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Abstract

We define rank-width of graphs to investigate clique-width. Rank-width is a com-
plexity measure of decomposing a graph in a kind of tree-structure, called a rank-
decomposition. We show that graphs have bounded rank-width if and only if they
have bounded clique-width.

It is unknown how to recognize graphs of clique-width at most k for fixed k£ > 3
in polynomial time. However, we find an algorithm recognizing graphs of rank-width
at most k, by combining following three ingredients.

First, we construct a polynomial-time algorithm, for fixed k, that confirms rank-
width is larger than k or outputs a rank-decomposition of width at most f (k) for some
function f. It was known that many hard graph problems have polynomial-time algo-
rithms for graphs of bounded clique-width, however, requiring a given decomposition
corresponding to clique-width (k-expression); we remove this requirement.

Second, we define graph wvertex-minors which generalizes matroid minors, and
prove that if {G,Gs,...} is an infinite sequence of graphs of bounded rank-width,
then there exist ¢« < j such that G is isomorphic to a vertez-minor of G;. Conse-
quently there is a finite list C; of graphs such that a graph has rank-width at most &
if and only if none of its vertex-minors are isomorphic to a graph in Cy.

Finally we construct, for fixed graph H, a modulo-2 counting monadic second-
order logic formula expressing a graph contains a vertex-minor isomorphic to H. It
is known that such logic formulas are solvable in linear time on graphs of bounded
clique-width if the k-expression is given as an input.

Another open problem in the area of clique-width is Seese’s conjecture; if a set
of graphs have an algorithm to answer whether a given monadic second-order logic
formula is true for all graphs in the set, then it has bounded rank-width. We prove a
weaker statement; if the algorithm answers for all modulo-2 counting monadic second-

order logic formulas, then the set has bounded rank-width.
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Chapter 1

Introduction

Some algorithmic problems, NP-hard on general graphs, are known to be solvable in
polynomial time when the input graph admits a decomposition into trivial pieces by
means of a tree-structure of cutsets of bounded order. However, it makes a difference
whether the input graph is presented together with the corresponding tree-structure
of cutsets or not. We have in mind two kinds of decompositions, “tree-width” and
“clique-width” decompositions. These are similar graph invariants, and while the
results of this paper concern clique-width, we begin with tree-width for purposes of
comparison.

Having bounded clique-width is more general than having bounded tree-width,
in the following sense. Every graph G of tree-width at most £ has clique-width at
most O(2%) (Corneil and Rotics [11], Courcelle and Olariu [19]), and for such graphs
(for k fixed) the clique-width of G' can be determined in linear time (Espelage et al.
[24]). No bound in the reverse direction holds, for there are graphs of arbitrary large
tree-width with clique-width at most k. (But, for fixed ¢, if G does not contain K,
as a subgraph, then the tree-width is at most 3k(t — 1) — 1, shown by Gurski and
Wanke [31].)

The algorithmic situation with tree-width is as follows:

e Numerous problems have been shown to be solvable in polynomial time when
the input graph is presented together with a decomposition of bounded tree-
width. Indeed, every graph property expressible by monadic second order logic
formulas with quantifications over vertices, vertex sets, edges, and edge sets
(MS; logic formula) can be solved in polynomial time (see Courcelle [15]).

e For fixed k there is a polynomial time algorithm that either decides that an
input graph has tree-width at least k + 1, or outputs a decomposition of tree-
width at most 4k (this is an easy modification of the algorithm to estimate
graph branchwidth presented by Robertson and Seymour [49]).

e Consequently, by combining these algorithms, it follows that the same class of
problems mentioned above can be solved on inputs of bounded tree-width; the
input does not need to come equipped with the corresponding decomposition.
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e In particular, one of these problems is the problem of deciding whether a graph
has tree-width at most k. Consequently, for fixed k there is a polynomial (in-
deed, linear) time algorithm by Bodlaender [3] to test whether an input graph
has tree-width at most k, and if so to output the corresponding decomposition.

For inputs of bounded clique-width, less progress has so far been made. (We will
define clique-width properly later.)

e Some problems have been shown to be solvable in polynomial time when the in-
put graph is presented together with a decomposition of bounded clique-width.
This class of problems is smaller than the corresponding set for tree-width,
but still of interest. For instance, deciding whether the graph is Hamiltonian
(Wanke [58]), finding the chromatic number (Kobler and Rotics [39]), and var-
ious partition problems (Espelage et al. [23]) are solvable in polynomial time;
and so is any problem that can be expressed in monadic second order logic with
quantifications over vertices and vertex sets (MS logic; see Courcelle et al. [1§]
and Courcelle [15]).

e For fixed (general) k there was so far no known polynomial time algorithm that
either decides that an input graph has clique-width at least k + 1, or outputs a
decomposition of clique-width bounded by any function of k. The best hitherto
was an algorithm of Johansson [38], that with input an n-vertex graph G, either
decides that G has clique-width at least k + 1 or outputs a decomposition of
clique-width at most 2k logn. Our main result fills this gap.

e Consequently, it follows that the same class of problems mentioned above can
be solved on inputs of bounded clique-width; the input does not need to come
equipped with the corresponding decomposition.

e However, the problem of deciding whether a graph has clique-width at most k
is not known to belong to this class. There is still no polynomial time algorithm
to test whether GG has clique-width at most k, for fixed general k > 3.

Rank-width

In order to study graphs of bounded clique-width, we define another graph parameter,
called rank-width, in Section Rank-width is based on the notion of branch-
width defined on symmetric submodular functions by Robertson and Seymour [48].
A tree-like decomposition for branch-width is called a branch-decomposition, and we
measure its width, and the branch-width is the minimum possible width of all branch-
decompositions. We define certain symmetric submodular functions on graphs, called
cut-rank functions, by using a matrix rank over GF(2). By using cut-rank functions,
we define rank-width and rank-decompositions of graphs as branch-width and branch-
decompositions of their cut-rank functions. It turns out that a set of graphs has
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bounded rank-width if and only if it has bounded clique-width. More precisely, we
obtain the following inequality

rank-width < clique-width < 2tFrank-width _ 1

Basically we will show results based on rank-width, but they can be formulated in
terms of clique-width as well by this inequality.

Approximation algorithms

A big open problem in the area of clique-width was how to remove the need of a
decomposition of bounded clique-width as an input. Since there were no known
methods to find a decomposition, most algorithms just assume that it is given as an
input. To solve this problem, ideally we would like to have an algorithm, for fixed k,
that constructs a decomposition of clique-width at most k, called a k-expression if an
input graph has clique-width at most k and is given by its adjacency list. But we do
not have such an algorithm yet. Instead, we construct a polynomial-time algorithm
that constructs a decomposition of clique-width at most f(k) (f(k)-expression) or
confirms that the input graph has clique-width at least k + 1, for a fixed function
f. In fact, this is enough to remove the need of k-expressions as an input to many
algorithms requiring them, because we can provide f(k)-expressions instead of k-
expressions and we still obtain polynomial-time algorithms.

To obtain this “approximating” algorithm, we show that branch-width of certain
symmetric submodular functions can be in fact “approximated” in the following sense:
there is an algorithm that outputs a branch-decomposition of width at most O(3k)
or confirms that it has branch-width larger than k. As an easy corollary, we obtain
an approximating algorithm for rank-width. In Section and [7.2] we show two
quicker algorithms approximating rank-width. We have a O(n?*)-time algorithm with
f(k) = 3k +1 in Section[7.1} and a O(n?)-time algorithm with f(k) = 24k in Section
[7.2] where n is the number of vertices in the input graph.

We also apply this algorithm to matroids, and obtain an algorithm to approximate
the branch-width of matroids, which was known before only for representable matroids
by Hlinény [32]. We prove:

Theorem 1.1. For fixed k there is an algorithm which, with input an n-element
matroid M in terms of its rank oracle, either decides that M has branch-width at
least k 4+ 1, or outputs a branch-decomposition for M of width at most 3k — 1. Its
running time and number of oracle calls is at most O(n*).

Vertex-minors and well-quasi-ordering
Tree-width of graphs is interesting when considered together with the graph minor

relation. Contraction of an edge e is the operation that deletes e and identifies the
ends of e. A graph H is a minor of a graph G if H can be obtained from G by a
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sequence of contractions, vertex deletions, and edge deletions. If H is a minor of G,
then the tree-width of H is at most that of G. This implies that for fixed &, the set
of all graphs having tree-width at most £ is closed under the graph minor relation.

To have similar statements for clique-width, we need an appropriate containment
relation on graphs such that many theorems relating the graph minor relation to
tree-width can be translated into theorems relating our containment relation to clique-
width. Minor containment is not appropriate for clique-width because every graph G
is a minor of the complete graph K, on n = |V(G)| vertices, and K, has clique-width
2ifn > 1.

Courcelle and Olariu [19] showed that if H is an induced subgraph of a graph G,
then the clique-width of H is at most that of G. But, induced subgraph containment
is not rich enough; Corneil, Habib, Lanlignel, Reed, and Rotics wrote the following
comment in their paper [9].

Unfortunately, there does not seem to be a succinct forbidden subgraph
characterization of graphs with clique-width at most 3, similar to the Py-
free characterization of graphs with clique-width at most 2. In fact every
cycle C), with n > 7 has clique-width 4, thereby showing an infinite set of
minimal forbidden induced subgraphs for Clique-width< 3.

We have not yet found an appropriate containment relation for clique-width, but
by generalizing the matroid minor relation, we define the wvertez-minor relation of
graphs. (It was orignally called [-reduction by Bouchet [8].) For a graph G and a
vertex v of GG, let G x v be a graph, obtained by the local complementation at v, that
is, replacing the graph induced on the set of neighbors of v by its complement. We say
that G is locally equivalent to H if H can be obtained from G by applying a sequence of
local complementations. A graph H is a vertex-minor of GG if H can be obtained from
G by applying a sequence of vertex deletions and local complementations. A simple
fact is that if H is a vertex-minor of G, then the rank-width of H is at most that of G.
For an edge uv of G, a pivoting uv is a composition of three local complementations,
G xu*xv*u. It is an easy exercise to show that Gxu*xv*u =G *xv*xuxv. We say
that H is a pivot-minor of G if H can be obtained from G by applying a sequence of
vertex deletions and pivotings. Every pivot-minor of G is a vertex-minor of G, but
not vice versa.

In this paper, we prove the following.

Theorem 1.2. Let k be a constant. If {G1,Ga,Gs,- -} is an infinite sequence of
graphs of rank-width at most k, then there exist i < j such that G; is isomorphic to
a pivot-minor of G;, and therefore isomorphic to a vertex-minor of Gj.

This implies that for each k, there is a finite list of graphs, such that a graph
G has rank-width at most k if and only if no graph in the list is isomorphic to a
vertex-minor of G.

This theorem was motivated by the following two theorems. The first one is for
graphs of bounded tree-width, proved by Robertson and Seymour [47].
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Theorem 1.3 (Robertson and Seymour [47]). Let k be a constant.
If {G1,Gs,Gs3, - - - } is an infinite sequence of graphs of tree-width at most k, then
there ewist i < j such that G; is isomorphic to a minor of Gj.

The next one, generalizing the previous one, was shown by Geelen, Gerards, and
Whittle [27].

Theorem 1.4 (Geelen, Gerards, and Whittle [27]). Let k be a constant. Let
F be a finite field. If {Mi, Mo, M3, ---} is an infinite sequence of F-representable
matroids of branch-width at most k, then there exist i < j such that M; is isomorphic
to a minor of M.

If we set F = GF(2), then Theorem [1.4] implies Theorem [1.2] for bipartite graphs.
We will also show that Theorem implies Theorem if F = GF(2). In fact,
the main idea of proving Theorem remains in our paper, although we have to go
through a different technical notion.

In the original proof of Theorem [1.4] they used “configuration” to represent F-
representable matroids, and then convert the matroid problem into a vector space
problem. We use a similar approach, but use a different notion. Research done by
Bouchet [4, [7, 5] was very helpful. He developed the notion of isotropic systems,
which generalize binary matroids. Informally speaking, an isotropic system can be
considered as an equivalence class of graphs by local equivalence. A detailed definition
will be reviewed in Section 411

Seese’s conjecture

We have seen that many NP-hard problems can be effectively solved for graphs of
bounded tree-width or bounded clique-width. This fact is not only an observation
but we have theorems stating this as follows.

e If a graph problem can be expressed by MSy logic formulas, then there is an
algorithm that answers this problem in polynomial time if an input graph has
bounded tree-width. (see [15])

e If a graph problem can be expressed by MS logic formulas, then there is an
algorithm that answers this problem in polynomial time if an input graph has
bounded clique-width [1§].

Since there are many graph problems expressible by MS, logic formulas or MS logic
formulas, the above two theorems prove usefulness of tree-width and clique-width.
We would like to ask another question related to logic formulas.

Let C be a set of graphs. When does there exists an algorithm (not
necessarily polynomial-time) that answers whether a given logic formula
is satisfied for all graphs in C?
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The answer of this problem will depend on the set of logic formulas that will be given
as an input. We are interested in two kinds of logic formulas on graphs, MS logic
formulas and MS, logic formulas. If there is such an algorithm, then we call that C
has a decidable MS theory or has a decidable MSy theory depending on the choice of
logic formulas.

For MS; logic formulas, we have the following theorem called Seese’s theorem
[52]: if a set of graphs has a decidable MS, theory, then it has bounded tree-width.
This answers the previous problem for MS, logic formulas. The proof uses the “grid
theorem” by Robertson and Seymour [46] stating that if a set of graphs has bounded
tree-width, then no graph in the set contains a minor isomorphic to a sufficiently
large grid.

We are interested in answering the problem for MS logic formulas. The statement
analogous to Seese’s Theorem for MS formulas is a conjecture, also made by D. Seese
n [52]. This conjecture says that if a set of graphs has a decidable MS theory, then
it has bounded clique-width. Its hypothesis concerns less formulas, hence is weaker
than that of Seese’s Theorem. Since a set of graphs has bounded clique-width if it
has bounded tree-width, Seese’s Theorem is actually a weakening of the Conjecture.

In Chapter [5 we will actually prove a slight weakening of the Conjecture, by
assuming that the considered sets of graphs has a decidable satisfiability problem for
Cy MS logic formulas, in other words, for MS logic formulas that can be written with
the set predicate Cardy(X), that we will write Even(X) for simplicity.

Recognizing rank-width

Our main objective was to find an exact algorithm that answers whether an input
graph has clique-width at most k£ in polynomial time, but we were unable to find such
an algorithm. This problem seems very hard because it is still unknown whether it is
in co-NP to recognize graphs of clique-width at most k for fixed £ > 3. Instead, we
developed rank-width and may ask the same question but with rank-width.

In Section [2.3 we will show that, for a given symmetric submodular function that
satisfies certain conditions and can be evaluated in polynomial time from the input,
it is in NPNco-NP to answer whether branch-width is at most k. This implies, in
particular, that recognizing graphs of rank-width at most £ is in NPNco-NP.

We would like to have an algorithm that recognize graphs of rank-width at most
k. Let us first see some analogous results for tree-width. To recognize graphs having
tree-width at most k, we can use the following two theorems.

(1) For fixed k, there is a finite list of graphs such that a graph G has tree-width at
most k if and only if no graph in the list is isomorphic to a minor of G' (Robertson
and Seymour [47]).

(2) For fixed graph H, there is a O(|V(G)[*)-time algorithm that answers whether an
input graph G contains a minor isomorphic to H (Robertson and Seymour [49]).

When we combine these two facts, we prove the existence of a polynomial-time algo-
rithm to answer whether a given graph has tree-width at most k.
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We now pay attention to rank-width. From the well-quasi-ordering theorem (The-
orem [1.2]), we have a theorem analogous to (1) in the above as follows: for fixed k,
there is a finite list of graphs such that a graph G has rank-width at most £ if and
only if no graph in the list is isomorphic to a vertex-minor of G. But we do not have a
polynomial-time algorithm to answer whether an input graph contains a vertex-minor
isomorphic to a fixed graph.

Instead, we construct a CoMS logic formula for a fixed graph H such that it is
true if and only if an input graph contains a vertex-minor isomorphic to H. Since
every CoMS logic formula can be determined for graphs of bounded clique-width,
we can recognize graphs of clique-width at most £ by combining the following four
statements.

e (Section and For fixed k, there is a polynomial-time algorithm that
outputs a rank-decomposition of width 3k + 1 or confirms that the rank-width
of the input graph is larger than k.

e (Section For fixed k, there is a finite list of graphs such that a graph G
has rank-width at most k if and only if no graph in the list is isomorphic to a
vertex-minor of G.

e (Section For fixed graph H, there is a CoMS logic formula such that it is
true on a graph G if and only if G contains a vertex-minor isomorphic to H.

e (Section Every CoMS logic formula on graphs can be decided in polynomial
time if the input graph has bounded clique-width.

Conventions

In this thesis, we assume that graphs are simple undirected and finite.

Notes

Chapter [2| and Section are joint work with P. Seymour [43]. Section , Chapter
(except Section [p.1)), and Section are joint work with B. Courcelle [20]: Section
2] are reviews of previous results. Other results without attribution are
claimed to be original research. Section come from the author’s paper [42]

that was accepted to Journal of Combinatorial Theory series B.



Chapter 2

Branch-width of Symmetric
Submodular Functions

This chapter begins with the definition of branch-width of symmetric submodular
functions. After defining branch-width, one natural question would be the following.

Problem 2.1. Let k be a fized constant and let V' be a finite set. What is the time
complexity of deciding whether the branch-width of a symmetric submodular function
f:2Y — Z is at most k?

(We assume that f is given by an oracle.)

We answer this question partially when f satisfies
fHv}) = f@) <1forallvelV. (2.1)

In Section we show that if the branch-width is larger than k, then there is a
certificate of length polynomial in |V| such that we can prove it using this certificate
in a polynomial (of |V]) time, assuming that f satisfies and is given by an oracle.

We were not yet able to find a polynomial-time algorithm to decide whether
branch-width is at most k, but in Section [2.4] we show a polynomial-time “approxi-
mation” algorithm that, for fixed k, either confirms that branch-width is larger than
k or obtains a branch-decomposition of width at most 3k + 1 — 2f()), assuming that
[ satisfies (2.1)).

There are some instances of f having better algorithmic properties. If V' is the
element set of a matroid M and f is the connectivity function of M, then we obtain
an approximation algorithm for the branch-width of matroids, and in Section we
show how to make the above algorithm faster by using properties of connectivity
functions of matroids. In next chapter, we define the rank-width of graphs by using a
certain symmetric submodular function on the set of vertices. In this case, the above
approximation algorithm can run quickly, which will be discussed in Chapter [7]
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2.1 Definition of branch-width

Let us write Z to denote the set of integers. Let V be a finite set and f : 2V — Z be
a function. If

JX) + f(Y) 2 J(XNY) + f(XUY)

for all X, Y C V| then f is said to be submodular. If f satisfies f(X) = f(V \ X) for
all X C V, then f is said to be symmetric.

A subcubic tree is a tree with at least two vertices such that every vertex is incident
with at most three edges. A leaf of a tree is a vertex incident with exactly one edge.
We call (T, £) a partial branch-decomposition of a symmetric submodular function f
if T is a subcubic tree and £ : V' — {t : t is a leaf of T'} is a surjective function. (If
|V| <1 then f admits no partial branch-decomposition.) If in addition £ is bijective,
we call (T, L) a branch-decomposition of f. If L(v) =t, then we say t is labeled by v
and v is a label of t.

For an edge e of T, the connected components of 7"\ e induce a partition (X,Y)
of the set of leaves of T. The width of an edge e of a partial branch-decomposition
(T, L) is f(L7Y(X)). The width of (T, L) is the maximum width of all edges of T'.
The branch-width bw(f) of f is the minimum width of a branch-decomposition of f.
(If |V| <1, we define bw(f) = f(0).)

We define a linked branch-decomposition. For a branch-decomposition (7', L) of
f, let e; and e; be two edges of T'. Let E be the set of leaves of T" in the component
of T'\ e; not containing ey, and let F' be the set of leaves of T' in the component of
T \ e3 not containing e;. Let P be the shortest path in T' containing e; and e;. We
call e; and e, linked if

hénE}(I}D)(mdth of hof (T, L)) = T L A, f(Z).

