ,m−2} and therefore ρ∗G∧vmw(A∪{vi}, B∪{vi+1}) ≥ k+1.

Moreover, ρ∗G∧vmw(A ∪ {vm−1}, B) + ρ∗G(A ∪ {vm−1}, B) ≥ ρ∗G(A ∪ {vm−1}, B ∪
{vm}) + ρ∗G(A ∪ {vm−1, vm}, B)− 1 ≥ 2k + 1 and therefore ρ∗G∧vmw(A ∪ {vm−1}, B) ≥
k + 1.

We prove one lemma to be used later. If X and Y are disjoint subsets of V
such that A ⊆ X, B ⊆ Y , vm /∈ X ∪ Y and ρ∗G(X, Y ) = k, then ρ∗G∧vmw(X,Y ) =
ρ∗G(X, Y ∪ {vm}) because

ρ∗G∧vmw(X, Y ) + ρ∗G(X,Y ) ≥ ρ∗G(X, Y ∪ {vm}) + ρ∗G(X ∪ {vm}, Y )− 1

≥ ρ∗G(X, Y ∪ {vm}) + k

= ρ∗G∧vmw(X, Y ∪ {vm}) + ρ∗G(X, Y ).

By letting X = A∪ {vm−1} and Y = B, we obtain that ρ∗G∧vmw(A∪{vm−1}, B) =
ρ∗G(A∪{vm−1}, B∪{vm}) ≥ k+1. We also obtain ρ∗G∧vmw(A,B∪{vi}) = k for each i >
1 by letting X = A, Y = B∪{vi}. Similarly we obtain ρ∗G∧vmw(A∪{vi}, B∪{vj}) = k
for i, j such that 1 ≤ i < i+ 1 < j ≤ m− 1.

Therefore, v1, v2, . . . , vm−1 is a blocking sequence for (A,B) in G ∧ vmw.
(2) If m = 1 then we obtain ρ∗G∧v1w(A,B) ≥ k+1, by applying the previous lemma

with letting X = A and Y = B.
(3) For each k, we claim that we can obtain another graph G′ locally equivalent

to G with ρ∗G′(A,B) > k or find Z satisfying A ⊂ Z ⊆ V \B and ρG(Z) = k.
If l is fixed, then we can test an adjacency in the auxiliary graph (defined in the

proof of Proposition 7.1) in constant time by calculating rank of matrices of size no
bigger than (l+1)×(l+1), and therefore it takes O(n2) time to construct the auxiliary
digraph. If l is not fixed, then it takes O(n4) time to construct the auxiliary digraph
for finding a blocking sequence. We first obtain the diagonalized matrix R obtained
by applying elementary row operations to the matrix M [A,B] in O(n3) time. For each
vertex v not in A∪B, we calculate the rank ofM [A∪{v}, B] by using the stored matrix
in O(n2) time. Similarly we calculate the rank of M [A,B∪{v}] by storing the matrix
obtained by applying elementary column operations to M [A,B]. To check whether
ρ∗G(A∪{x}, B∪{y}) > k, it is enough to see when ρ∗G(A∪{x}, B) = ρ∗G(A,B∪{y}) = k.
We first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M [A,B] giving M [{x}, B]. By the same
linear combination, we check whether rows of M [A, {y}] gives M [{x}, {y}]. It takes
O(n2) time for each x, y ∈ V \ (A ∪ B) and therefore we construct the auxiliary
digraph in O(n4) time (if l is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this digraph
and it takes O(n2) time. If there is no blocking sequence, then we find Z in O(n2)
time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of vm in B and obtain G∧vmw in O(n2) time. By (1), G∧vmw
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has a blocking sequence v1, v2, . . . , vm−1 for (A,B). We apply this kind of pivoting m
times so that in the new graph G′ we have ρ∗G′(A,B) > k. Since m ≤ n, we obtain
G′ in O(n3) time.

Theorem 7.3. Let G be a graph (V,E) and A,B be two disjoint subsets of V . Then,
there is a O(n5)-time algorithm to find Z with A ⊆ Z ⊆ V \ B having the minimum
cut-rank.

Proof. We apply the algorithm given by Lemma 7.2 until it finds a cut. We will call
the algorithm at most n times, and therefore the running time is at most O(n5).

Theorem 7.4. Let l be a fixed constant. Let G be a graph (V,E) and A,B be two
disjoint subsets of V such that |A|, |B| ≤ l. Then, there is a O(n3)-time algorithm to
find Z with A ⊆ Z ⊆ V \B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 7.2 until it finds a cut. We will call
the algorithm at most l times, and therefore the running time is at most O(n3).

Now we pay attention to our rank-width approximation algorithm, described in
Corollary 2.13. We continue running time analysis of Theorem 2.10 done in Section
2.4. For rank-width, we are given the natural interpolation ρ∗G of the cut-rank function
ρG. It takes O(n2) time to find a set X ⊆ V (G) \ B such that ρ∗G(X,B) = ρG(B),
because we know that ρG(B) ≤ k. To show that X is not well-linked, we use Theorem
7.4 and this can be done in O(n3) time. Since the process is cycled through at most
O(n) times, it follows that the time complexity of obtaining a rank-decomposition or
a well-linked set is O(n4).

Theorem 7.5. For given k, there is an algorithm, for the input graph G = (V,E),
that either concludes that rwd(G) > k or outputs a rank-decomposition of G of width
at most 3k + 1; and its running time is O(|V |4).