We call a branch-decomposition (T, L) linked if each pair of edges of T is linked.

2.2 Interpolation of a submodular function

In this section, we define an interpolation of a certain submodular function. Later we
will use it to prove other theorems.

For a finite set V', we define (with a slight abuse of terminology) 3" to be {(X,Y) :
X, Y CV,XNY =0}

Definition 2.2. Let f : 2V — Z be a submodular function such that f(0) < f(X) for
all X CV. We call f*:3Y — Z an interpolation of f if

) FOVAX) = F(X) forall X €V,
ii) (uniform) if CND =0, ACC, and B C D, then f*(A, B) < f*(C, D),

iii) (submodular) f*(A, B) + f*(C,D) > f*(ANC,BUD)+ f*(AUC,BN D) for
all (A, B),(C,D) € 3V.
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iv) f4(0,0) = f(0).
Assuming that ) is a minimizer of f is not a serious restriction, because first of
all it is true for all symmetric submodular functions, and secondly if we let

%m:{ﬂX) if X 0

ming f(Z) otherwise,

then g is also submodular.

Proposition 2.3. Let f : 2V — 7Z be a submodular function such that f(0) < f(X)
for all X CV, and let f*: 3V — Z be an interpolation of f. Then:

(1) f*(X,Y) <minyczcwy f(Z) for all (X,Y) € 37,

(2) f*(0.Y) = f(©) forallY CV.

(3) If f({v})— f(0) < 1 for everyv € V, then for every fired B C V., f*(X, B)— f(0)
is the rank function of a matroid on V' \ B.
We note that the matroid theory is reviewed in Section

Proof.
(1) f X CZCV\Y, then f¥(X,Y) < f(Z,V\Z) = f(2).

(2) f(0) =f0,0) < f@,Y) < f(0,V) = f(0).

(3) Let r(X) = f*(X, B)— f(0). It is trivial that 7 is submodular and nondecreasing.
Moreover,

0 <r(X)=f(X,B) - f(0) < f(X) = f(0) <]X],
and therefore r is the rank function of a matroid on V' \ B. O

We define fiin(X,Y) = min f(Z), the minimum being taken over all Z satisfying
XCZCV\Y.

Proposition 2.4. Let f : 2V — 7Z be a submodular function such that f(0) < f(X)
for all X C V. Then fun ts an interpolation of f.

Proof. The first, second, and last conditions are trivial. Let us prove submodularity.
Let X, Y be subsets of V such that ACX CV\B, CCY CV\D, fun(A,B) =
f(X), and fiin(C, D) = f(Y). Then

fXO)+fY) = f(XNY)+ f(XUY)
> fain(ANC,BUD) + fun(AUC, BN D).

Thus, fui, is an interpolation. O

In general f.;, is not the only interpolation of a function f, and sometimes it is
better for us to work with other interpolations that can be evaluated more quickly.

We remark that if f* : 3V — Z is a uniform submodular function satisfying
f*(0,0) = f*(0,V), then there is a submodular function f : 2V — Z such that
f(0) < f(X) for all X CV and f* is an interpolation of f.
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2.3 Comparing branch-width with a fixed number
Let V be a finite set and f : 2" — Z be a symmetric submodular function such that
fHv}) = f@) <1forallvelV.

In this section, we show that a statement, “branch-width of f is at most k", for fixed
k, can be disproved in polynomial time (of |V]) by using a certificate of polynomial
size (of |V|), when f is given by an oracle. To prove the statement, we have a natural
certificate, a branch-decomposition of width at most k. However it is nontrivial to
disprove the statement. We use the notion called tangles, which is dual to the notion
of branch-width and was introduced by Robertson and Seymour [4§].

A class 7 of subsets of V' is called a tangle of f of order k if it satisfies the following
four axioms.

T1) For all A € 7, we have f(A) < k.

(T1)
(T2) If f(A) <k, then either Ac T or V\AeT.
(T3) If A, B,C € T, then AUBUC # V.
(T4) For all v € V, we have V' \ {v} ¢ 7.

We call that A is small if A is contained in a tangle. Informally speaking, the following
proposition shows that a subset of a small set is small.

Proposition 2.5. Let T be a tangle of f of orderk. If A€ T, B C A, and f(B) < k,
then B e T.

Proof. By (1J2), either B € T or V\ B € T. Since (V \ B)UAUA =V, the tangle
T can not contain V' \ B by (T[3). Hence B € 7. O

Robertson and Seymour [48] showed that tangles are related to branch-width.

Theorem 2.6 (Robertson and Seymour [48, (3.5)]). The following are equiva-
lent:

(i) there is no tangle of f of order k + 1,
(i) the branch-width of f is at most k.

Therefore to show that the branch-width of f is larger than k for fixed k, it
is enough to provide a tangle 7 of f of order k + 1. However, 7 might contain
exponentially many subsets of V. So, we need to devise a way to encode a tangle into
a certificate of polynomial size. If f satisfies that f({v}) — f(0) < 1 for all v € V,
then there is a method to encode a tangle into a certificate of polynomial size as
follows.
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Theorem 2.7. Let V be a finite set and f : 2V — Z be a symmetric submodular
function such that f({v}) — f(0) <1 for allv € V. For fized k, there is a certificate
of size at most a polynomial in |V|, that can be used to prove, in time polynomial in
|V'|, that f has branch-width larger than k, assuming that f is given by an oracle.

Proof. Let n = |V|. We may assume that n > 1 because branch-width of f is f(0)
if n < 1. We may assume that f(()) = 0. Let 7 be a tangle of f of order k + 1. Let
Jmin(X,Y) = minxczcv\y f(Z) for disjoint subsets X, Y of V. Let

P={(X,Y): XNY =0,|X[ = [Y] = fan(X,Y) < k}.

We claim that for each (X,Y’) € P, there is a unique maximal set Z € 7, denoted
by Z = w(X,Y), such that X C Z C V\Y and f(Z) = fuu(X,Y). Suppose
that Z; and Zy are contained in 7 and X C Z; CV\Y, X C Z, C V\Y, and
f(Z1) = f(Z3) = fuin(X,Y). By submodularity,

J(Z1U Zo) + f(Zi N Za) < f(Z1) + f(Z2) = 2 fain( X, Y).

Since both f(Z1UZy) and f(Z; N Z3) are bigger than or equal to fu(X,Y), they are
equal to fuin(X,Y). Since Z1 U ZoU(V' \ (Z1U Z5)) =V, we obtain that Z;UZ, € T .
Thus i : P — 2V is well-defined.

We provide (P, i) to our algorithm as a certificate showing that branch-width of
f is larger than k. Since |P| < (2)2, a description of (P, ;) has polynomial size in n.

Now we describe a polynomial-time algorithm that decides whether there is a
tangle giving (P, ).

By using submodular function minimization algorithms like [51] or [37], we can
calculate f;, in polynomial time, and therefore we can check whether P is correct.

To ensure that (P, u) is obtained by a tangle, our algorithm tests the following:

(1) w(X1, Y1) Up(Xe,Yo)Up(Xs,Ys) #V forall (X;,Y;) € P forie{1,2,3}.

(2) for all (A, B) € P, there exists no Z such that A C Z C V' \ B, f(Z) = k, and
Z < A, B)and V\ Z € (B, A).

Equivalently for all z € V' \ (u(A,B)UB) and y € V' \ (u(B,A) U A), if x # v,
then fnin(AU{z}, BU{y}) > k.

(3) (X, Y)| # V] -1 for all (X,Y) € P.

These can be done in polynomial time. We claim that if (P, u) is obtained from a
tangle 7', then (P, u) will satisfy those tests. The first test is trivially true from the
axiom of tangles. Now let us consider the second test. Suppose A C Z C V \ B,
f(Z) = k. Then, either Z € 7 or V' \ Z € T. In either case, we obtain Z C pu(A, B)
or V\Z C u(B,A). The third test is true because V' \ {v} ¢ 7 for all v € T.
Therefore if at least one of them fails, then (P, x) is not obtained from a tangle. We
now assume that (P, i) passed those tests.

We claim that we can construct a tangle 7 of f of order k+1 from (P, ) uniquely
as follows:



CHAPTER 2. BRANCH-WIDTH 13

For all Z such that f(Z) <k, we choose (A, B) € P such that
|A|=|B|=f(Z)and AC ZCV\B.
If Z C u(A, B), then Z € T. Otherwise, V\ Z € 7.

Let us first show that this is well-defined. Let Z be a subset of V such that f(Z) < k.
By Proposition and of Proposition we may choose A C Z such that
fmin(A,V\ Z) = |A| = f(Z), and then choose B C V' \ Z such that fuin(A, B) =
|A] = |B] = fuin(A, V' \ Z) = f(Z) < k. Thus there exists a wanted pair (A, B) €
P. Suppose that there are two wanted pairs (A, By), (As, B2) € P such that Z C
w(Ay, By) but Z & p(As, By). We obtain that p(Bs, As) U u(Ay, By) =V, because
V\ Z C u(Bsy, As) by the second test. This contradicts to the first test.

We now claim that the axioms of tangles are satisfied by 7. Axioms (T[I)) and (T}2)
are true by construction. To show (, assume that A; € 7 for all ¢ € 1,2,3. There
exist (X;,Y;) € P for each i such that A; C u(X;,Y;), and therefore A; U Ay U Az C
w(X1, Y1) U p(Xe, Ys) Up(Xs,Ys) # V. To obtain (Td]), suppose that V' \ {v} € 7.
Then, there exists (X,Y) € P such that V '\ {v} C u(X,Y). Hence u(X,Y) =V or
w(X,Y) =V \ {v}, but we obtain a contradiction because of (1) and (3). O

Suppose that we can calculate f by using an input of size in polynomial of |V| in
polynomial time. By the previous theorem, we conclude that deciding whether the
branch-width is at most k for fixed k is in NPNco-NP. But, it is still open whether it
is in P. But it is known to be in P for some symmetric submodular functions. One
example will be discussed in Chapter [7}

2.4 Approximating branch-width

In this section, we would like to show a polynomial-time algorithm that, for fixed &,
outputs a branch-decomposition of bounded width or confirms that the branch-width
is larger than k.

Definition 2.8. Let V be a finite set and let f : 2V — Z be a symmetric submodular
function satisfying f(0) = 0. We say that W C V is well-linked with respect to f if
for every partition (X,Y) of W and every Z with X C Z CV \'Y, we have

f(Z) = min(]X], [Y]).

This notion is analogous to the notion of well-linkedness [45] related to tree-width
of graphs.

Theorem 2.9. Let V be a finite set with |V| > 2, and let f : 2 — Z be a symmetric
submodular function such that f(0) = 0. If with respect to [ there is a well-linked set
of size k, then bw(f) > k/3.

Proof. Let W be a well-linked set of size k, and suppose that (7', L) is a branch
decomposition of f. We will show that (7, L) has width at least k/3. We may
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assume that T does not have a vertex of degree 2, by suppressing any such vertices.
For each edge e = uv of T, let A, be the set of elements of V' that are mapped by L
into the connected component of T'\ e containing u, and let B,, = V' \ Ayy.

We may assume that W = (); choose w € W. Since W is well-linked with respect
to f, f({w}) > 1, and therefore the width of (7', £) is at least 1. Consequently we
may assume that k > 3.

Suppose first that min(|A,, "W/, | By, NW|) < k/3 for every edge uv of T'. Direct
every edge uv from u to v if |A,,NW| < k/3 and | B,,NW| > k/3. By the assumption,
each edge is given a unique direction. Since the number of vertices is more than the
number of edges in T', there is a vertex ¢t € V(T') such that every edge incident with
t has head t.

If t is a leaf of T', let s be the neighbor of ¢. Since ts has head t, it follows that
| B "W | > k/3. But |Bs| =1 < k/3, a contradiction.

So, t has three neighbours z, y, z in T such that |A,,NW| < k/3, |A,:NW| < k/3,
and [A,, N W| < k/3. But |[W| = |AuNW|+|[AyNW|+[ANW| < k= |W| a
contradiction.

We deduce that there exists uv € E(T) such that |A,,"\W| > k/3 and | B,,NW| >
k/3. Hence f(Ay,) > min(|Ay, "W/, |By, NW|) > k/3, and the width of (T, L) is at
least k/3. O

Theorem 2.10. Let V be a finite set, let f : 2V — 7Z be a symmetric submodular
function such that f({v}) <1 for allv € V and f(0) =0, and let k > 0 be an integer.
If with respect to f, there is no well-linked set of size k, then bw(f) < k.

Proof. We may assume that bw(f) > 0, and so |V| > 2. We may assume that k& > 0.
For two partial branch-decompositions (7, £) and (77, L') of f, we say that (T, L)
extends (1", L") if T is obtained by contracting some edges of 7" and for every v € V,
L'(v) is the vertex of T" that corresponds to £(v) under the contraction.

We will prove that, if there is no well-linked set of size k with respect to f, then
for every partial branch-decomposition (T, L) of f with width at most k, there is a
branch-decomposition of f of width at most k extending (7%, L,). Since k > 1 and f
trivially admits a partial branch-decomposition of width 1 (using the two-vertex tree
with vertices u, v, and mapping all vertices of V' except one to u, and the last to v),
this implies the statement of the theorem.

Pick a partial branch-decomposition (T, £) of f extending (T, L) such that the
width of (T, £) is at most k& and the number of leaves of T" is maximum.

We claim that (7, £) is a branch-decomposition of f. It is enough to show that
L is a bijection. Suppose therefore that there is a leaf ¢t of T such that B = L71({t})
has more than one element.

We claim that f(B) = k. Suppose that f(B) < k. Let v € B. Construct a
subcubic tree T" by adding two vertices ¢; and to and edges t1t, tot to T. Let L'(v) = t;
and L'(w) =ty for all w € B\ {v} and L'(z) = L(z) for all z € V' \ B. Then (17", L)
is a partial branch-decomposition extending (7, £). Moreover f({v}) < 1 < k and
f(B\{v}) < f(B) + f({v}) <k, and so the width of (7", L’) is at most k. But the
number of leaves of T" is greater than that of 7', a contradiction.
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Let f* be an interpolation of f. By Proposition 2.3 f*(X, B) is the rank function
of a matroid on V' \ B. Let X be a base of this matroid. Then |X| = f*(V'\ B,B) =
£(B) = k.

Since X is not well-linked, there exists Z C V such that

f(Z) <min(|ZNX|[,[(V\ Z)N X]).

Since f(Z\B) = f*(Z\B,BU(V\Z)) > f"(ZnX,B) =|ZNX| > f(Z), it follows
that Z N B # 0. Similarly B\ Z = (V' \ Z) N B # 0.
Construct a subcubic tree 7" by adding two vertices t; and ¢y and edges t1t, tot to
T. Let L'(x) =t ifx e BNZ, L'(x) =ty if x € B\ Z and L'(x) = L(z) otherwise.
By submodularity,

V

(VAZ)NX|+f(B) > f(Z)+ f(B) = f(ZUB) + f(ZN B)
F(VNZ)\ B) + f(ZN B)
(VAN Z2)nX,B)+ f(ZN B)

(VA Z)n X|+ f(Zn B),

AV

and so f(ZNB) < f(B) < k and similarly f(B\Z) < f(B) < k. Therefore (1", L') is
a partial branch-decomposition extending (7', £) of width at most k. But the number
of leaves of T" is greater than that of T, a contradiction. O

Corollary 2.11. For all k > 0, there is a polynomial-time algorithm that, with
input a set V. with |V| > 2 and a symmetric submodular function f : 2V — Z with
f({v}) <1 forallv eV and f(0) =0, outputs either a well-linked set of size k or a
branch-decomposition of width at most k.

The proof of Theorem provides an algorithm that either finds a well-linked set
of size k, or constructs a branch-decomposition of f of width at most k. By combining
with Theorem 2.9 we get an algorithm that either concludes that bw(f) > k or finds
a branch-decomposition of width at most 3%k + 1.

Let us analyze the running time of the algorithm of Theorem [2.10f To do so,
we must be more precise about how the input function f and f* are accessed. We
consider two different situations, as follows:

e In the first case, we assume that only f is given as input, and in the sense that
we can compute f(X) for a set X; and we need to compute values of f* from
this input.

e In the second case, we assume that an interpolation f* of f is given as input
(in the same sense, that for any pair (X,Y’) we can compute f*(X,Y’)), and we
need to compute f from f*.

For the first analysis, let v be the time to compute f(X) for any set X. In this
case we shall use f* = fuwm. To calculate f.;,, we use the submodular function
minimization algorithm [37], whose running time is O(n°ylog M) where M is the
maximum value of f and n = |V/|. Thus, we can calculate fy, in O(n’ylogn) time.
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Finding a base X can be done by calculating f* at most O(n) times, and therefore
takes time O(nSylogn). To check whether X is well-linked, we try all partitions of
X; 2871 tries (a constant). And finding the set Z for a given partition of X can be
done in time O(n°ylogn) by submodular function minimization algorithms. Since
the process is cycled through at most O(n) times (because if (7', £) is a partial branch-
decomposition then |V (7T')| < 2n — 2), it follows that in this case the time complexity
is O(n"ylogn).

For the second analysis, let 6 be the time to compute f*(X) for any set X. Finding
a base X can be done in time O(nd). Finding Z to show that X is not well-linked can
be done in time O(n’§logn). Thus, the time complexity in this case is O(n%dlogn).

In summary, then, we have shown the following two statements.

Corollary 2.12. For given k, there is an algorithm as follows. It takes as input a
finite set V with |V| > 2 and a symmetric submodular function f : 2V — 7Z, such that
f({v}) <1 forallv eV and f(0) = 0. It either concludes that bw(f) > k or outputs
a branch-decomposition of f of width at most 3k + 1; and its running time (excluding
evaluating f) and number of evaluations of f are both O(|V|"log |V]).

Corollary 2.13. For given k, there is an algorithm as follows. It takes as input
a finite set V. with |V| > 2 and a function f* which is an interpolation of some
symmetric submodular function f : 2V — Z, such that f({v}) <1 for allv € V and
f(@) =0. It either concludes that bw(f) > k or outputs a branch-decomposition of f
of width at most 3k + 1; and its running time is O(|V|°dlog |V]), where § is the time
for each evaluation of f*.

2.5 Application to matroid branch-width

The connectivity function of a matroid is a special kind of symmetric submodular
function, and we have been able to modify our general algorithm so that it runs
much more quickly for functions of this type. There are two separate modifications.
First, there is an interpolation of the connectivity function A of a matroid that can be
evaluated faster than \,;,. Second, we can apply the matroid intersection algorithm
instead of the general submodular function minimization algorithms.

Let us review matroid theory first. For general matroid theory, we refer to Oxley’s
book [44]. We call M = (E,Z) a matroid if E is a finite set and Z is a collection of
subsets of E, satisfying

i) 0eZ
(ii) If A€ 7 and B C A, then B € T.

(iii) For every Z C E, maximal subsets of Z in Z all have the same size r(Z). We
call r(Z) the rank of Z.

An element of 7 is called independent in M. We let E(M) =E. We call BC E a
base if it is maximally independent. A matroid may also be defined by axioms on the
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set of bases. We call B' C E a cobase if E\ B’ is a base. The dual matroid M* of
M is the matroid on E(M) such that the set of cobases of M is equal to the set of
bases of M*.
A matroid M = (FE,T) is binary if there exists a matrix N over GF(2) such that
E is a set of column vectors of N and Z = {X C E : X is linearly independent}.
For e € E(M), M\ e is the matroid (E \ {e},Z’) such that

T ={X CEM)\{e}: X e T}.

This operation is called deletion of e. For e € E(M), M/e = (M*\ e)* and this
operation is called contraction of e. A matroid N is called a minor of M if N can
be obtained from M by applying a sequence of deletions and contractions.

The connectivity function Ay, of M is

(X)) =r(X)+r(E\X)—1r(E)+ 1

Note that Ay is a symmetric submodular function. A branch-decomposition (7', £)
of Ay is called a branch-decomposition of M. The branch-width bw(M) of M is the
branch-width of \j,.

The following proposition is due to Jim Geelen (private communication).

Proposition 2.14. Let M be a matroid with rank function r, with connectivity func-
tion

AMX)=r(X)+r(EM)\ X)—r(EM))+ 1.
Let B be a base of M. Then

Ap(X,Y)=r(XUB\Y))+r(YU(B\X)) —|B\X|—-|B\Y|+1

s an interpolation of \.

Proof. We verify the three conditions of the definition of an interpolation.
DY = EM)\ X, then

As(X,Y) = r(X)+7(Y) = r(BAX) = r(BOY)+1 = r(X) +7(Y) = |B] +1 = M\(X).
2) Let X; C X and Y; C Y5, Then
r(XaU(B\Y2) 2 (X1 U(B\Y3)) 2 r(X1 U (B\Y1)) = (|B\ Y1 — B\ Yz]).
Therefore,
r(X2U(B\Y2)) = [B\Yo| 2r(X1U(B\ V1)) — B\ Y.
Similarly,
r(Y2U(B\ X2)) = [B\ X 2 r(Y1 U (B\ X1)) — [B\ Xi.

By adding both inequalities, we deduce that Ag(Xs,Ys) > Ag(X1,Y)).
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3) Let X;NY; =0 and X, NY; = 0. Tt is easy to show that
(PNR)UQNS)C(PUQ)N(RUS)
for any choice of sets P, (), R, S. Since r is submodular and increasing,

r(X;U(B\Y)))+r(XaU(B\Y?))
>r(X1U(B\Y1)U(X2U(B\Y2))) +r((X1U(B\Y1))N(X2U(B\Y2)))
>r((X1UXo)U(B\ (YiNYs))) +r((XiNXa) U (B (Y1UY2))).

Similarly

r(Y1U(B\ X)) +r(Y2U(B\ X2))
>r(YiUYe) U (B\(X1NXy))) +r(YiNYs) U(B\ (XU Xy))).

But also
B\ Xi|+|B\ Xo| =B\ (X1 NXo)|+[B\ (X1 UXy)l.

By adding, we deduce that
AB(X1, Y1) + Ap(X2,Y2) > Ap(X1 N Xo, Y1 UYs) + A(X; U X, Y1 NY)). L

Now, we discuss a method to avoid the general submodular function minimization
algorithm. To apply Corollary[2.13|to matroid branch-width, we needed a submodular
function minimization algorithm that, given a matroid M and two disjoint subsets X
and Y, will output Z C E(M) such that X C Z C E(M)\Y and \(Z) is minimum.
We claim that that this can be done by the matroid intersection algorithm. Let
My =M/X\Y and My = M\ X/Y, with rank functions 7y, 5 respectively. Then
by the matroid intersection algorithm, we can find U C E(M) \ X \ Y minimizing
r(U) + ro(E(M)\ X \ Y \ U). Using the fact r(U) = r(UU X) — r(X), r(U) =
r(UUY) —r(Y), we construct a set Z with X C Z C E(M) \ Y that minimizes
A(Z). And this can be done in O(n?) time (if M is input in terms of its rank oracle),
where n = |E(M)].

We deduce:

Corollary 2.15. For given k, there is an algorithm that, with input an n-element
matroid M, given by its rank oracle, either concludes that bw(M) > k or outputs a
branch-decomposition of M of width at most 3k — 1. Its running time and number of
oracle calls is at most O(n*).

Proof. Pick a base B of M arbitrarily. We use Ap as an interpolation of A. For a
given partition (A, B), finding a base X can be done in time O(n). Finding Z to prove
that X is not well-linked can be done in O(23*~2n?). Therefore, the time complexity
is O(n +n(n + 23%72n%)) = O(8Fn*). O

We note that previous algorithm by P. Hlinény [32] to approximate matroid
branch-width was only for matroids representable over a finite field.



Chapter 3

Rank-width and Vertex-minors

3.1 Clique-width

The notion of clique-width was first introduced by Courcelle and Olariu [19]. Let k
be a positive integer. We call (G, lab) a k-graph if G is a graph and lab is a mapping
from its vertex set to {1,2,...,k}. (In this paper, all graphs are finite and have no
loops or parallel edges.) We call lab(v) the label of a vertex v.

We need the following definitions of operations on k-graphs.

(1) For i € {1,...,k}, let -; denote a k-graph with a single vertex labeled by i.

(2) Fori,j € {1,2,...,k} with i # j, we define a unary operator 7; ; such that
nij(G,lab) = (G', lab)

where V(G') = V(G), and E(G') = E(G) U{vw : v,w € V, lab(v) = i,lab(w) =
j}. This adds edges between vertices of label i and vertices of label j.

(3) We let p;_.; be the unary operator such that
Pi—j (Gv lab) = (G7 lab/)

where

ot () = { j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by ¢ into j.

(4) Finally, @ is a binary operation that makes the disjoint union. Note that GG #
G.

A well-formed expression ¢ in these symbols is called a k-expression. The k-graph
produced by performing these operations in order therefore has vertex set the set
of occurrences of the constant symbols (-;) in ¢; and this k-graph (and any k-graph
isomorphic to it) is called the value of ¢, denoted by val(t). If a k-expression ¢ has

19
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value (G, lab), we say that t is a k-expression of G. The clique-width of a graph G,
denoted by cwd(G), is the minimum k such that there is a k-expression of G.
For instance, K, (the complete graph with four vertices) can be constructed by

p2—1(M2(pa—1 (M1 2(p2—1(M2(1 © 2))  -2)) ® 2)).

Therefore, K, has a 2-expression, and cwd(Ky) < 2. It is easy to see that cwd(K,) >
1, and therefore cwd(K,) = 2.

Some other examples: cographs, which are graphs with no induced path of length
3, are exactly the graphs of clique-width at most 2; the complete graph K, (n > 1)
has clique-width 2; and trees have clique-width at most 3 [19].

For some classes of graphs, it is known that clique-width is bounded and algorithms
to construct a k-expression have been found. For example, cographs [10], graphs of
clique-width at most 3 [9], and P,-sparse graphs (every five vertices have at most one
induced subgraph isomorphic to a path of length 3) [18] have such algorithms.

3.2 Rank-width and clique-width

In this section, we define the rank-width of a graph and show that a set of graphs has
bounded rank-width if and only if it has bounded clique-width.

For a matrix M = (m;; : ¢ € C,j € R) over a field F, if X C Rand Y C C, let
M[X,Y] denote the submatrix (m;; : i € X,j € Y). For a graph G, let A(G) be its
adjacency matrix over GF(2).

Definition 3.1. Let G be a graph. For two disjoint subsets X, Y C V(G), we define
pe(X,Y) = 1k(A(G)[X,Y]) where rk is the matriz rank function; and we define the
cut-rank function pg of G by letting pe(X) = p&(X, V(G) \ X) for X CV(G).

We will show that pg is symmetric submodular and pf; is an interpolation of p¢.

Proposition 3.2. Let M = (m;; : i € C,j € R) be a matriz over a field F'. Then for
all X1,Xs C R and Y1,Ys C C, we have

rk(M[X1, V1)) + tk(M[Xa, Ya]) > tk(M[X1 U X, Y1 N Ya]) + tk(M[X; N X5, Y, U Ya)).

Proof. See [41], Proposition 2.1.9], [56, Lemma 2.3.11], or [55]. O
Corollary 3.3. Let G be a graph. If (X1,Y1), (X2, Y2) € 3V then

pe(X1, Y1) 4 p5 (X2, Y2) 2 po (X1 N Xa, Y1 UY2) + po(X1 U Xa, Y1 N Y)).
Moreover, if X1, Xs C V(G), then
pc(X1) + pa(X2) = pa(X1 N Xs) + pa(X1 U Xo).
Proof. Let M be the adjacency matrix of G over GF(2). Then

pa(X) = rk(M[X, V(G) \ X]).
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Apply Proposition O

A rank-decomposition of G is a branch-decomposition of pg, and the rank-width
of G, denoted by rwd(G), is the branch-width of pg.
The following proposition provides a link between clique-width and rank-width.

Proposition 3.4. For a graph G, rwd(G) < ewd(G) < 2@+ 1,

Proof. We may assume that |V(G)| > 2, because if |[V(G)| < 1, then rwd(G) = 0 and
cwd(G) < 1.

A rooted binary tree is a subcubic tree with a specified vertex, called the root,
such that every non-root vertex has one, two or three incident edges and the root has
at most two incident edges. A vertex u of a rooted binary tree is called a descendant
of a vertex v if v belongs to the path from the root to u; and w is called a child of v
if u, v are adjacent in T and wu is a descendant of v.

First we show that rwd(G) < cwd(G). Let k = cwd(G). Let ¢t be a k-expression
with value (G, lab) for some choice of lab. We recall that a k-expression is a well-
formed expression with four types of symbols; the constants, two unary operators,
and the binary operator forming disjoint union. The parentheses of the expression
form a tree structure. Thus there is a rooted binary tree T', each vertex v of which
corresponds to a k-expression, say N(v); and letting Vg, Vi, Vo denote the sets of
vertices in 1" with zero, one and two children respectively, we have for each vertex
ve V(T):

e if v € Vj then N(v) is a 1-term expression consisting just of a constant term,

e if v € V] with child w, then N(v) is obtained from N (u) by applying one of the
two unary operators,

e if v € V, with children wuy,us, then N(v) is obtained from N(u), N(u2) by
applying @,

e if v is the root then N(v) = (G, lab).

In particular, each vertex v € Vj gives rise to a unique vertex w of G; let us write
this £(w) = v. Then L is a bijection between V(G) and the set of leaves of T
Consequently (T, L) is a branch-decomposition of pg. Let us study its width. Let
u,v € V(T), where u is a child of v, and let 77,7, be the components of T\ e,
where e is the edge wv and u € V(Ty). Let X; = {L7'(t) : t € Vo N V(T;)} for
i = 1,2. Thus (X1, Xs) is a partition of V(G), and we need to investigate pg(X1).
Let N(u) = (Gy,laby). Thus V(Gy) = X;. If z,y € X; and lab(z) = labi(y), then
x,1y are adjacent in GG to the same members of X5, from the properties of the iterative
construction of (G, lab); and since the function lab; has at most k different values, it
follows that X; can be partitioned into k& subsets so that the members of each subset
have the same neighbors in X5. Consequently pe(X;) < k. Since this applies for
every edge of T, we deduce that (7', £) is a branch-decomposition of pg with width
at most k. Hence rwd(G) < k = cwd(G).
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Now we show the second statement of the theorem, that cwd(G) < 2@+ 1,
Let k£ = rwd(G) and (7, £) be a rank-decomposition of G of width k. By subdividing
one edge of T, and suppressing all other vertices of T" with degree 2, we may assume
that T is a rooted binary tree; its root has degree 2, and all other vertices have degree
1 or 3.

For v € V(T), let D, = {x € V(G) : L(x) is a descendant of v in T}, and let G,
denote the subgraph of G induced on D,. We claim that for every v € V(T), there is
a map lab, and a (287 — 1)-expression ¢, with value (G,, lab,), such that

(i) if lab,(xz) =1 then x € D, is nonadjacent to every vertex of G \ D,,

(ii) if x,y € D, and there exists z € V(G) \ D, such that z is adjacent to z but y
is not, then lab,(z) # lab,(y),

(iii) for each z € D,, lab,(x) € {1,2,...,2F}.

We prove this by induction on the number of vertices of T" that are descendants of v.
If v is a leaf, let t, = -1. Then t, satisfies the above conditions. Thus we may assume
that v has exactly two children vy, vs.

By the inductive hypothesis, there are (2¥*! — 1)-expressions t,t, with values
(G, lab,,) for i = 1,2, satisfying the statements above. Let F' be the set of pairs
(i,4) with 4,57 € {1,2,...,2*}, such that there is an edge zy of G, with x € D,,,
laby, (x) =i, y € D,, and lab,,(y) = j. It follows from the second condition above
that if (¢, 7) € F then every vertex x € D,, with lab,, (z) = i is adjacent in G to every
vertex y € D,, with lab,,(y) = j. Let

* ok
" = ((i,j?GF ni,j+2k—1> (tm S (iOQ pi_>i+2k_1) (tvg)) .

Then t* is a (28! — 1)-expression with value (G,,lab*) say, and it satisfies the first
two displayed conditions above. However, it need not yet satisfy the third. Let us
choose a (2FF! — 1)-expression t, with value (G,,lab,) say, satisfying the first two
conditions above, and satisfying the following;:

o {lab,(z) : x € D,} is minimal,
e subject to this condition, max,cp, lab,(x) (= r say) is as small as possible.

(We call these the “first and second optimizations”.) For i =1,...,7, let X; = {x €
D, : lab,(x) = i}. The definition of r implies that X, # (. If there exists ¢ with
2 < ¢ < r such that X; = (), then applying the operation p,_,; to t, produces a k-
expression contradicting the second optimization. Thus, X, ..., X, are all nonempty.
For 1 <i <, let Y; be the set of vertices of V(G) \ D, with a neighbor in X;. From
the first condition (i), Y3 = 0. From the second condition (ii), every vertex in X;
is adjacent to every member of Y; for all ¢ with 1 < ¢ < r. If there exist i, j with
1 <@ < j < rsuch that Y; =Y}, then applying p;_; to t, produces a k-expression
contradicting the first optimization. Thus Y7,...,Y, are all distinct.
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Let M be the matrix A(G)[D,,V(G)\ D,]. Then M has r — 1 distinct nonzero
rows. Since (T, L) has width k, it follows that M has rank at most k, and therefore
M has at most 2F — 1 distinct nonzero rows (this is an easy fact about any matrix
over GF(2)). We deduce that r < 2% and therefore ¢, satisfies the third condition
above.

This completes the proof that the k-expressions t, exist as described above. In

particular, if v is the root of T then G, = G, and so t, is a (27! — 1)-expression of
G. We deduce that cwd(G) < 281 — 1. O

The above proof gives an algorithm that converts a rank-decomposition of width
k into a (28! — 1)-expression. Let n = |V(G)|, and let (T, L) be the input rank-
decomposition. At each non-leaf vertex v of T, we first construct F', in O((2%)?) =
O(1) time. Then merging sets with the same neighbors outside D, will take time
O (2%n) = O(n). The number of non-leaf vertices v of T" is O(n). Therefore, the
time complexity is O(n?). Note that we may assume that checking the adjacency
of two vertices can be done in constant time, because we preprocess the input to
construct an adjacency matrix in time O(n?).

3.3 Graphs having rank-width at most 1

We call a graph G distance-hereditary if and only if for every connected induced
subgraph H of GG, the distance between every pair of vertices in H is the same as
in G. Howorka [36] defined distance-hereditary graphs, and Bandelt and Mulder [2]
found a recursive characterization of distance-hereditary graphs, which we will use
here. In this section, we show that a graph is distance-hereditary if and only if it has
rank-width at most 1.

Two distinct vertices v, w are called twins of G if for every x € V(G) \ {v,w}, v
is adjacent to x if and only if w is adjacent to x. We call v a pendant vertex of G if
it has only one incident edge in G.

Proposition 3.5. Let G be a graph. If v,w € V(Q) are twins of G and G'\ v has
at least one edge different from vw, then rwd(G \ v) = rwd(G). Note that we do not
require that vw € E(G).

Proof. Tt is enough to show that rwd(G \ v) > rwd(G). Since |V (G \ v)| > 2, there
is a rank-decomposition (7', L) of G \ v of width rwd(G \ v). Let x = L(w) and let
y € V(T') be such that xy € E(T).

Let T" be a tree obtained from 7" by deleting xy, adding two new vertices z’, z,
and adding three new edges xz, za’, zy. Let £'(2') = v and L'(u) = L(u) for all
T

So, (1", L") is a rank-decomposition of G. For every edge e except zz’ and zx in
T', the width of e in (77, L') is equal to the width of e in (T, L), because v and w are
twins. Both the width of zx and the width of zz" are at most 1. Since G has at least

one edge e # vw and v, w are twins, G \ v has at least one edge and rwd(G \ v) > 1,
and therefore the width of (77, £') is rwd(G \ v). Therefore, rwd(G\v) > rwd(G). O



CHAPTER 3. RANK-WIDTH AND VERTEX-MINORS 24

Proposition 3.6. If G has rank-width at most 1 and |V (G)| > 2, then G has a pair
of wvertices v and w such that either they are twins or w has mo neighbor different
from v.

Proof. If |V(G)| = 2, then the claim is trivial, and so we may assume that |V (G)| > 3.

Let (T, £) be a rank-decomposition of G of width at most 1. Since T" has at least
three leaves, there exists a vertex x of T that is adjacent to two leaves L(v), L(w)
of T. Let y be the vertex of T" adjacent to x different from L£(v) and L£(w). The
partition of V(G) induced by zy is ({v,w}, V(G) \ {v,w}). So, the width of zy is
pc({v,w}) < 1. That means either v, w are twins or v has no neighbor different from
w or w has no neighbor different from v. O]

Proposition 3.7. G is distance-hereditary if and only if the rank-width of G is at
most 1.

Proof. Bandelt and Mulder [2] showed that every distance-hereditary graph can be
obtained by creating twins, adding an isolated vertex, or adding a pendant vertex to
a distance-hereditary graph or is a graph with one vertex. So, the rank-width of every
distance-hereditary graphs is at most 1 by Proposition Conversely, if a graph has
rank-width at most 1, then by Proposition [3.6] it is distance-hereditary. O

Golumbic and Rotics [30] proved that distance-hereditary graphs have clique-
width at most 3, and this can be proved as a corollary of Proposition [3.7]

Corollary 3.8. Distance-hereditary graphs have clique-width at most 3.
Proof. By Proposition clique-width of a graph G is at most 2"+ _ 1, m

3.4 Local complementations and vertex-minors

We define local complementation, pivoting, vertex-minors, and pivot-minors. In fact,
vertex-minor containment was called [-reduction by Bouchet [8], but the author thinks
“vertex-minor” is a better name, because of the many analogies with matroid minors

discussed in Section For two sets A and B, let AAB = (A\ B)U(B\ A).

Definition 3.9. Let G = (V,E) be a graph and v € V. The graph obtained by
applying local complementation at v to G s

Gxv=(V,EA{zy:zv,yv € E,x # y}).

For an edge wv € FE, the graph obtained by pivoting uv is defined by G N uwv =
G *xux*xv*u. We call H locally equivalent to G if G can be obtained by applying a
sequence of local complementations to G. We call H a vertex-minor of G if H can be
obtained by applying a sequence of vertex deletions and local complementations to G.
We call H a pivot-minor of G if H can be obtained by applying a sequence of vertex
deletions and pivotings. A wvertex-minor H of G s called a proper verter-minor if
H has fewer vertices than G and similarly a pivot-minor H of G is called a proper
pivot-minor if H has fewer vertices than G.
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v (%

G G xwv
Figure 3.1: Local complementation
A pivoting is well-defined because G xu*v*u = G*v*xux*v if u and v are adjacent.
To prove this, we prove the following proposition that describes pivoting directly.

Proposition 3.10. For a graph H and u,v € V(H), let Hy, be a graph obtained by
exchanging u and v in H. For XY CV(H), let H* (X,Y") be the graph (V(H), E’)
where B = E(H)A{zy : x € X,y € Y,x # y}. Let G = (V, E) be a graph. For
x €V, let N(x) be the set of neighbors of x in G. Foruv € E, let Vi = N(u) NN (v),
Vo= N(u)\ N(v)\ {v}, and V3 = N(v) \ N(u) \ {v}. (See Figure3.3.) Then

G Auww = (G * (Vi,Va) * (Va, V3) * (V3, V1) )uor-
In other words, pivoting uv is an operation that,

(1) for each (z,y) € (Vi x Vo)U (Vo x V3)U (Vs x V7)), adds a new edge xy if vy ¢ E(G)
or deletes it otherwise,

(2) and then, exchanges u and v.

Figure 3.2: Pivoting
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Proof. Note that V;, V,, V3 are disjoint subsets of V(G). For a graph H and X C
V(H), let Hx(X)?=H (X, X).