7.2 Approximating rank-width more quickly

In this section, we show another algorithm that approximate rank-width as in the
previous section, but in O(n3) time with a worse approximation ratio. The algorithm
in Section 7.1 was based on the idea of Theorem 2.10 with a quick method to find a
minimum of cut-rank functions. However, in this section we take a different approach
based on simple observation in Section 5.1. We use the following algorithm developed
by Hliněný [32].

Theorem 7.6 (Hliněný [32, Theorem 4.12]). For fixed k, there is a O(n3)-
time algorithm that, for a given binary matroid with n elements, obtains a branch-
decomposition of width at most 3k+1 or confirms that the given matroid has branch-
width larger than k + 1. We assume that binary matroids are given by their matrix
representations.
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This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma 5.3, we obtain a bipartite graph B(G) for each graph G such
that rwd(B(G)) = max(2 rwd(G), 1). Moreover we can construct B(G) in O(n2) time
when n = |V (G)|. It is unclear whether we can transform the rank-decomposition
of B(G) of width k into a rank-decomposition of G of width at most k/2 in O(n3)
time. Instead we show that it is easy to transform the rank-decomposition of B(G)
of width k into a rank-decomposition of G of width at most 4k.

Lemma 7.7. Let G be a graph (V,E). Let (T,L) be a rank-decomposition of B(G) of
width k and T ′ be the minimum subtree of T containing every leaf in L−1(V (G)×{1}).
Let L′(v) = L((v, 1)). Then, (T ′,L′) is a rank-decomposition of G of width at most
4k.

Proof. Let e be an edge of T , and (X, Y ) be a partition of leaves of T induced by
connected components of T \ e.

For four subsets A1, A2, A3, A4 of V , we denote A1|A2|A3|A4 = (A1×{1})∪ (A2×
{2})∪ (A3×{3})∪ (A4×{4}) to simplify our notation. Let L−1(X) = A1|A2|A3|A4.
Let Bi = V \ Ai for i ∈ {1, 2, 3, 4}.

It is easy to observe, for each i ∈ {1, 2, 3}, that ρ∗B(G)((Ai × {i}) ∪ (Ai+1 × {i +

1}), (Bi × {i}) ∪ (Bi+1 × {i + 1}) = |Ai ∩ Bi+1| + |Bi ∩ Ai+1| = |Ai∆Ai+1|. Since
ρB(G)(A1|A2|A3|A4) = ρ∗B(G)(A1|A2|A3|A4, B1|B2|B3|B4) ≤ k, we have, for each i ∈
{1, 2, 3},

|Ai∆Ai+1| ≤ ρB(G)(A1|A2|A3|A4) ≤ k.

By adding these inequalities for all i, we obtain that |A1∆A4| ≤ 3k.
Let M be an adjacency matrix of G. We observe that rk(M [A4, B1]) = ρB(G)(A4×

{4}, B1 × {1}) ≤ k. Then we have the following upper bound of ρG(A1):

ρG(A1) = rk(M [A1, B1])

≤ rk(M [A4 ∪ (A4∆A1), B1])

≤ rk(M [A4, B1]) + rk(M [A4∆A1, B1])

≤ 4k.

So (T ′,L′) is a rank-decomposition of G and its width is at most 4k.

Therefore, we obtain the following algorithm.

Corollary 7.8. For fixed k, there is a O(n3)-time algorithm that, for a given graph
with n vertices, obtains a rank-decomposition of width at most 24k (while confirming
that the rank-width of the input graph is at most 3k) or confirms that the rank-width
of the input graph is larger than k.

Proof. Let G = (V,E) be the input graph. We may assume that E(G) 6= ∅. First we
construct B(G) in O(n2) time. We run the algorithm of Theorem 7.6 with an input
M = Bin(B(G), V × {1, 3}, V × {2, 4}) and a constant 2k.
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If it confirms that branch-width of M is larger than 2k + 1, then rank-width of
B(G) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then the
output is a rank-decomposition of B(G) of width at most 6k. This confirms that the
rank-width of G is at most 3k. This can be transformed into a rank-decomposition of
G of width at most 24k in linear time by Lemma 7.7. (We use the depth-first-search
algorithm from one leaf of T corresponding to a vertex in V (G)× {1}.)

7.3 Recognizing rank-width

By Corollary 6.2, for a fixed k, there are only finitely many graphs, such that a graph
does not contain any of them as a vertex-minor if and only if it has rank-width at most
k. By Theorem 4.23.2, for any fixed graph H, there is a C2MS formula expressing
that H is isomorphic to a vertex-minor of an input graph. Let n be the number of
vertices in the input graph. By Corollary 7.8, we have a O(n3)-time algorithm that
either confirms the input graph has rank-width at least k + 1 or outputs a rank-
decomposition of width at most 24k. In Proposition 3.4, we develop a O(n2)-time
algorithm that converts the rank-decomposition into a k-expression. In Section 4.3,
we recall that any property specified by a CMS formula can be checked in linear time
on graphs given by k-expressions.

By combining all of these, we obtain the following theorem.

Theorem 7.9. For fixed k, there is a O(n3)-time algorithm to check that the input
graph with n vertices has rank-width at most k.
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[1] Richard Arratia, Béla Bollabás, and Gregory B. Sorkin. The interlace polynomial
of a graph. J. Combin. Theory Ser. B, 92(2):199–233, 2004.

[2] Hans-Jürgen Bandelt and Henry Martyn Mulder. Distance-hereditary graphs. J.
Combin. Theory Ser. B, 41(2):182–208, 1986.

[3] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
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[33] Petr Hliněný. On matroid properties definable in the MSO logic. In Peter Vojtaáš
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