Let us first consider the neighbors of v and v in G*u*v*u. The set of neighbors of u
in G is N(u) = V;UVLU{v}. The set of neighbors of v in Gxu is N(v)A(N(u)\{v}) =
VoUVsU{u}. The set of neighbors of w in Gxuxv is N(u)A(VoUV3) = Vi UV3U{v}.
Therefore, Gxuxvxu=Gx* (Vi UVoU{v})?* (Vo UVzU{u})?* (V3 UV3U{v})2

Now, we use the simple facts that G * (X UY)? = G x (X)? x (Y)? % (X,Y) for
XNY =0,Gx(X,Y)x(Z,W)=Gx(Z,W)x(X,Y),Gx(X,Y)*(X,Y) =G, and
G ({2})? = G. So, Ge(UVU{u})? = G (Vi) 5 (Va)? (Vi, Va) (Vi {0} (Va, {0}).

By applying these, we obtain the following.

Gxu*xv*u
=G * (V1, V) x (Va, V3) x (V3,11)
« (Vi, {v}) * (Va, {v}) = (Va, {u}) = (V3, {u}) * (Vi, {v}) = (V5,{v})
=G (Vi, Vo) x (Va, V3) x (V3, V1) (Va, {v}) * (Vo, {u}) * (V3, {v}) = (V3,{u})
= (G (Vi, Va) * (Va, V) * (V3, V1) Juw O

Corollary 3.11. If G is a graph and wv € E(G), then Gxu*xv*xu =G *xv*u*v.
Proof. This is immediate from Proposition [3.10} O
Corollary 3.12. If a graph G is bipartite and wv € E(G), G A uv is also bipartite.

Proof. Let Vi, V5, and V3 be sets defined in Proposition [3.10] Since G is bipartite,
Vi = 0. It does not break bipartiteness to add edges between V5, and V3. O

For a graph H, let x >~y y denote that either x = y or they are adjacent in H. Let
a®b denote (a A—=b)V (—aAb). This operation is usually called the logical “exclusive
or” operation. (Note that we use the A symbol with two meanings: one for pivoting
and another for the logical “and” operation.)

The next corollary is a reformulation of the above proposition.

Corollary 3.13. Let G be a graph and let wv € E(G). Forallx,y € V(G), * ~gruw Y
if and only if (x ~qy) ® (r g uAy~cv) ®(x 2 v AY ~cu).

Proof. 1f x = y, then it is clear.

Suppose {z,y} N {u,v} = 0 and = # y. Let Vi, V5, and V3 be sets defined in
Proposition We add or remove an edge xy if and only if there exist ¢, j € {1, 2, 3}
such that x € V;, y € V;, and ¢ # j. It is equivalent to say that (v ~¢ u Ay ~¢
V) @ (x ~g v Ay ~gu) is true.

Now, consider when one of x or y is v or v. We may assume that r = u without
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loss of generality. Then

(T ~cy) ® (@ =g uNy~cv)®(r~cvA\Yy>~gu)

= (u~gy)® (y ~gv) ® (y ~g u) because u is adjacent to v.

=y ~gv

=Y ~opuw U because we exchanged u and v.

=T =Grnw Y o

Equivalent formulations of the following proposition were independently shown by
Arratia, Bollabas, and Sorkin [I, Lemma 10] and Genest [29, Proposition 1.3.5]. But
our proof does not require much case checking.

Proposition 3.14. If vuy,vvy € E(G) are two distinct edges incident with v, then
G ANvvy Avgvg = G A vvg.

Proof. First of all, G A vv; A vivs is well-defined because v; and vy are adjacent in
G ANvvy. Let G' = G Avvy. Corollary implies that £ ~gau v if and only if

(r~cy) ®(r=guhy~cv)®(r~gvAy=~gu).

For simplicity, we write ~ instead of ~.

T G Y= (T 20 y) @ (T =g 01 Ay e v2) B (T =er 12 ANy =gy 1) (3.1)
rgy=(r2y)®@=2vAy~v)d(r=v Ay =0v) (3.2)
TG U =T >0 (3.3)
Y~gvy=(y~v) ®(y~uv)d(y~vAvy~v) (3.4)
T Ve = (T =20) B (x>v) B (x=2vAvy ~vy) (3.5)
YNV =Y XU (3.6)

Now, let us apply (3.2) — (3.6) to (3.1)). We use the fact that aA(bdc) = (anb)B(ac).

T G Y= (T2 y) @ (T = v1 Ay e 02) ® (T e va Ay = v1)
=rx=y)d(r~vAy~v)® (@2 Ay~0)
(rvAy~v)d@x=2vAy~v)d (T 2vAy>=vAvy >0

T2y BNy =) ®(r=v Ay ~0)

~

S

DAy~ v)d T2 Ay~v)@(x~2vAy~vAvy )
=
=

GAvvg Y
Therefore, * ~gavu aviv, ¥ if and only it © ~gapw, Y- ]

The following observation is fundamental.
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Proposition 3.15. Let G' = G xv. Then for every X C V(G),

pa(X) = per(X).

Proof. We may assume that v € X by the symmetry of cut-rank.

Let M = A(G)[X,V(G)\ X] and M' = A(G")[X,V(G)\ X]. It is easy to see that
M’ is obtained from M by adding the row of v to the rows of its neighbors in X.
Therefore, pa(X) = rk(M) = rk(M’) = pe/ (X). O

Corollary 3.16. If H 1is locally equivalent to G, then the rank-width of H is equal
to the rank-wundth of G. If H s a vertex-minor of G, then the rank-width of H 1is at
most the rank-width of G.

Proof. The first statement is obvious. Since vertex deletion does not increase cut-
rank, it does not increase rank-width, and therefore the second statement is true. [J

3.5 Bipartite graphs and binary matroids

In this section, we discuss the relation between branch-width of binary matroids and
rank-width of bipartite graphs. We will also discuss further properties relating binary
matroids and bipartite graphs. As an example, we will show the implication of the
grid theorem for binary matroids by Geelen, Gerards, and Whittle [2§]. The notion
of matroids was reviewed in Section 2.5

Let G = (V,E) be a bipartite graph with a bipartition V' = A U B. Let
Bin(G, A, B) be the binary matroid on V| represented by the A x V' matrix

where I4 is the A x A identity matrix. If M = Bin(G, A, B), then G is called a
fundamental graph of M.

Here is a major observation, which gives a relation between connectivity of binary
matroids and cut-rank of bipartite graphs.

Proposition 3.17. Let G = (V, E) be a bipartite graph with a bipartition V= AU B
and let M = Bin(G, A, B). Then for every X CV, Am(X) = pa(X) + 1.

Proof. Let M = A(G). First note that

M[X’V\X]:( 0 M[XﬂA,(V\X)ﬂB])

M[XNB,(V\X)NA] 0

Therefore, pg(X) = rk(M[X,V\ X]) = rk(M[XNB, (V\X)NA])+rk(M[XNA, (V\
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X) N B]). Consequently,

(X)) =r(X)+r(V\X)—r(V)+1
( 0 M[(V\X)ﬂA,XﬂB])
Ixna M[XNAXnNB]
0 M[XNA (V\X)NB
(e VAR A0 1) A
=tk(M[(V\X)NAXNB]) +1k(M[XNA (V\X)NB])+1
= pa(X) + 1. O

An easy corollary of Proposition [3.17]is the following.

Corollary 3.18. Let G = (V, E) be a bipartite graph with a bipartition V = AUB and
let M = Bin(G, A, B). Then the branch-width of M is one more than the rank-width
of G.

Proof. This is trivial because (7, £) is a branch-decomposition of M of width k + 1
if and only if it is a rank-decomposition of G of width k. [

Now, let us discuss the relation between matroid minors and graph vertex-minors.

Proposition 3.19. Let G = (V, E) be a bipartite graph with a bipartition V = AU B
and let M = Bin(G, A, B). Then

(1) Bin(G, B, A) = M*,
(2) Foruv € E(G), Bin(G ANuw, AA{u,v}, BA{u,v}) = M.

Mo  ifv e A,

(3) Bin(G\v,A\ {v}, B\ {v}) = {M\U if v e B.

Proof. Let M be the adjacency matrix of G. Then, M is represented by a matrix
(I MI[A,B]).

([: It is known that M* is represented by a matrix (M [B,A] I ) Therefore,
M* = Bin(G, B, A)

(2): We may assume that w € A, v € B. Let R = (r; 1 i € AjeV) =
(I MIA, B]) be a matrix over GF(2). (So, r;; = 1if j € B and ij € E(G) or i = j,
and r;; = 0 otherwise.) We know that elementary row operations on R do not change
the associated matroid M.

By adding the row vector of w, that is (r,; : j € V), to the rows of neighbors of
u in A, we obtain another matrix R’ = (r;j :1 € A, j € V) representing the same
matroid. We first observe that R'[A, (A \ {u})U{v}}| is an identity matrix, because
ruww = 1 and when we obtain R’, we changed all 1’s into 0’s in the column of v. We
also observe that the column vector of u, v in R is equal to the column vector of v, u
in R respectively. Moreover for i # u and j € B\ {v}, r;; # 1y if and only if r,; = 1

and r;,, = 1, or equivalently v, ju € F(G). By Proposition [3.10] we know that for
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i€ A\{u} and j € B\ {v}, ij belongs to exactly one of F(G) and E(G Awuv) if and
only if iv, ju € E(G). (Because G is bipartite, iu, jv ¢ E(G).) Moreover the set of
neighbors of u, v in G A uv is equal to the set of neighbors of v, u in G respectively.
Therefore, we conclude that M = Bin(G A uv, AA{v,w}, BA{v,w}).

(B): If v € B, by deleting the column of v in (I MIA, B]), we obtain a matrix
representation of M \ v and therefore M \ v = Bin(G \ v, A, B\ {v}).

If v € A, then M* = Bin(G, B, A), and therefore M* \ v = Bin(G, B, A\ {v})
and M /v = Bin(G, A\ {v}, B). O

Corollary 3.20. Let M be a binary matroid and G be the fundamental graph of M
with a bipartition V(G) = AU B such that M = Bin(G, A, B). If v has no neighbor
i G, then

M\ v=M/v=Bin(G\v,A\ {v}, B\ {v}).

Otherwise let w be a neighbor of v.

Y Bin(G Nvw \ v, AA{v,w}, BA{v,w} \ {v}) ifveE A,

(1) MA {Bin(G \ v, A\ {v}, B\ {v}) otherwise.

(2) MJv = {B@:n(G ANovw \ v, AA{v,w} \ {v}, BA{v,w}) ifve B,
Bin(G\ v, A\ {v}, B\ {v}) otherwise.

Note that the matroid Bin(G A vw \ v, AA{v,w} \ {v}, BA{v,w} \ {v}) is inde-
pendent of the choice of w by Proposition and (2)) of Proposition [3.19]

Proof. If v has no neighbor in G, then v is a loop or a coloop of M, and therefore
M\v = M /v. By (3) of Proposition[3.19| we deduce that Bin(G\v, A\{v}, B\{v}) =
M\ v=M/v.

Now we assume that w is a neighbor of v. By of Proposition [3.19} it is enough
to show . If v € B, then by of Proposition , we obtain that M \ v =
Bin(G\ v, A, B\ {v}). If v € A, then M = Bin(G N vw, AA{v,w}, BA{v,w}), and
therefore M \ v = Bin(G A vw, AA{v,w}, BA{v,w} \ {v}). O

Corollary 3.21. If G, H are bipartite graphs with bipartitions AU B = V(G) and
A'UB" = V(H) and Bin(H, A, B") = Bin(G, A, B), then H can be obtained by
applying a sequence of pivotings to G, and therefore H 1is locally equivalent to G.

Proof. We proceed by induction on |A’AA|.

Let M = Bin(G,A,B) = Bin(H,A’",B’). If A” = A, then G = H because M
determines every fundamental circuit with respect to A.

Now, we may assume that A’ £ A. Since A and A’ are bases of M, we may pick
we A\ Aand v € A\ A’ such that w is in the fundamental circuit of v with respect
to A’, and therefore vw € E(H). Let H = H AN vw. By of Proposition [3.19]
M = Bin(H', A’A{v,w}, B'A{v,w}). By induction, H' can be obtained by applying
a sequence of pivotings to G. Since H = H' A vw, H can be obtained by applying a
sequence of pivotings to G. n
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Corollary 3.22.

(1) Let N'; M be binary matroids, and H, G be fundamental graphs of N';, M respec-
twely. If N is a minor of M, then H is a pwot-minor of G, and therefore H is
a vertex-minor of G.

(2) Let G be a bipartite graph with a bipartition AUB =V (G). If H is a pivot-minor
of G, then there is a bipartition A’U B' = V(H) of H such that Bin(H, A, B')
is a minor of Bin(G, A, B).

Proof. We proceed by induction on |E(M)\ E(N)|. By Corollary [3.21] we may
assume that M # N. By induction, it is enough to show it when N' = M \ v or
N = M/v for v € V(G). By Corollary [3.20, either G A vw \ v for some w € V(G)
or G\ v is a fundamental graph of N. By Corollary H can be obtained from
either G A vw \ v or G\ v by applying a sequence of pivotings.

([2): By (@) and (3) of Proposition [3.19] we obtain a bipartition (A’, B') of H such
that Bin(H, A, B') is a minor of Bin(G, A, B). O

By Proposition theorems about branch-width of binary matroids give corol-
laries about rank-width of bipartite graphs. One of the recent theorems about branch-
width of binary matroids was proved by Geelen, Gerards, and Whittle. Let us recall
their theorem in the context of binary matroids. The n x n grid is a graph on the
vertex set {1,2,...,n} x {1,2,...,n} such that (z1,vy1) and (x9,ys) are adjacent if
and only if |21 — xo| + |y1 — yo| = 1.

Theorem 3.23 (Grid theorem for binary matroids [28]). For every positive
integer k, there is an integer | such that if M is a binary matroid with branch-width
at least [, then M contains a minor isomorphic to the cycle matroid of the k X k grid.

To make corollaries about rank-width from this theorem, it is helpful to replace
the £ x k grid by a planar graph whose cycle matroid has a simpler fundamental
graph. We define a planar graph R, = (V, E) (Figure as following:

V= {vlav%'“ ,'Uk-Q},
E={vwi:1<i<k®—1}U{vwi:1<i<k*—k}

We can obtain a minor of Ry isomorphic to the k& x k grid by deleting edges v;,v;x11
forall 1 <i <k —1. To show that Rj is isomorphic to a minor of the [ x [ grid for a
big [, let us cite a useful lemma by Robertson, Seymour, and Thomas.

Lemma 3.24 (Robertson, Seymour, and Thomas [50} (1.5)]). If H is a planar
graph with |V (H)| + 2|E(H)| < n, then H is isomorphic to a minor of the 2n x 2n
grid.

By this lemma, Rj is isomorphic to a minor of the 6k? x 6k? grid. Therefore,
Theorem is still true if Ry is used instead of the k x k grid.

Now, let us construct a fundamental graph Sy of the cycle matroid of Rj. Since
edges of Ry, represent elements of the cycle matroid of Ry, they are vertices of Si. Let
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Figure 3.3: R4 and 5,

a; = viviy and by = vvig,. Let A={a; : 1 <i<k*~1}and B={b; : 1 <i < k*—k}
so that A is the set of edges of a spanning tree of Rj. For each b; € B, a;b; € E(Sy)
if and only if a; is in the fundamental cycle of b; with respect to the spanning tree
of Ry with the edge set A. In summary, Sy is a bipartite graph with V(S;) = AU B
such that a;b; € E(Sy) if and only if i < j < i+ k (Figure B.3). By Corollary [3.22]
we obtain the following.

Corollary 3.25. For every positive integer k, there is an integer | such that if a
bipartite graph G has rank-width at least [, then it contains a vertex-minor isomorphic
to Sk

This corollary will be used in Chapter [5| to prove a weaker version of Seese’s
conjecture.

3.6 Inequalities on cut-rank and vertex-minors

Submodularity plays an important role in many places of combinatorics. In this
section, we prove inequalities concerning the cut-rank function.

Proposition 3.26. Let G = (V, E) be a graph and let v € V and Y1 C V. Let
M = A(G) be the adjacency matriz of G over GF(2). Then

U MRV )
R I ANV DR

Moreover, if w is a neighbor of v, then

0 M{p}V\Y\ {v}]
penvao(1) =Tk (Mm, ()] MY,V \%\ {v}] ) -

Proof. We will use elementary row operations on matrices to prove the claim. Let
N be the set of neighbors of v in G. Let J§ be a matrix (1);cajecp. We will write
J instead of J¥ if it is not confusing. Let V = V(G). Let Y, = V \ Y1 \ {v}. Let
Ly = MYy N,YsN NJ|, Lis = M[Y1 N N,Yy \ N|, Loy = M[Y; \ N,Y> N NJ|, and
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Lss = M[Y: \ N, Y3\ N]. Then
pG’*v\v(}/’l) - I'k G * U 5/17}/2 )

n+J Lo
rk( Loy )

1 111---1 000---0

0 Lii+J ng —1
0 L21 L22
1 111---1 000---0
J L11 Lo —1
0 L21 L22
(g M)
MYy, {v}]  M[Y1,Y?]

Let W be the set of neighbors of w. We may assume that w € Y; by symmetry.
Consequently w € YN (N\W). Let Ny = N\W\{w}, No = NNW, Ng=W\N,
=V \N\W\{w}. Let M;; = M[Y1NN,;,Yon N;] for all i, j € {1,2,3,4}. Then
pG/\vw\v(H) - I‘k(A(G A UUJ)[Y&, }/2])
111---1 111---1 000---0 000---0

My, Mo+ J Miz+J My
:I'k M21+J M22 M23+J M24
Mz +J Mg+ J M3 M3y
My My My My,
1 o00---0 111---1 111---1 000---0
o111---17 111---1 000---0 000---0
ok 0 My Mo+ J Miz+J My 3
0 My +J My, Moys + J Moy
0 My +J M+ J Ms3 M3y
0 My, My My3 Myy
1 000---O0 111---1 111---1 000---0
0 111---17 111---1 000---0 000---0
— 1k J My, M, M3 My 1
J My +J  My+J M3 Moy
0 My +J Msp+J Mss Msy
0 My, My My My,
0 111---1 111---1 000---0 000---0
1 000---0 111---1 111---1 000---0
— ok J My M, M3 My, 1
J My, My, M3 Moy
0 M3, M3, M3 M3y
0 My My, M3 My
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0 M[{v},Ys]

=rk — 1. ]
' (Mm,{v}] MY, Y]

The following lemma is analogous to an inequality on connectivity functions of
matroids [27), (5.2)]. Later we will show an equivalent statement in Lemma with
another proof.

Lemma 3.27. Let G be a graph and v € V(G). Suppose that (X1, X2) and (Y1,Y3)
are partitions of V(G) \ {v}. Then

pG\v(Xl) + pG*U\U(}/l) Z pG(Xl N }/1) + pG(XQ N }/2) - 1.
If w 1s a neighbor of v, then

pG\U(Xl) + :OG/\vw\v(}/l) Z pG(Xl N }/1) + pG(X2 N )/2) - 17
pG*U\U(Xl) + pG/\vw\v(E) Z pG(Xl N Yi) + PG(X2 N }/2) — 1.

Proof. We use Proposition and apply Proposition Let M = A(G) be the
adjacency matrix of G over GF(2). Then

pevo(X1) + parvune(Y1)
=rk(M[X1, Xo] + rtk(M[Y; U {v}, YoU{v}]) -1
>rk(M[X1NY, Xo U{v}UYs] +rk(M[X; U{v}UY, YonN X5)]) —1
= pg(Xl N }/1> + pG(Xg N Yé) —1.
Moreover,
peve(X1) + pewno (Y1)
_ 1 M[{v}, Y]
= rk(M[X1, X5] + 1k (M[Yl, Wl MY, Yy ) -1
>rk(M[X;NY, Xo U{v} UYs]) +rk(M[X; U{v}UY;, Yo N Xy)) —1
= pa(X1NY1) + pa(X2NYs) — 1.

Since G x v A vw = G N\ vw * w, we obtain that
GxvAvw\v=GAvw\v*w.
Let H = G xv. We deduce that
P\ (X1) + prrvw\o (Y1) = pr (X1 N Y1) + pr(XoNYs) — 1.

Therefore pG*v\v(Xl) + pG/\vw\v*w(Yl) > pG*v(Xl N }/1) + pG’*v(XQ N Yv?) — 1. We note
that pp..(Z) = pu(Z) for every graph H, x € V(H), and Z C V(H). O



CHAPTER 3. RANK-WIDTH AND VERTEX-MINORS 35

3.7 Tutte’s linking theorem

In this section, we prove a theorem analogous to Tutte’s linking theorem [57]. In
the following theorem, we show that the minimum cut-rank of cuts separating two
disjoint sets X, Y of vertices of a graph G is equal to the maximum cut-rank of X in
all vertex-minors of G having X UY as the set of vertices.

Theorem 3.28. Let G be a graph and X, Y be disjoint subsets of V(G). The following
are equivalent.

| -
S

(2) There exists a vertex-minor G' of G such that V(G') = X UY and pe(X) > k.
(3) There exists a pivot-minor G' of G such that V(G') = X UY and per(X) > k.

Proof. ([2)=(1): We may assume that G’ is an induced subgraph of G by applying
local complementations to G. For all Z satisfying X C Z C V(G) \ Y, we have

k< par(X) = pa(X,Y) < po(Z,V(G)\ Z) = pa(Z).

:>: Trivial.

()=(): We proceed by induction on |[V(G) \ (X UY)|. Suppose there is no
such graph G'. If X UY = V(G), then it is trivial. Let z € V(G) \ (X UY).
If x has no neighbor, then pe\.(Z) = pa(Z) for all Z C V(G) \ {z}. Therefore,
minyczcv@\y Pc(Z) = minxczcven =y Pa\e(Z).

So, we may assume that x has a neighbor y. By induction, there exists A C
V(G) \ {z} such that pe\,(A) < k — 1. Also, there exists B C V(G) \ {} such that
Perey\e(B) < k—1. By Lemma [3.27, either pg(ANB) < k—1or pa(AUB) < k—1.
Consequently, minyczcve)y pa(Z) < k — 1. O

We can deduce Tutte’s linking theorem for binary matroids from the above theo-
rem. Here is the statement of Tutte’s linking theorem for binary matroids.

Corollary 3.29. Let M = (E,Z) be a binary matroid and let X, Y be disjoint subsets
of E. Then
min  Ay(Z) >k

XCZCE\Y

if and only if there is a minor M’ of M such that E(M') = X UY and A (X) > k.

Proof. Let G be a bipartite graph with a bipartition A U B = V(G) such that
Bin(G, A, B) = M. There exists a minor M’ of M such that E(M’) = X UY and
A (X)) > k if and only if there exists a pivot-minor H of G such that V(H) = XUY
and py(X) > k—1 by Corollary . The remaining proof is routine by Proposition

and Proposition [3.28 O



Chapter 4

Testing Vertex-minors

For fixed graph H, Robertson and Seymour gave a O(|V (G)|?)-time algorithm to test
whether the input graph G contains H as a minor in [49]. We may ask the same
question for vertex-minors, but are not yet able to answer this question completely.
However, we show a polynomial-time algorithm that works only for graphs of bounded
rank-width, by using a logic formula describing vertex-minors. To construct these
logic formulas, we use the notion of isotropic systems and their minors. Informally
speaking, isotropic systems are equivalence classes of graphs by local equivalence.
Therefore, it enables us to describe vertex-minors in terms of minors of isotropic
systems. In Section [4.1] we review the notion of isotropic systems. In Section [4.2] we
review monadic second-order logic formulas. In Section [4.3] we discuss an algorithm
evaluating monadic second-order logic formulas. By combining these sections, we will
build monadic-second order logic formulas describing vertex-minors in Section 4.4

4.1 Review on isotropic systems

In this section, the notion of isotropic systems and a few useful theorems will be
reviewed. All materials are from Bouchet’s papers [4, B, [7]. We change a little
notation for readability; in particular, Bouchet used capital letters to denote vectors,
and we use small letters.

4.1.1 Definition of isotropic systems

Let us begin with a definition for vector spaces. For a vector space W with a bilinear
form (, ), a subspace L of W is called totally isotropic if and only if (x,y) = 0 for all
x,y € L.

Let K = {0,a,3,7} be the two-dimensional vector space over GF(2) with the
bilinear form (, ) such that o + 3+ v = 0 and

1 ifez#yand z,y#0
(z,y) =

0 otherwise.

36
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Let V be a finite set. Let KV be the set of functions from V to K, and so KV is
a vector space over GF(2). We attach the following bilinear form to KV:

for v,y € KV, (a,y) = Z(x(v),y(v)) € GF(2).

Definition 4.1 (Bouchet [4]). We call S = (V, L) an isotropic system if V is a
finite set and L is a totally isotropic subspace of KV with dim(L) = |V|. We call V
the element set of S.

Let us define some notation. For X C V, let px : KV — KX be the canonical
projection such that

(px(a))(v) = a(v) forallve X and a € KV.

For a € KV and X CV, a[X] is a vector in K" such that

{a(v) ifve X,

X1(v) =
alX]) 0 otherwise.

We note that px(a) should not be confused with a[X]. While px(a) is a vector
in K%, a[X] is a vector in KV. Let L be a subspace of K" and v € V. Let

v e K\ {0} = {o .},
e Let L+ be the subspace of KV such that

LY ={2c KV :{(z,y)=0forally € L}.

e Let L|” be the subspace of K" \{*} such that

L|; = {pv\juy(a) : a € L,a(v) = 0 or x}.

e Let L|cx, L|x be the subspaces of KX such that

Licx ={px(a) :a € L,a(v) =0forallve V\ X}
Lix ={px(a) :a € L}

We remark that every totally isotropic subspace L of KV has dimension at most |V/|

because
2dim(L) < dim(L) + dim(L*) = 2|V|.

Therefore |V is the maximum possible dimension that totally isotropic subspaces can
achieve.

Two vectors a,b € KV are called supplementary if {a(v),b(v)) =1 for all v € V.
We call a € KV complete if a(v) # 0 for all v € V. For X C V and a complete vector
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a of KX, L|X is the subspace of KV\X such that
LIX = {pv\x(d) : b € L,b(v) € {a(v),0} for all v € X}.

Note that L[} |72 (53 - - |2 = L|;{EU1’U2 """ U} where 2 € K{#1@2--@} guch that z(v;) = z;.

2 lx3

Definition 4.2 (Bouchet [4, (8.1)]). Let S = (V, L) be an isotropic system and
veV. Forxe K\{0}, S|Y = (V\{v}, L) is called an elementary minor of S. An
isotropic system S’ is called a minor of S if S’ can be obtained from S by applying a
sequence of elementary minor operations; in other words,

! V1 |v2 |U3
S = slalals -

Vi
z2lxs T
for xy,xq,. ..z, € K\ {0} and distinct vy,vq,..., v € V.

Bouchet proved that an elementary minor of an isotropic system is again an
isotropic system. We show the proof for the completeness of this thesis.

Proposition 4.3 (Bouchet [4, (8.1)]). Let S = (V, L) be an isotropic system and
veV. Foreach x € K\ {0}, S|Y is an isotropic system.

Proof. Tt is easy to see that L|Y is a subspace of KV \"} because a + b € L|? for all
a,b € L|Y. Moreover L|! is totally isotropic, because if (a(v),b(v)) = 0, then

(P03 (@), Py} (D)) = (a, b)

for all a,b € K.

We claim that dim(L|2) = |V| — 1. We have dim(L|%) < |V| — 1, because L|! is a
totally isotropic subspace of KM%}, Let B be a basis of L. Since dim(L) = |V|, B
should contain at least one vector with a nonzero value at v. However we may assume
that at most two vectors in B have nonzero values at v because a + o = 3+ 3 =
Y+y=a+B+v=0.

If B has only one vector a with a(v) # 0, then {py\,1(b) : b(v) = 0,0 € B} is
independent in L|? and we deduce that dim(L|%) > |V| — 1.

Now let us assume that B has exactly two vectors aj, ay with a;(v), as(v) # 0.
Let B\ {a1,a2} = {as,aq,...,a;y|}. We may assume that a;(v) # as(v) because
we can exchange ay by as + a;. We may assume that ai(v) = x or ay(v) = =
because otherwise a1(v) + as(v) = . We may assume that as(v) = x. We claim
that {py\(u1(a;) : 2 <@ < |V} is independent in L|}. Suppose not. There exists
W such that 0 # W C {2,3,...,|V|} and Y,y pv\uy(a;) = 0. It is clear that
{pv\qy(a;) : 3 < i < |V} is independent, and therefore 2 € W. Since B is a basis of

L,
£ —
(Z) (w) = { A
by 0 otherwise.
Then we obtain (a1, ;. @) = 1, which is a contradiction because L is totally

isotropic and ) .y, a; € L. Therefore, dim(L[}) > |[V] — 1. O
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4.1.2 Fundamental basis and fundamental graphs

The connection between isotropic systems and graphs was also studied by Bouchet [5].

Definition 4.4 (Bouchet [5]). We call x € KV an Eulerian vector of an isotropic
system S = (V, L) if

(i) x is complete and
(ii) @ # P CV implies x[P] ¢ L.

Proposition 4.5 (Bouchet [5, (4.1)]). For every complete vector ¢ of KV, there
1s an Fulerian vector a of S, supplementary to c.

Proof. Let S = (V, L) be an isotropic system. We proceed by induction on |V]. Let
v € V. By symmetry, we may assume that c¢(v) = . If |V| < 1, then it is trivial.
Suppose that S does not have an Eulerian vector. For z € KY\"} and y € K, we let
z®y € K be a vector such that py 1 (z @ y) =z and (z @ y)(v) = y.

Let a be an Eulerian vector of S|Y. Since a © a is not Eulerian, there exists a
nonempty set X C V such that (a @ «)[X] € L. Since a is an Eulerian vector of
S|%, we conclude that v € X. Similarly we have a nonempty set Y C V' such that
(a® P)[Y] € L and v € Y. By adding two vectors, we obtain

(@@ )X+ (e @ F)Y] = (a[XAY]) © v € L,

and therefore a[XAY] € L|}. Since a is an Eulerian vector of S|, XAY = () and
therefore X =Y. But ((a ® a)[X], (a® B)[Y]) = (a, B) = 1, contrary to the fact that
L is totally isotropic. O]

Proposition 4.6 (Bouchet [5, (4.3)]). Let a be an Eulerian vector of an isotropic
system S = (V, L). For every v € V, there exists a unique vector b, € L such that

(i) bo(v) # 0,
(i) b,(w) € {0,a(w)} for w # v.

Moreover, the set {b, : v € V'} is a basis of L. We call {b, : v € V'} the fundamental
basis of L with respect to a.

Proof. Existence: Let 6 denote a vector in KV such that 6%(w) = 0 if w # v and
dy(v) = x. Let W be a vector space spanned by {4, : w € V}. It is clear that
dim(W) =|V|. Let L+ W ={zx+y:z € L,y € W}. Since a is Eulerian, LNW = {)
and therefore

dim(L + W) = dim(L) + dim(W) = 2|V,

and so KV = L+W. Let z € K\ {0,a(v)}. We can express §° = x+y for some z € L
and y € W. For all w # v, 0 = (87, 0,,)) = (,05,,) and therefore z(w) € {0, a(w)}.

27 Ya(w) ’ Ya(w)

Moreover 1 = (87,0, ) = (x,d;,)) implies that z(v) # 0. We let b, = z.

27 Ya( ) Ya(v)
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Uniqueness: Suppose b,, b, satisfy two conditions. Then,

0 = (bu, by,) = (bu(v), b, ().

So, b,(v) = b (v) and therefore b, — b = a[P] for some P C V. Since a is Eulerian,
P=0and b, =0.

Independence: Suppose it is dependent. There exists ) # I C V such that
> werby = 0. Choose w € I. > ;by(w) = by(w) + 3 1, bo(w) = by(w) or
by (w) + a(w). Both are non-zero, because b, (w) # a(v). A contradiction. O

It is straightforward to construct an isotropic system from every graph.

Proposition 4.7 (Bouchet [5, (3.1)]). Let G = (V, E) be a graph and a,b be a
pair of supplementary vectors of KV. Let ng(v) be the set of neighbors of v. Let L
be the subspace of KV spanned by {a[ng(v)] +b[{v}] :v € V}. Then S = (V,L) is an
isotropic system. We call (G, a,b) a graphic presentation of S.

Proof. 1t is enough to show that L is totally isotropic and dim(L) = |V].
For distinct v,w € V',

(alng(v)] + b[{v}]; alng(w)] + b[{w}]) = (alne(v)], b{w}]) + (bl{v}], alng(w)]) =0

because alng(v)](w) # 0 if and only if a[ng(w)](v) # 0. Therefore L is totally
isotropic.

We claim that, for a subset W of V, if s = " . (a[ng(w)] + b[{w}]) = 0, then
W = 0. Suppose v € W. Then s(v) € {b(v),b(v) + a(v)}. Since b(v) # 0 and
b(v) + a(v) # 0, we conclude that s # 0.

So {a[ng(v)] + b[{v}] : v € V'} is independent and therefore dim(L) = |V]. O

It is interesting that the reverse direction also holds. Suppose an isotropic system
S = (V, L) is given with an Eulerian vector a. Let {b, : v € V'} be the fundamental
basis of S = (V, L) with respect to a. Let G = (V, E) be a graph such that vw € E
if and only if v # w and b,(w) # 0. Since (b,,b,) = 0, b,(w) # 0 if and only if
by, (v) # 0, and therefore G is undirected. We call G a fundamental graph of S with
respect to a. In fact, if S has a graphic presentation (G, a,b), then G is a fundamental
graph of S with respect to a.

Bouchet [5, (7.6)] showed that if (G, a,b) is a graphic presentation of an isotropic
system S = (V, L) and v € V, then

(G xv,a+ b[{v}],a[ng(v)] + b)

is also a graphic presentation of S. Thus, local complementations do not change the
associated isotropic system. If G and H are locally equivalent, associated isotropic
systems can be chosen to be same by an appropriate choice of supplementary vectors.
He also showed that if uv € E(G), then

(G ANuv,alV\ {u,v}] + b[{u,v}],b[V \ {u,v}] + a[{u,v}])
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is a graphic presentation of S. This fact will be used in Section [6.6]
A minor of an isotropic system is closely related to a vertex-minor of its funda-
mental graph as follows.

Proposition 4.8 (Bouchet [5, (9.1)]). Let G be a graph and ng(v) be the set
of neighbors of v in G. If (G,a,b) is a graphic presentation of an isotropic system
S = (V, L), then one of the following is a graphic presentation of an elementary minor
Sy,

(i) (G\ v,pv\(uy(a), P\ (b)) if either x = a(v) or x = b(v) and v is an isolated
vertex of G,

(i) (G Avw\ v, vy (alV\ {v, wi] + b[{v, w}]), Py BV \ {v, w}] + al{v, w}]))

if x = b(v) and there is a neighbor w of v in G,

(iii) (G * v\ v, p\juy(a), Py (b + alng(v)])) otherwise.

Proof. We know that (G,a,b), (G *v,a + b[{v}],a[ng(v)] +b), and (G A vw,alV \
{v,w}+b[{v,w}],b[V\{v,w}] +a[{v,w}]) (if vw € E(G)) are graphic presentations
of S. Therefore it is enough to show (i).

If v is an isolated vertex of G and = = b(v), then b[{v}] € L. Since every vector
c € L satisfies (c,b[{v}]) =0, c(v) € {0,b(v)} for all ¢ € L. Moreover if c¢(v) = b(v)
for c € L, then ¢ — b[{v}] € L. Therefore S[; ) = S|},

Now we may assume that @ = a(v). Let @’ = py\(y(a) and 0’ = py\ gy (). For
all w € V '\ {v}, since a[ng(w)] + b[{w}] € L, (a[ng(w)] + b[{w}])(v) € {0,z}, and
Py (alna ()] + H[{w}) = @l (W) + ¥ [{w}], we have o' [ngyo(w)] +¥({w}] € LI
Therefore (G'\ v,d’, V') is a graphic presentation of S|?. O

Corollary 4.9. If we have two isotropic systems Sy and Sy such that Sy is a minor of
Sy, then every fundamental graph of Sy is a vertex-minor of each fundamental graph
of Sy. Conversely, if G is a vertex-minor of a fundamental graph of an isotropic
system So, then there exists a minor of Se having G as a fundamental graph.

Note that the choice of w in Proposition does not affect the isotropic system
because of Proposition [3.14]

4.1.3 Connectivity

For a subspace L of KV, let A(L) = |V| — dim(L). We recall from Subsection [4.1.1]
that for X C V', we define L|cx = {px(a) :a € L,a(v) =0 forallv e V'\ X}.

Definition 4.10 (Bouchet [7]). For an isotropic system S = (V,L), we call ¢ :
V' — 7Z a connectivity function if ¢(X) = A(L|cx) = |X| — dim(L|cx).

If L is a totally isotropic subspace of KV, then L|cx is also a totally isotropic
subspace of KX. Thus, dim(L|cy) < | X|, and therefore ¢(X) > 0.

Bouchet observed the following proposition stating that the connectivity function
of an isotropic system is equal to the cut-rank function of its fundamental graph.
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Proposition 4.11 (Bouchet [7, Theorem 6]). Let a be an Eulerian vector of an
isotropic system S = (V, L) and let ¢ be the connectivity function of S. Let G be the
fundamental graph of S with respect to a. Then, ¢(X) = pa(X) for all X C V.

Proof. Let M be the adjacency matrix of G over GF(2). Let A = M[X,V \ X]. We
have
rk(A) = | X| — nullity(A),

where the nullity of A is the dimension of the null space {P € 2% : AP = 0}. (We
consider 2% as a vector space over GF(2).)

Let {b, : v € V'} be the fundamental basis of L with respect to a. Let ¢ : 2V — L
be a linear transformation with ¢(P) = > _pb,. Then, ¢ is an isomorphism and
therefore we have the following;:

dim(L|cy) = dim({z € L : pnx(z) = 0})
= dim( ({:c eL: pV\X = 0}

— dim ({PCV UGZPPV\X })
:dim<{PCX vezpng X) = })

=dim({P € 2¥ : AP = 0})
= nullity(A).

Therefore, ¢(X) = | X| — dim(L|cx) = | X| — nullity(A) = rk(A) = pa(X). O

By this property, we notice that ¢(X) = ¢(V\ X) and ¢(X) +¢(Y) > (X NY) +
c¢(X UY). Since ¢ is symmetric submodular, it is straightforward to define branch-
decomposition and branch-width of an isotropic system S = (V,L). We call (T, L)
a branch-decomposition of S if it is a branch-decomposition of c¢. The branch-width
bw(.S) of S is the branch-width of ¢. It is easy to see that branch-width of an isotropic
system is equal to rank-width of its fundamental graph by Proposition [4.11]

4.2 Monadic second-order logic formulas

In this section, we review basics of monadic second-order logic formulas (MS logic
formulas), transformations of relational structures expressed in this language, and its
extensions. We will also discuss its relation to clique-width. For the main definitions
and results on MS logic formulas and some examples of formulas, the reader is referred
to the book chapter [15] written by Courcelle. Since we are interested only in the
application to rank-width, we will not review in full detail, and therefore definitions
will be simplified.
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4.2.1 Relational structures

Let D be a finite set. A function A : D™ — {true, false} is called a relation symbol
on D with arity m. Similarly a function A : (2P)™ — {true, false} is called a set
predicate on D with arity m.

A pair S = (D, {A;, As, ..., A}) is called a relational structure if

(i) D is a finite set,
(ii) A, is either a set predicate on D or a relation symbol on D for each i.

We would write S = (D, Ay, A, ..., Ag) if it is not ambiguous.

In general, we are interested in logic formulas described on relational structures
so that we can express properties of our objects. We give two examples in which we
construct relational structures from objects so that we preserve all information about
objects.

Example 4.12 (Graphs; Courcelle [14), Definition 1.7]). Let G = (V, E) be a
graph. Let edg be a relation symbol on V with arity two such that edg(vy, vo) is true
if and only if v1 and vy are adjacent in G. Then, G is represented by a relational
structure (V, edg).

Example 4.13 (Matroids; Hlinény [33), 34]). Let M = (E,I) be a matroid. Let
Indep be a set predicate on E with arity one such that Indep(F') is true if and only if
F' is independent in M. Then, M is represented by a relational structure (F,Indep).

As you can see, there could be many ways to describe an object in terms of
relational structures. For instance, we could introduce Base(F') to test whether F is
a base of M for matroids so that we express M by a relational structure (£, Base).
Graphs also have many ways to be described as relational structures. In the next
example, we describe another way of expressing graphs.

Example 4.14 (Graphs; Courcelle [14,, Definition 1.7]). Let G = (V, E) be a
graph. Let inc be a relation symbol on V U E with arity three such that inc(x,y, z) is
true if and only if x and z are the ends of y. Then, G is represented by a relational
structure (V U E,inc).

To distinguish different relational structures on the same object, we sometimes
write that a relational structure (D, {A1, Aa, ..., Ax})isa{Ay, As, ..., Ap}-structure.
For instance, in Example , we describe graphs by {edg}-structures, but in Exam-
ple [£.14] graphs were described by {inc}-structures; however, both keep all informa-
tion on graphs.

We will discuss relational structures expressing isotropic systems in Section [4.4]

4.2.2 Monadic second-order logic formulas

Let (D,{A;, Ay, ..., Ar}) be a relational structure. A variable is called a first-order
variable if it denotes an element of D, and is called a set variable if it denotes a
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subset of D. Monadic second-order logic formulas (MS logic formulas) on this rela-
tional structure are logic formulas written by using 3, V, A, =, V, €, true, and A;
with first-order variables and set variables. More formally, we may recursively define
monadic second-order logic formulas on the relational structure (D, { A1, A, ..., Ax})
as follows.

(i) true is an MS logic formula.
(ii) If z and y are first-order variables, then = = y is an MS logic formula.

(iii) If z is a first-order variable and Y is a set variable, then x € Y is an MS logic
formula.

(iv) If A; is a relation symbol with arity m, then A;(xy, 2o, ..., 2,) is an MS logic
formula with m first-order variables x1, xo, ..., .

(v) If A; is a set predicate with arity m, then A;(X;, Xo,..., X,,) is an MS logic
formula with m set variables X;, Xo, ..., X,,.

(vi) If ¢ is an MS logic formula, then so is —p.
(vii) If 1 and ¢y are MS logic formulas, then so are (p; A ¢2) and (1 V p2).

(viii) If 2 is a first-order variable and ¢ is an MS logic formula with no 3z and no Vz,
then dx ¢ and Vx ¢ are MS logic formulas.

(ix) If X is a set variable and ¢ is an MS logic formula with no 3X and no VX, then
3X p, VX ¢ are MS logic formulas.

We call a variable z a free variable of an MS logic formula ¢ if ¢ does not have Jdx or
Vx in its expression but it uses x. If an MS logic formula ¢ has no free variable, then
we call ¢ a closed MS logic formula. By convention, uppercase alphabets denote set
variables and lowercase alphabets denote first-order variables.

Example 4.15. Let (E,Indep) be a relational structure representing a matroid M as
in Ezample[{.13. For a subset X of E, we can write an MS logic formula ¢(X) on
this relational structure describing whether X is a base of M. To make it short, we
write A C B forVz((—z € A) V (z € B)). Then,

©(X) = Indep(X) AVY (=(Indep(Y)ANX CY)VY C X).

In this formula, X is a free variable and Y is not. Since p(X) has a free variable,
w(X) s not closed.

We now extend MS logic formulas. We define a set predicate Even such that
Even(X) is true if and only |X| is even. By allowing Even(X) to the definition of
MS logic formulas, we obtain a definition of modulo-2 counting monadic second-order
logic formulas (CyMS logic formulas). Similarly for p > 1, let Card,(X) be a set
predicate meaning |X| = 0 (mod p). If we allow Card,(X) in the definition of MS
logic formulas, we obtain a definition of counting monadic second-order logic formulas
(CMS logic formulas).
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4.2.3 MS theory and MS satisfiability problem for graphs

Let C be a set of graphs. We may consider C as a set of {edg}-structures (see Example
4.12). A MS satisfiability problem for C is the following decision problem:

Given a closed MS logic formula ¢, is there a graph in C satisfying ¢?

This problem is called decidable if there is an algorithm that answers the problem
for all MS logic formulas. We may reformulate decidability of the above problem as
decidability of the following problem:

Given a closed MS logic formula ¢, do all graphs in C satisfy ¢?

If this problem is decidable, then we say that C has a decidable monadic second-order
theory (decidable MS theory). If ¢ is a closed MS logic formula, then so is =, and
therefore C has a decidable MS theory if and only if it has a decidable satisfiability
problem. Similarly we define Cy MS satisfiability problem, CMS satisfiability problem,
decidable Co MS theory, and decidable CMS theory by using appropriate logic formulas
in definitions.

The above definitions use closed MS logic formulas on {edg}-structures of graphs.
If we use {inc}-structures of graphs instead (see Example [4.14)), then we obtain the
definition of MS; satisfiability problem and decidable MS; theory of graphs.

In Chapter , we will discuss the following conjecture by D. Seese [52]: if a set of
graphs has a decidable MS satisfiability problem, then it has bounded rank-width.

4.2.4 Transductions of relational structures

We now introduce MS transductions, transformations of relational structures that can
be formalized in MS logic (or its extensions). We will only need its restricted form. For
more about MS transductions, we refer the reader to surveys by B. Courcelle [13] [15].

Let R ={A1,As,..., Ax} and Q = { By, Ba, ..., B;} be two finite sets of relation
symbols or set predicates. A function

7 : {all R-structures} — 2{all @-structures}

with parameters Y1,Ys,...,Y; is called a monadic second-order transduction (MS
transduction) if there is a triple A = (¢, 1, {0p,,08,, - ,05,}) of MS logic formulas
on R-structures such that the following two conditions are equivalent for every R-
structure S = (Dg, R):

(1) A @Q-structure 7' = (Dr, Q) is in 7(5).

(2) There exist Y7,Ys,...,Y; € Dg satisfying the following four conditions. (If
Y1,...,Y; satisfy these four conditions, we write T' = defa (S, (Y1,Y2,...,Y))).)

o o(Y1,Ys,...,Y;) is true on S,
e Dr={z € Dg:¢(Y1,Ys,...,Y},x) is true on S},
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o if B; is a relation symbol with arity m, then 0, is an MS logic formula on
R-structures with arity m + j such that

Bi(xlax% .. 7xm) = QBZ-<)/17)/27 s JY;'?'rlvaJ R 7$m)7

o if B; is a set predicate with arity m, then 0p, is an MS logic formula on
R-structures with arity m + 7 such that
Bi(X17X27 s 7Xm) = (932.(}/1, )/27 s 7}/}7X17X27 s 7Xm)

The triple A = (p,¢,{0p,,05,, -+ ,0p,}) is called a definition scheme of an MS

transduction 7. If a definition scheme A defines an MS transduction 7, then we write
T = defA.

If we allow logic formulas in definition scheme to be CoMS logic formulas or CMS

logic formulas, then we obtain definitions of CoMS transductions, CoMS definition

schemes, or CMS transductions, CMS definition schemes respectively. We note that

every MS transduction is a CoMS transduction and every CoMS transduction is a
CMS transduction.

Example 4.16 (Induced subgraph). Let G = (V, E) be a graph andY be a subset
of V. We write G[Y] be a subgraph of G induced by V', which is a graph obtained by
deleting vertices in V\'Y. In this example, we would like to show an MS transduction
T that maps a graph into the set of its induced subgraphs. We assume that G is given
by its {edg}-structure. We have one parameter Y to define induced subgraphs. We
first show its definition scheme A = (¢, 1, Oedg)-

(i) oY) = true, (Every Y would induce an induced subgraph.)
(i) v(Y,z) = (x €Y), (The set of vertices of G[Y] is Y.)
(ili) beqg(Y,z,y) = edg(z,y). (Edges are preserved if v,y € Y.)

Let 7 : {all R-structures} — 2fall @structures} 16 an MS transduction with pa-
rameters Y7,Ys,...,Y;. Let S be a R-structure and $ be an MS logic formula on
@-structures with free variables xq, xo, ..., xx, X1, Xo, ..., X;. Suppose that we want
to evaluate § on a @-structure 7' € 7(.5). Since the definition scheme of 7 describes
all set predicates and relational symbols of @)-structures in terms of MS logic formulas
in R-structures, we obtain the following proposition.

Proposition 4.17 (Courcelle [13], 15]). Let

7 : {all R-structures} — olall @-structures}

be an MS transduction with parameters Yi,Ys,...,Y;, giwven by a definition scheme
A = (¢,9,(05)Beg). Let S be a R-structure and 3 be an MS logic formula on Q-
structures with free variables x1,xo, ..., xg, X1, Xo,..., X|.

Then there is an MS logic formula 3% on R-structures such that S satisfies
ﬂ#(}/h}/% s 7}/]'7 L1, X2y .oy Ty Xl; X27 R 7Xl) Zf and Only Zf
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o o(Y1,Ys,...,Y;) is true on S, (so that defa(S, (Y1,...,Y;)) is well-defined)

o [B(z1,29,..., 25, X1, Xo, ..., X)) is true onT = (Dr, Q) = defa(S, (Y1,...,Y))),
e z; € Dy for alli (or ¢(x;) is true on S), and

e X; C Dy for alli.

We call 8% the backwards translation of 3 relative to the MS transduction 7.
Similarly CoMS transductions will induce a CoMS logic formula % on T € 7(S) for
a CoMS logic formula 3 on S.

We describe two terminologies. For an MS transduction 7 : {all R-structures} —
fall @-structwres} and 5 set C of R-structures, the set Ugeer(S) is called the image
of C under 7. For two MS (or, CoMS) transductions 7y : {all R-structures} —
fall @-structures} and 7, : {all Q-structures} — 2fall P-structures} "o define the compo-
sition of T, and 7, as a function 75 o 7y : {all R-structures} — 2{all P-structures} 5chy
that (7'2 o Tl)(S) = UTETI(S)TQ(T).

Proposition 4.18 (Courcelle [13] 15]).

(1) If a set of relational structures has a decidable MS satisfiability problem (respec-
tiely, CoMS satisfiability problem), then so does its image under an MS trans-
duction (respectively, under a CoMS transduction).

(2) The composition of two MS transductions (respectively, of two CyMS transduc-
tions) is an MS transduction (respectively, a CoMS transduction).

Proof. We only prove . Let C be a set of relational structures having a decidable
MS satisfiability problem, and 7 be an MS transduction with parameters Y, ..., Y.
For a given closed MS formula 3, we want to know whether there exist S € C and
T € 7(S) such that § is true on T. Since  has no free variables, it is equivalent
to ask whether there exists S € C such that 3Y,3Y5 - - 3Y, f#(V1, Vs, ..., Y,) is true
on S. Since C has a decidable MS satisfiability problem, there is an algorithm that
answers this problem. O

4.3 Evaluation of CMS formulas

In this section, we review why and how CMS formulas can be evaluated in linear time
on a set of graphs of bounded clique-width if graphs are given by their k-expressions.
The quantifier height qh(p) of a CMS formula ¢ is defined recursively as follows.

(i) qh(p) = 0 if ¢ is atomic, which means that ¢ is of the form x =y or x € X or
Card,(X) or A(uy, -+ ,uy,) or A(Uy,---,U,).

(ii) qh(=¢) = qh(p).

(iil) qh(er A w2) = qh(pr V ¢2) = max{qh(e1), gh(2)}.
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(iv) qh(3uyp) = qh(Vu ) = qh(3IU ¢) = gh(VU ¢) = 1 + qh(yp).

Let C,MS"(R, D) be the set of all closed CMS formulas on R-structures having quan-
tifier height at most h with no Card, for all ¢ larger than p. Clearly this set is infinite
because if it contains a formula ¢, then it contains also all formulas of the form
©VpV---Ve. However all these formulas are equivalent. In [21], Proposition A.8], it
is explained that there is an algorithm to transform every formula ¢ in C,MS"(R, ()
to its canonical formula Can(yp) in C,MS"(R, () such that ¢ and Can(p) have the
same truth value for every R-structure and moreover the set of canonical formulas,
Can(C,MS"(R,)), is finite. However, the cardinality of Can(C,MS"(R,)) is a tower
of exponentials of height proportional to h.
For every p, R, h as above and every R-structure S, we let

Thy, rn(S) = {p € Can(C,MS"(R, 1)) : S satisfies ©}.

We call it the (p, R, h)-theory of S. There are thus finitely many (p, R, h)-theories
because it is a subset of a finite set, and each of them is a finite set of formulas.
A k-graph G = (Vg, Eg,labg) may be represented by the relational structure

<VG7 edgG7 Pigy -+ ka>7

(also denoted by G) such that edg, is the edge relation and p,;(z) holds if and only
if lab(z) = 4. The following proposition summarizes well-known results.

Proposition 4.19 (Courcelle [I5, Theorem 5.7.5]). Let k be a fized positive
mnteger.

(1) Let R = {edg, py, ..., Py} withedg of arity two and p; of arity one. For all positive
integers p, h,i,j (wherei,j € {1,2,...,k} and i # j), there exist mappings fr.e,
fimss fup., on subsets of Can(C,MS"(R,0)) such that for all k-graphs G and
H,

Thy,rua(1:(G)) = frm,; (Thy ra(G)),
Thy, rn(pi—i(G)) = frpie,;, (Thy ra(G)),
Thy pn(G® H) = fre(Thy, rn(G), Thy g y(H)).

(2) If a graph G is given as val(t) for a k-expression t, then Thy, g, (G) can be com-
puted in time proportional to the size of t.

(3) For every closed CMS logic formula on {edg}-structures, there is a O(n)-time
algorithm that evaluates this formula on the n-vertex input graph of clique-width
at most k, if the input graph is given by its k-expression.

Proof. Let us observe that the mapping 7; ; is a quantifier-free transduction, which
means that its definition scheme consists of MS logic formulas without quantifiers
and without parameters. From the proof of Proposition [4.17] it follows that the
backwards translation (denoted by #) associated with 7; ; does not increase quantifier
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height and does not introduce new Card, set predicates. Hence for every formula
¢ in C,MS"(R,0), we have n; ;(G) satisfies ¢ if and only if G satisfies ¢*. It is
also equivalent to a statement that G satisfies Can(o*). Note that ¢# belongs to
C,MS"(R,0).

Hence, we can take, for every subset ® of Can(C,MS"(R,0)),

Jiem, (@) ={p € Can(C,MS"(R,0)) : Can(p*) € ®}.

The proof is similar for p;_;.

The case of @ is a particular case of a result by Feferman, Vaught and Shelah.
The proof is in [12, Lemma (4.5)]. There is a nice survey by Makowsky [40] dealing
with the history and the numerous consequences of this result.

Consider a graph G = val(t) where ¢ is a k-expression.

Each set Thy, g p(val(-;)) can be computed from the definitions. Then, using
one can compute Th, g, (val(t)) by induction on the structure of ¢.

To know whether G satisfies ¢, we compute the set Thy, g ,(val(t)) by (2) where
p and h are the smallest integers such that ¢ € C,MS"(R,). Then one determines
whether Can(y) belongs to Thy, g ,(val(t)), which gives the answer. O

This method applies to optimization and enumeration (counting) problems for-
malized in monadic second-order logic. We refer the reader to [40].

4.4 Vertex-minors through isotropic systems

We describe relational structures for expressing isotropic systems. Let S = (V, L) be
an isotropic system. Let &, 3,7 be vectors in K" such that a(v) = «, 8(v) = 3, and
¥(v) =~ for all v € V. A triple (X,Y, Z) of pairwise disjoint subsets of V' is called a
set representation of a € KV if a = a[X] + B[Y] +7[Z].

Let Member be a set predicate on V' with arity three such that Member(X,Y, Z)
is true if and only if (X,Y,Z7) is a set representation of a vector in L. Then, the
isotropic system S is represented by a relational structure (V, Member).

We will show that there is a CoMS transduction that maps a graph to the set
of its all vertex-minors by using isotropic systems. This will imply that for a fixed
graph H, there is a CoMS logic formula that describes whether H is isomorphic to a
vertex-minor of G.

4.4.1 Fundamental graphs by C;MS logic formulas

We briefly recall Subsection We know that a graph G = (V, E) with two
supplementary vectors a,b € KV determines the isotropic system S = (V, L) such
that L is a subspace of K" spanned by {a[ng(v)] + b[{v}] : v € V}. We call (G, a,b)
a graphic presentation of the isotropic system S and at the same time G is called a
fundamental graph of S. Conversely, an isotropic system S = (V, L) with its Eulerian
vector a € KV determines the fundamental graph G of S.
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In this section, we have two main objectives. First, we show that there is a CoMS
transduction that maps a graph G to the set of all isotropic systems having G as a
fundamental graph. Second, we show that there is an MS transduction that maps an
isotropic system S to the set of all fundamental graphs of S.

Proposition 4.20. There is a CoMS transduction

T, {all {edg}—structures} N Q{all {Member}-structures}
with siz parameters X, Yo, Za, Xy, Yy, Zy such that for a graph G, 1,(G) is the set of
all isotropic systems having G as a fundamental graph.

Proof. Tt is enough to show that given a {edg}-structure of a graph G = (V, E) with
arbitrary two supplementary vectors a and b in K, we can describe the {Member}-
structure of the isotropic system having (G, a,b) as a graphic presentation. In other
words, we need to show a CoMS definition scheme for this CoMS transduction.

Let X, Y., Z4, Xy, Yy, Zp be six parameters of the CoMS transduction. We have
a CoMS logic formula answering whether (X,,Y,, Z,), (X4, Ys, Zp) are set representa-
tions of supplementary vectors a and b respectively as follows:

0=(X.NY,=MAY.NZy =0 A(ZeN X, =0)
ANXyNY,=0OAYNZy,=0)A(Z,N Xy =0)
ANNVr,zre X,VaeeY,Vaee Z,)NNVe,x € Xy, Ve €Y,V € Zp)
AMX N Xy =0)A(YoNY,=0)A(Z, N Zy =0).

Note that we write X NY = () instead of Va,=(x € X Ax € Y) to simplify the
formula.

Now we want to express Member (XY, Z) in terms of edg of G by using (X,,Y,, Z,)
and (X3,Y}, Zy). By definition, Member(X,Y, Z) is true if and only if XY, Z are
pairwise disjoint subsets and w = a[X] + 3[Y] + [Z] € L. To have w € L, there
should exist a linear combination of vectors in the basis {a[ng(v)] + b[{v}] : v € V},
and so there should exist U C V such that »_ . a[ng(v)] + > ,cp b[{v}] = w. Since
KV is a vector space over GF(2), we do not need a scalar product.

Suppose we have a CoMS logic formula (U, X,,Y,, Z,, X, Y., Z.) on {edg}-
structures expressing that (X.,Y,, Z.) is a set representation of ) ., a[ng(v)] and
we also have a CoMS logic formula us(U, Xy, Yy, Zy, Xa, Ya, Z4) on {edg}-structures
expressing that (Xg,Ys, Z4) is a set representation of ) ., b[{v}]. We claim that
we have a CoMS logic formula w(U, X,,Ya, Za, Xo, Ys, Zp, X, Y, Z) expressing that
(X,Y,Z) is a set representation of > . alng(v)] + >, 0[{v}]. Simply we can
encode addition of elements in K into CoMS logic formulas. Let

U(Xa XwYC? anXdyydazd)
=V, zeX & ((ze€Z.ANxeYy)V(zeY. N € Zy)
V(m(z € X, UY,UZ) Az € Xg) V (m(z € XqUYU Zy) Az € X))
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be a CoMS logic formula expressing that if w is a sum of two vectors of set represen-
tations (X,, Y., Z.) and (X4, Yy, Zy), then X = {v : w(v) = a}. By symmetry of the
addition table of K, we can write (U, Xq, Yo, Za, Xp, Yo, Zp, X, Y, Z) as follows:

EIXCED/:SHZCHXdEIYdHZd Ml(Ua Xa7 Y;u Za7 XC7 )/ca Zc) A /4L2(U7 Xb7 }/bv Zba Xd; Yda Zd)/\
o(X, Xe,Ye, Ze, Xa, Ya, Za) No(Y, Y., Ze, X, Ya, Za, Xa) No(Z, Ze, X, Ye, Za, Xa, Ya).

So we can express Member(X,Y, Z) as 0 = U uw(U, X,,Y,, Zo, Xo, Yo, Zp, X, Y, Z).

number of a’s number of #’s number of 74’s | sum in K
even even even 0
odd odd odd 0
odd even even «
even odd odd Q
even odd even I}
odd even odd I}
even even odd y
odd odd even v

Table 4.1: Addition table of K

Now it is enough to show py and py. Let v(U,,x, X,,U) = Yo(v € U, &
X, ANedg(z,v) Av € U) expressing that for fixed z, U, = {v € U : (a[n({v})])(2)
a}. Let ¥(A,B,C) = —Even(A) A Even(B) A Even(C)) V (Even(A) A —|Even(B)
—Even(()) expressing that |Ala + |B|S + |Cly = «a by using Table Now wi
express 11 (U, Xo,Ya, Zo, Xe, Ye, Z¢) as follows:

> I m

@

U, AU Nz v(Uy, x, Xo, U) ANv(Up, 2, Ye, U) ANv(U,, , Z,, U)
ANa € X, & S(Us, Us, U A(x € Y, & S(Us, Uy, U))A(x € Zo < S(U,, Ua, Us)).

Similarly we can express us(U, Xy, Yy, Zy, Xy, Yy, Z4) as follows:

W, AVAVNYE (Ve = UNX) A (Ve =UNY,) AV, =UNYyA
(e XgeX(Vo, Vi, Vo)A (zeYye (Vs Vy, Vo)) A (z € Zy = E(V,, Va, Va)).

Thus we obtain a CoMS definition scheme (i, true, 0) that defines a CoMS trans-
duction 7, mapping a graph G into all isotropic systems having G as a fundamental
graph. O

We now consider the reverse direction.

Proposition 4.21. There is an MS transduction
7, : {all {Member}-structures} — 21all {edg}-structures}

with three parameters (X, Ye, Z.) such that for an isotropic system S, 75(S) is the set
of all fundamental graphs of S.
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Proof. We would like to show that given a {Member}-structure of an isotropic system
S = (V, L) with a set representation (X, Y., Z.) of an Eulerian vector a of S, we can
describe the {edg}-structure of the fundamental graph of S with respect to a.

We have an MS logic formula expressing that (X, Y., Z.) is a set representation
of an Eulerian vector of S (Definition as follows:

p=XNY.=Y.NZ.=Z.NX.=0) NN,z € X, Ve €Y. Vr € Z)A
VXVYVZ((X € X, AY CY.AZC Z, AMemberg(X,Y, Z)) = X =Y = Z = 0).

By Proposition[4.7] for every v in V', there exists a unique vector b, in L such that
by(v) #0 for all v and b,(w) € {0,a(w)} for v # w.

These vectors satisfy the following properties: a(v) # b,(v) # 0 for all v, and b, (w) #
0 if and only if b, (v) # 0 for v # w. The graph G = (V, E) is called a fundamental
graph with respect to a if E = {vw : b,(w) # 0}. We may obtain different graphs
using other Eulerian vectors, but they are locally equivalent.

We can easily translate this into MS logic formulas. We let v1(X,Y, Z, X, Y., Z.,v)
be the formula:

Member(X,Y, Z)Ave XUY UZ
ANVww#v={(weX=>weX)ANweY=weY )N (weZ=weLZ)},

expressing that (X,Y, Z) is a set representation of b,. Now we can write an MS logic
formula describing edg of the fundamental graph with respect to a in terms of Member
as O(v,w) = (v#w) ANIXIYIZ[n(X,Y, Z, X, Ye, Ze,v) ANw € X UY U Z|.

Hence we have constructed a definition scheme (¢, true, #) for the MS transduction
Ts with three parameters X,, Y., Z, such that 7, transforms an isotropic system into
the set of its fundamental graphs. m

4.4.2 Minors and vertex-minors by CoMS logic formulas
Proposition 4.22. There exists an MS transduction

T © {all {Member}-structures} — 2{all {Member}-structures}

with three parameters V,,, Vs, V, that maps an isotropic system to the set of its minors.

Proof. From Definition [£.2] an isotropic system S" = (V’, L) is a minor of S = (V, L)
if there are three pairwise disjoint subsets V,, = {x1,2a,..., 2o}, Vo = {y1,v2, .. -, W},

V, = {z1,22,..., 2.} of V such that S = S[fH[a2 -~ [Za |5 [ -~ - [|24[22 - - - |2 Then,
V' =V \ (VaUVsUV,) and
L'"={py(a) :a € L and for all v € V, if a(v) # 0, then v € V() }. (4.1)

Note that the canonical projection function py(a) is defined in page .
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We describe Memberg/ (X, Y, Z) by an MS formula 1 (V,, Vs, V,, X, Y, Z) on S.

A triple (X,Y, Z) is a set representation of a vector in L’ if and only if there
exists a set representation (X, Y,, Z,) of a vector a in L such that the following four
conditions hold.

(i) X, Y, Z are pairwise disjoint,

)

(i) (XuYUuZ)n(V,uVauVv,) =0,
) X:Xa\vaaYzYa\VBaZ:Za\‘/’w
)

(i
(iv
Conditions ({)—(iil) express that (X,Y, Z) is a set representation of py(a); condition
translates condition (4.1)) expressing that py(a) € L. Hence, the desired formula
p1(Va, V3, Vo, X, Y, Z) can be written as po A 3X,3Y,37Z,(Member(X,, Y,, Z,) A 13)

where pp with free variables V,,, V3, V,, X, Y, Z expresses conditions ({i) and and 3
with free variables V,,, V3, V,, XY, Z, X, Y,, Z, expresses conditions and . O

Vo € X U(V\(YaUZ,)), Vs C Yo U(V\(X,UZ,)), and V., € Z,U(V\ (X,UY,)).

Theorem 4.23.

(1) There exists a CoMS transduction with siz parameters Vy, Vs, V., X, Ye, Z. that
maps a graph into the set of its vertex-minors.

(2) There exists a CoMS transduction with three parameters X.,Y,, Z. that maps a
graph into the set of its locally equivalent graphs.

Proof. We have C;MS transductions 7y, 7,, and 7, from Proposition [4.20] [4.21]
and Then, the composition 75 o 7,,, 0 7, is a C;MS transduction by Proposition
and it maps a graph to the set of its vertex-minors by Corollary 4.9, But this
will give a CoMS transduction with twelve parameters. However we can eliminate
parameters of 7, by choosing one particular pair of supplementary vectors, in other
words, setting X, =Y, =V, Y, = Z, = X, = Z, = (). This is possible because
we can choose one particular isotropic system in Corollary to find all vertex-
minors. Eliminating those parameters actually means that we obtain another CoMS
transduction 7'; by replacing x € X,, x € Y, by trueand x € Y,, x € Z,, x € X}, and
x € Zyp by false in the C;MS definition scheme for 7.

Since local complementations do not change the associated isotropic system,
if two graphs are locally equivalent graphs then there is an isotropic system having
both as fundamental graphs. So it is clear that 75 o 7, is a CoMS transduction that
maps a graph to the set of its locally equivalent graphs. As we discussed in the proof
of (1)), we can also eliminate parameters of 7. O

Corollary 4.24. For every graph H, there is a closed CoMS logic formula oy ex-
pressing that a given graph contains a vertex-minor isomorphic to H.
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Proof. For every graph H with vertices vy,...,v,, we can write a closed MS logic
formula sy that is true on a graph G if and only if G is isomorphic to H as follows:

dzq, ..., Jx,(“2q, ..., x, are pairwise distinct”
A “every vertex is equal to x; for some ¢”
A “for all 4, j, edg(x;, z;) holds if and only if v;u; € E(H)”)

Let 7, be a CoMS transduction that maps a graph into the set of its vertex-minors
(Theorem [4.23). Its backwards translation (Proposition relative to 7, is a
CoMS formula %ﬁ with free variables V,, V3, V,,X., Y., Z.. It is valid in a graph
G if and only if its vertex-minor defined by the sets V,,, V3, V., X, Y., Z, is isomor-
phic to H. Hence G has a vertex-minor isomorphic to H if and only if it satisfies
AV, VIV, 3X Y. 3Z,, %fl. ]

Theorem 4.25. For fized k and fized graph H, there exists a O(|V(G)|)-time algo-
rithm that answers whether an input graph G of clique-width at most k has a vertez-
minor isomorphic to H, if G is given by its k-expression.

Proof. We combine the previous corollary with Proposition [£.19 O

In Chapter [7], we will discuss how to eliminate the requirement of k-expressions as
an input by constructing it from the adjacency list of the input graph G in O(|]V(G)?)
time.



Chapter 5

Seese’s Conjecture

In this chapter, we prove a weakened statement of Seese’s conjecture [52]. We express
Seese’s conjecture in terms of rank-width as following.

Conjecture 5.1 (Seese [52]). If a set of graphs has a decidable monadic second-
order (MS) theory, then it has bounded rank-width.

The conjecture has been proved for various graph classes: planar graphs [52],
graphs of bounded degree, graphs without a fixed graph as a minor, graphs of which
every subgraph has the bounded average degree [16], interval graphs, line graphs [17].
We did not solve this conjecture, but we show a weaker statement: if a set of graphs
has a decidable CoMS theory, then it has bounded rank-width.

We briefly summarize the proof. Courcelle [17] showed that Seese’s conjecture is
true if and only if it is true for bipartite graphs. In Section we have various con-
nection relating branch-width of binary matroids to rank-width of bipartite graphs.
Moreover, the grid theorem of binary matroids by Geelen, Gerards, and Whittle [2§]
implies the analogous one, Corollary stating that bipartite graphs of sufficiently
large rank-width contain a vertex-minor isomorphic to Sy (defined in page .

Theorem [6.28] shows that there is a C;MS transduction that maps a graph into
the set of all its vertex-minors. Combining with Proposition [4.1§ we conclude that
if a set C of bipartite graphs of unbounded rank-width has a decidable CoMS theory,
then its image under the above CsMS transduction contains graphs isomorphic to Sk
for all k.

We explicitly construct a CoMS transduction 7 that maps a graph isomorphic to
Sk into the k x k grid. Then, the image of C under 75 o7y contains a graph isomorphic
to the k x k grid for all k. We use the following theorem of Seese.

Theorem 5.2 (Seese [52, Theorem 5]). Let K be a set of graphs such that for
every planar graph H there is a planar graph G € K such that H is isomorphic to a
minor of G. Then, K does not have a decidable monadic second-order theory.

Therefore, we conclude that, by Proposition [£.18 a set of graphs of unbounded
rank-width does not have a decidable monadic second-order theory.

95
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5.1 Enough to consider bipartite graphs

Courcelle showed that Seese’s conjecture is true if and only if it is true for bipartite
graphs in [17] by using a certain graph transformation from graphs to bipartite graphs.
We will see that his argument also works for our weakened problem obtained by
relaxing “decidable MS theory” to “decidable CoMS theory”, but will use graph
theoretic arguments to show that this transduction preserves boundedness of rank-
width without using a deep theorem on MS transductions.

The following lemma describes a graph transformation from graphs G to bipartite
graphs B(G) found by Courcelle [I7]. He proved that there exist two functions f; and
fa such that fi(rwd(G)) < rwd(B(G)) < fo(rwd(G)). We show that rwd(B(G)) =
max(2rwd(G),1) if V(G) # 0.

VAN

Figure 5.1: K3 and B(K3)

Lemma 5.3. Let G = (V,E) be a graph such that V. # (. Let B(G) = (V x
{1,2,3,4}, E') be a bipartite graph obtained from G as follows:

(i) ifveV andi e {1,2,3}, then (v,i) is adjacent to (v,i + 1) in B(G),
(i) of vw € E, then (v, 1) is adjacent to (w,4) in B(QG).
Then we have rwd(B(G)) = max(2rwd(G), 1).

To show Lemma , we will use the following lemma, that appears in [26, Lemma
2.1} in terms of matroids. This lemma will be also used in Section

Lemma 5.4. Let G be a graph having at least three vertices. Let (T, L) be a rank-
decomposition of G of width k such that k > 0. If v is a vertex of T and e is an edge
of T, we let X, = L7 (X.,) where X., is the set of leaves of T in the component
of T \ e not containing v. Let A be a subset of V(G) such that A # X, for every
v e V(T) and each edge e incident to v.

Suppose that for every partition (A1, Aa, As) of A, there exists i € {1,2,3} such
that pc(Ai) > pa(X). Then, there ezists a degree-3 vertex s of T such that

(i) for each edge e of T, we have pg(Xes \ A) < k,

(ii) there is no edge f incident to s such that A C Xj,.



CHAPTER 5. SEESE’S CONJECTURE 57

Proof. We first claim that if (X7, X3) is a partition of V(G) with pg(X;) < k, then
either pa(X1\ A) <k or pe(Xy\ A) < k. From the partition (AN X, AN Xy, 0) of A,
either pg(ANX1) > pa(A) or pa(ANXsy) > pa(A). We may assume that pg(ANX;) >
pc(A). By submodularity, po(A U X1) < pa(A) + pa(X1) — pe(AN X;) < k. So,
pc(Xa\ A) = pa(AU X;) < k. Thus we showed the claim.

Now, we construct an orientation of 7. Let e be an edge of T', and let u and v
be the ends of e. If pa(Xe \ A) < k, then we orient e from u to v. By the previous
claim, each edge receives at least one orientation.

First, assume that there exists a node v of T" such that every other node can be
connected to v by a directed path on 7. Since k > 1, each edge incident with a leaf
has been oriented away from that leaf. Hence we may assume that v has degree 3. If
there is an edge f = vw incident to v such that A C Xy,, then Xy, = V(G) \ Xy,
pe(Xfw \ A) = pe(Xw) < k, and therefore f has been oriented for both directions.
So we may replace v by w. Since A # X, for every vertex v € V(T') and each edge
e incident to v, this process will terminate and we may assume that there is no edge
f incident to v such that A C Xy,. Then the lemma follows with s = v.

Next, we assume that there is no vertex reachable from every other vertex. Then
there exists a pair of edges e and f and a vertex w on the path connecting e and
f such that neither e nor f is oriented toward w. Let Y} = X, Y35 = Xy, and
Yo = V(G)\ (Y1UY3). Since e and f are oriented away from w, pg((YaUY3)\ A) < k
and pg((Y1 UYs) \ A) < k. By submodularity,

pa(Yi\ A) + pa(Ys\ A) < pa((Y2U Y3) \ A) 4+ pa((Y1UY2) \ A) < 2k.

This contradicts the fact that neither e nor f is oriented toward w. O

Proof of Lemmal[5.3. (1) Let us show that rwd(B(G)) < max(2rwd(G), 1).

If rwd(G) = 0, then G has no edges, and therefore B(G) is a disjoint union of
paths of three edges. Since a path of three edges has rank-width 1, we deduce that
rwd(B(G)) =1 if rwd(G) = 0.

We now assume that rwd(G) > 0. Let (T, L) be a rank-decomposition of G of
width k. Let N be the set of leaves of T. Let T" be a tree having (V(7T) x {0}) U
(N x {1,2,3,4,12,34}) as the set of vertices such that

(i) if vw € E(T), then (v,0) is adjacent to (w,0) in 77,

(i) for all v € N, (v,12) is adjacent to both (v,1) and (v, 2),
(iii) for all v € N, (v, 34) is adjacent to both (v, 3) and (v, 4),
(iv) for all v € N, (v,0) is adjacent to both (v, 12) and (v, 34).

Informally speaking, we obtain 7" from T by replacing each leaf with a rooted binary
tree having four leaves. For each leaf (v,i) of T', we define £'(v,i) = (L(v),7) €
V(B(G)). Then (T",L') is a rank-decomposition of B(G).

We claim that the width of (77, £’) is at most 2k.
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For each edge e = vw € E(T), let (X,Y) be a partition of N induced by
the connected components of 7'\ e. Then, the edge (v,0)(w,0) of E(T") induces
a partition (X x {1,2,3,4},Y x {1,2,3,4}) of N x {1,2,3,4}. We observe that
L7HX x{1,2,3,4}) = L7Y(X) x {1,2,3,4}. Tt is easy to see that

pier (£7(X x {1,2,3,4})) = 2p6(L (X)) < 2k.

We now consider the remaining edges of 7”. Each of them induces a partition (X,Y)
of the leaves of T” such that |X| <2 or |Y] < 2. So, pp(e)(L£"~1(X)) < 2. Therefore
we deduce that the width of (77, £') is at most 2k. Thus, rank-width of B(G) is at
most 2k.

(2) We show that rwd(B(G)) > max(2rwd(G), 1). We may assume that rwd(G) > 0,
otherwise it is trivial. For each v € V(G), let P, = {(v,1), (v,2), (v,3), (v,4)} C
V(B(G)).

(a) We claim that if X C P, and |X| > 2, then pp)(X) > ppe)(P,). We
may assume that X # P,. If X = {(v,2),(v,3)} or X = {(v,1),(v,4)}, then
pB()(X) = 2. By our construction, we have pp)(P,) = 0 or 2. We may assume
that pp(e)(P,) = 2, otherwise it is trivial. Therefore we deduce that there is a vertex
not in P,, that is adjacent to (v,1). So, if X = {(v,1),(v,2)}, X = {(v,1), (v,3)},
or X ={(v,1),(v,2),(v,3)}, then pps = 2. By symmetry, we deduce our claim. In
particular, this claim implies that for every partition (X;, X3, X3) of P,, there exists
1€ {1,2,3} such that /)B(G)(Xz’) 2 pB(G)(Pv>-

(b) We say that an edge e of T' crosses P, if for a partition (X,Y’) of the set of
leaves of T induced by T \ e, the following four sets are nonempty: £7'(X) N P,,
LYX)\ P, LY(YY)NP,,and L7HY)\ P,.

(c) Let k =rwd(B(G)). Let (T, L) be a rank-decomposition of B(G) of width at
most & with the minimum number of vertices v of V(G) having an edge of T' crossing
P,.

We claim that no edge of T' crosses P, for all v € V(G). Suppose there is an
edge of T that crosses P, for some v € V(G). Let s be a vertex satisfying Lemma
, let ey, ey, and ez be the edges of T' incident with s, and let X; denote X,
for each i € {1,2,3}. We may assume that pp) (X1 N P,) > pp@)(P,). Then by
submodularity,

ppc) (X2 U X3) \ )
= pp) (X1 UP,) < pp)(X1) + pee)(Ps) — pecy(X1 N Py) < ppey(X1) < k.

Now we construct a rank-decomposition (77, L) of B(G); let 7" be a tree obtained
from the minimum subtree of T' containing both e; and leaves in L(V (B(G))\ P,) by

(i) subdividing e; with a new vertex b,
(ii) adding new vertices 11, 79, '3, T4, T12, T'34,

(iii) adding new edges bris, brss, 11271, T1272, 3473, 73474, and
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(iv) contracting one of incident edges of each degree-2 vertex until no degree-2 ver-
tices are left.

For each x € V(B(G)) \ P,, we define L'(z) to be a leaf of 7" induced by L(z). For
i€{1,2,3,4}, we define L'((v,7)) = r;.

Then (77, L) is a rank-decomposition of B(G). It is easy to see that the width of
(T, L) is at most k by Lemmal5.4] Moreover, the number of vertices w of V(G) having
an edge of T" crossing P,, is exactly one less than that for 7. This is a contradiction,
because we choose (T, £) to have the minimum number of those vertices.

(d) Therefore, for every vertex v € V(G), there exists an edge e, of T such that
L(P,) is exactly the set of leaves in one component X, of 7'\ e,. Let b, be one end
of e, in X.

Let T be the minimal subtree of T' containing b, for all v € V(G). Let Lg be a
function from V(G) to the set of leaves of T such that Lg(v) = b,. It is easy to see
that (T¢, L¢) is a rank-decomposition of G.

(e) We claim that the width of (T, Lg) is at most k/2. Let e be an edge of T
and (X,Y) be a partition of leaves of T induced by T \ e. We note that T\ e
induces a partition (X', Y”) of leaves of T such that £L71(X") = L5 (X) x {1,2,3,4]}.
We deduce that 2p¢(L5" (X)) = pre)(Ls (X) *{1,2,3,4}) < k.

(f) Therefore, k > 2rwd(G). O

Lemma 5.5 (Courcelle [17, Proposition 3.2, 3.3]). Let B(G) be the function
defined in Lemmal5.3 Let 7(G) = {B(G)}. Then 7 is an MS transduction.

Sketch of proof. In order to simplify the paper, we skipped the general definition of
MS transductions in this paper. In general, the definition of MS transductions allows
duplicating a fixed number of times (here four times) a given structure before defining
the new structure inside it by a definition scheme. For detailed definition, see [17].
From that definition, it is clear. O]

5.2 Proof using vertex-minors

In this section, we prove the following theorem.

Theorem 5.6. If a set of graphs has a decidable CoMS theory, then it has bounded
rank-width.

The proof will use a family of bipartite graphs Sy and we will build the k x (2k —2)
grid by a fixed MS transduction from Sj. The graph Sy was used in Corollary [3.25]

Lemma 5.7. Let C be a set of bipartite graphs of unbounded rank-width. Then there
are infinitely many values of k such that Sy, is isomorphic to a vertex-minor of a graph

in C.

Proof. Suppose not. There exists an integer k such that no graph in C has a vertex-
minor isomorphic to Sg. This implies, by Corollary [3.25, that C has bounded rank-
width. A contradiction. O
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Proposition 5.8. There exists an MS transduction T on graphs such that the k X
(2k — 2) grid belongs to T(Sk) for all k > 1.

Proof. Our objective is to find an MS transduction on graphs such that its image of
Sy contains the k x (2k —2) grid for all k. Suppose we are given a graph G isomorphic
to Sk for some k as a relational structure (V, edg).

Let (A, B) be a bipartition of G such that A has a vertex of degree one. Let s be
a neighbor of a vertex of degree one.

Two vertices v and w of B are called consecutive if |ng(v) \ ng(w)| = 1 and
Ing(w) \ ng(v)| = 1. A subset X of B is called the tail of v if it is a maximal subset
of B satisfying the following two conditions:

(i) v,s ¢ X,
(ii) for all x € X and y € B, if z,y are consecutive and y # v, then y € X.

We call that v is a successor of w if v and w are consecutive and the tail of w is
a subset of the tail of v. Two vertices v € A and w € B are called matched if
(informally) they have the same number in Figure 5.2l We may define it as follows:

(i) they are adjacent,
(ii) for all y, if y is a successor of w, then y is not adjacent to v,
o e : » , o
Py ) - .
(iii) if " € A satisfies the above two conditions and ng(v) C ng(v'), then v = v

A vertex w € B is called a far successor of v € B if (informally) the number given
to w is the number given to v added by k. Even though we do not know k£ by an MS
logic formula, we can define this as follows: there exist x € A, y € B, and z € A such
that

(i) v is not adjacent to z but adjacent to z,
(ii) x and y are matched,

)

)
(iii) w and z are matched,
(iv)
Let T' be the minimal subset of B containing s such that if £ € T then the far
successor of x is in T

We are now ready to describe edges of the k x (2k —2) grid by an MS logic formula

in terms of edg of G. We define the set of vertices of the grid as the set of vertices of
GG having a matched vertex. In fact, each vertex of Sy has either one matched vertex

or none. Two vertices v, w of the grid are adjacent if and only if one of the following
four conditions is true:

V) w is a successor of y.

(i) v,w € B, and v is a successor of w, and v ¢ T,
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A1l 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12
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Figure 5.2: Getting the grid from Sj

(ii) v,w € A, and their matched vertices are adjacent in the grid by the previous
condition,

(iii) v € A, w € B, and they are either matched or the matched vertex of w is a far
successor of v,

(iv) after swapping v and w, one of above conditions is true.

We skip the detailed MS logic formula, but since each step of this proof can be written
as an MS logic formula, we show that there exists an MS transduction 7 on graphs
such that 7(Sg) contains the k x (2k — 2) grid. O

We are now ready to prove our main theorem of this chapter.

Proof of Theorem[5.6. Suppose that C is a set of graphs having unbounded rank-
width. Let 74 be an MS transduction given by Lemma [5.5] that maps a graph G to
{B(G)}. Let 75 be a CoMS transduction given by Theorem that maps a graph
to the set of its vertex-minors. Let 73 be an MS transduction on graphs given by
Proposition , such that 73(Sk) contains the k x (2k — 2) grid. Let 7 = 1301 07,
By of Proposition 7 is a CoMS transduction. Let Z be the image of C under
the C,MS transduction 7.

Let B = {B(G) : G € C}. By Lemma [5.3] we know that B has unbounded rank-
width. Since B is a set of bipartite graphs and has unbounded rank-width, there are
infinitely many values of k£ such that S is isomorphic to a vertex-minor of a graph
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Figure 5.3: Sketch of the proof via vertex-minors

in B by Corollary and therefore there are infinitely many values of k such that
the k x (2k — 2) grid is contained in Z. Furthermore, every planar graph is a minor
of the k x (2k — 2) grid in 7 for sufficiently large k (Lemma|[3.24).

By Theorem of Seese, Z does not have a decidable MS theory and therefore 7
does not have a decidable CoMS theory, because every MS logic formula is a CoMS
logic formula.

By of Proposition , C does not have a decidable CoMS theory. O

5.3 Proof using matroid minors

We give another proof of Theorem based on binary matroids instead of isotropic
systems and using results by Hlinény and Seese [35]. They showed that if a set of
matroids representable over a fixed finite field has a decidable monadic second-order
theory, then it has bounded branch-width. We assume that matroids are given by
their {Indep}-structures, described in Example

Since binary matroids are closely related to bipartite graphs, it is natural to show
the following proposition.

Proposition 5.9. There is a CyMS transduction with two parameters A and B that
maps a bipartite graph G to the set of all binary matroids having G as a fundamental
graph.

Proof. Let N be the adjacency matrix of G. Suppose that (A, B) is a bipartition of
G and M = Bin(G, A, B). (Bin is defined in Section [3.5l) The binary matroid M
has a standard representation P = ([A NIA, B]) It is enough to show that we can
express Indep(U) of M by a Cy;MS logic formula in terms of the edg relation of G.
A subset U of V(@) is independent in M if and only if columns of P are linearly
independent. Thus, it is equivalent to say that there is no subset W of U such that
the sum of column vectors of P indexed by elements of W is zero. We claim that we
can write a CoMS logic formula Zero(1V) expressing that the sum of column vectors
of P indexed by elements of W is zero. Since each row of P corresponds to an element
of A, Zero(W) is true if and only if for each € A, the number of neighbors of = in
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Figure 5.4: Sketch of the proof via matroid minors

W is odd if x € W, and even otherwise. We may easily write this in a CoMS logic
formula. [

The following two proposition is proved in [35] but stated in different terminolo-
gies. We recall the notation Gjyy for the £ x k grid.

Proposition 5.10 (Hlinény and Seese [35, Lemma 6.4, 6.5]). There is an MS
transduction that maps a matroid to the set of its minors.

Proposition 5.11 (Hlinény and Seese [35, Lemma 6.6, 6.7]). Let M (Gxy) be
the cycle matroid of the k x k grid. There is an MS transduction 7, : {matroids} —
2lorarhst sych that 7,(M(Gyxr))) contains the (k —2) x (k — 2) grid when k > 6 and
k is even.

Second proof of Theorem[5.6 Suppose that C is a set of graphs having unbounded
rank-width. Let 73 be an MS transduction given by Lemma 5.5 that maps a graph
G to {B(G)}. Let 7 be a C;MS transduction given by Proposition that maps
a graph to the set of binary matroids having it as a fundamental graph. Let 73
be an MS transduction that maps a matroid to the set of its minors. Let 74 be
an MS transduction from matroids to graphs such that 735(M(Ggxy)) contains the
(k —2) x (k — 2) grid when k is even and k > 6.

By Corollary[3.18 and Lemmal[5.3} 75071 (C) has unbounded branch-width because
C has unbounded rank-width.

By Theorem , 73 0 79 0 71(C) contains cycle matroids M (Gyxy) for infinitely
many values of k. Since 73 0 75 0 79(C) is minor-closed, we know that 73 0 75 o 71(C)
contains M (Gyxy) for all k.

Therefore Z = 74 0 73 0 79 0 71 (C) contains the (k — 2) x (k — 2) grid for infinitely
many values of k.

By Theorem of Seese, Z does not have a decidable MS theory and therefore 7
does not have a decidable CoMS theory, because every MS logic formula is a CoMS
logic formula.

By of Proposition 740730707 is a CoMS transduction. By of
Proposition we conclude that C does not have a decidable C;MS theory. O



Chapter 6

Well-quasi-ordering with
Vertex-minors

In this chapter, our main objective is to prove the following.

Theorem 6.1. Let k be a constant. If {G1,Ga,Gs, -} is an infinite sequence of
graphs of rank-width at most k, then there exist 1 < j such that G; is isomorphic to
a pivot-minor of G;, and therefore isomorphic to a vertex-minor of Gj.

In general, we call a binary relation < on X a quasi-order if it is reflexive and
transitive. For a quasi-order <, we say “< is a well-quasi-ordering” or “X is well-
quasi-ordered by <” if for every infinite sequence aq, as, ... of elements of X, there
exist ¢ < j such that a; < a;. We may reiterate Theorem as follows: a set of
graphs of rank-width at most & is well-quasi-ordered by a vertex-minor relation (or
pivot-minor relation) up to isomorphisms.

Here is a corollary of Theorem [6.1] Note that this corollary has an elementary
proof in Section [6.8, and will be used to construct a polynomial-time algorithm to
recognize graphs of rank-width at most % for a fixed k in Chapter [7}

Corollary 6.2. For a fized k, there is a finite list of graphs G1,Ga, ..., G, such that
for every graph H, rank-width of H is at most k if and only if G; is not isomorphic
to a vertex-minor of H for all 1.

Proof. Let X = {G1,G>,...} be a set of graphs satisfying that for every graph H,
rank-width of a graph H is at most £ if and only if G; is not isomorphic to a vertex-
minor of H for all . We choose X minimal by set inclusion. There are no G;,G; € S
such that G; is isomorphic to a vertex-minor of G, because if so, then we may remove
G, from X. By assumption, the rank-width of G \ v for v € V(@) is at most k, and
therefore the rank-width of G; is at most k + 1. By Theorem [6.1] X is finite. O

We say that an isotropic system S; = (Vi, Ly) is simply isomorphic to another
isotropic system Sy = (V3, Ls) if there exists a bijection p : V3 — V5 such that
Ly ={aou:a€ Ly}. A bijection pu is called a simple isomorphism. It is clear that
if Sy is simply isomorphic to Sy, then every fundamental graph of S is isomorphic to
a graph locally equivalent to a fundamental graph of Ss.

64
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We say that an isotropic system S; is an af-minor of an isotropic system S =
(V, L) if there are a subset X C V and a vector a € K~ such that

a(v) € {a,B} forallv e X and S =S .

Every af-minor of an isotropic system S is a minor of .S, but not vice versa. Simi-
larly we may define a Bv-minor and an ay-minor, but by symmetry among nonzero
elements of K, it is enough to consider an aF-minor in this paper. By restricting an
elementary minor operation, we will prove the following lemma in Section [6.6], which
links pivot-minors of graphs and af-minors of isotropic systems.

Lemma Fori € {1,2}, let S; be the isotropic system whose graphic presentation
is (G;, a;,b;) such that
CLZ‘('U), bZ(v) € {O{, 5}

for allv € V(G;). If Sy is an af-minor of Sy, then Gy is a pivot-minor of Gs.

Instead of dealing with graphs, we will prove the following stronger proposition
on isotropic systems.

Proposition [6.20, Let k be a constant. If {Si, 52,53, } is an infinite sequence
of isotropic systems of branch-width at most k, then there exist © < j such that S; is
simply isomorphic to an af-minor of S;.

By using Proposition [6.20] Theorem [6.1] is deduced.

Proof of Theorem[6.1 Let S; be an isotropic system whose graphic presentation is
(G, ai, b;) where a;(v) = «, bi(v) = B for all v € V(G;). Each S; has branch-width
at most k, since its branch-width is equal to rank-width of G;. By Proposition [6.20}
there exist ¢ < j such that .S; is simply isomorphic to a a-minor of S;, and therefore
by Lemma [6.22] G; is isomorphic to a pivot-minor of Gj. O

We recall a linked branch-decomposition from Section Let f:V — Z be a
symmetric submodular function. For a branch-decomposition (T, L) of f, let e; and
ey be two edges of T. Let E be the set of leaves of T" in the component of T\ e
not containing ey, and let F' be the set of leaves of T' in the component of T\ e3 not
containing e;. Let P be the shortest path in T" containing e; and e;. We call e; and

ey linked if

in (width of h of (T, L)) = i 7).
hénEl(l}D)(Wldt of hof (T;£)) z:—1<E)grzng1%\z:-1<F)f( )

We call a branch-decomposition (T, L) is linked if each pair of edges of T is linked.
Since we define the branch-decomposition of isotropic systems and the rank-width of
graphs as branch-decompositions of the connectivity functions and the cut-rank func-
tions respectively, we may define linkedness for branch-decompositions of isotropic
systems as well as rank-decompositions of graphs. The following lemma was shown
by Geelen, Gerards, and Whittle [27]. It was the first step to prove well-quasi-ordering
of matroids representable over a fixed finite field having bounded branch-width. Its
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analogous result by Thomas [54] was used to prove well-quasi-ordering of graphs of
bounded tree-width in Robertson and Seymour [47].

Lemma 6.3 (Geelen et al. [27, Theorem (2.1)]). An isotropic system (V, L) of
branch-width n has a linked branch-decomposition of width n if |V| > 1. Equivalently,
a graph (V, E) of rank-width n has a linked rank-decomposition of width n if |V| > 1.

We also use Robertson and Seymour’s “lemma on trees,” proved in [47]. It enabled
them to prove that a set of graphs of bounded tree-width are well-quasi-ordered by
the graph minor relation. It was also used by Geelen et al. [27] to prove that a
set of matroids representable over a fixed finite field and having bounded branch-
width is well-quasi-ordered by the matroid minor relation. We need a special case
of “lemma on trees,” in which a given forest is subcubic, that was also useful for
branch-decompositions of matroids in Geelen et al. [27].

The following definitions are in Geelen et al. [27]. A rooted tree is a finite directed
tree where all but one of the vertices have indegree 1. A rooted forest is a collection
of countably many vertex disjoint rooted trees. Its vertices with indegree 0 are called
roots and those with outdegree 0 are called leaves. Edges leaving a root are root edges
and those entering a leaf are leaf edges.

An n-edge labeling of a graph F' is a map from the set of edges of F' to the set
{0,1,...,n}. Let XA be an n-edge labeling of a rooted forest F' and let e and f be
edges in F'. We say that e is A-linked to f if F' contains a directed path P starting
with e and ending with f such that A(g) > A(e) = A(f) for edge g on P.

A binary forest is a rooted orientation of a subcubic forest with a distinction
between left and right outgoing edges. More precisely, we call a triple (F,l,7) a
binary forest if F' is a rooted forest where roots have outdegree 1 and [ and r are
functions defined on non-leaf edges of F', such that the head of each non-leaf edge e
of F' has exactly two outgoing edges, namely [(e) and r(e).

Lemma 6.4 (Lemma on subcubic trees; Robertson and Seymour [47]). Let
(F,1,r) be an infinite binary forest with an n-edge labeling A. Moreover, let < be a
quasi-order on the set of edges of F with no infinite strictly descending sequences,
such that e < f whenever f is A-linked to e. If the set of leaf edges of F' is well-
quasi-ordered by < but the set of root edges of F' is not, then F' contains an infinite
sequence (eg, e1,...) of non-leaf edges such that

(i) {eo,e1,...} is an antichain with respect to <,
(i) (eo) <l(ey) <l(eg) <---,
(iii) 7(eg) < r(er) <r(ey) < ---
Proof. See Geelen et al. [27, (3.2)]. -

Informally speaking, at the last stage of proving Proposition [6.20, we need an
object describing a piece of isotropic systems such that the number of ways to merge
those objects into one isotropic system is finite up to simple isomorphisms. More
precisely, we call a triple P = (V, L, B) a scrap if V is a finite set, L is a totally
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isotropic subspace of KV, and B is an ordered basis of L+/L. An ordered basis is a
basis with a linear ordering, and therefore B is of the form {b;+ L,bo+ L, ... b+ L}
with b; € L+. We denote V(P) = V. Note that L1 /L is a vector space containing
vectors of the form a + L with @ € L+ and a + L = b+ L if and only if a — b € L.
Also note that |B| = dim(L*/L) = dim(L*) — dim(L) = 2(]V| — dim(L)) = 2X(L).

Two scraps P, = (V,L,B) and P, = (V', L', B') are called isomorphic if there
exists a bijection p : V' — V' such that L ={aop:a € L'} and b;+ L = (b,opu)+ L
where B = {by + L,by+ L,...,bpy + L} and B' = {b) + L', b, + L', ... b}, + L'}.

For x € K\ {0} and v € V, let §° € K" such that 6'(v) = z and 6%(w) = 0 for
all w # v. We will slightly abuse 67 without referring V' if it is not ambiguous. If
P = (V,L,B) is a scrap with 6! ¢ L+ \ L, then we denote

Pl =V \A{z}, LI, {pv gy (0:) + L7 1)

where each b; € Lt is chosen to satisfy that B = {b; + L}; and b;(v) € {0,7}. We
will prove that P|! is a well-defined scrap in Proposition [6.10} Note that 62 ¢ L*\ L
is required to write P|?.

A scrap P’ is called a minor of a scrap P if P’ = P[;1]22 .- [} for some v; and
x;. Similarly a scrap P’ is called an a3-minor of a scrap P if P = P[1[22 .. [ for
some v; and z; € {«, 8}

Two scraps P, = (V, L, B) and P, = (V', L', B') are called disjoint if V NV’ = 0.
A scrap P = (V, L, B) is called a sum of two disjoint scraps P, = (V4, L1, By) and
Py = (Va, Ly, By) if

V= ‘/1 @) ‘/2, L1 = L|<_:V1> and L2 = L|gv2‘

A sum of two disjoint scraps is not uniquely determined; we, however, will define the
connection types that will determine a sum of two disjoint scraps such that there are
only finitely many connection types. Moreover, we will prove the following.

Lemma Let P, Py, Q1, Q2 be scraps. Let P be the sum of P; and Py and Q
be the sum of Q1 and Qs. If P; is a minor of Q; for i = 1,2 and the connection type
of P1 and Py is equal to the connection type of Q1 and Qo, then P is a minor of Q.
Moreover, if P; is an af-minor of Q; fori € {1,2} and the connection type of P
and Ps s equal to the connection type of Q1 and Qs, then P is an af-minor of Q).

Another requirement to apply Lemma [6.4]is that e < f whenever f is A-linked to
e. This condition will be satisfied by the following lemma, which is a generalization
of Tutte’s linking theorem. Tutte’s linking theorem for matroids was used by Geelen
et al. [27] and is a generalization of Menger’s theorem. Robertson and Seymour also
used Menger’s theorem in [47].

Theorem [6.12| Let V' be a finite set and X be a subset of V. Let L be a totally
isotropic subspace of KV. Let k be a constant. Let b be a complete vector of KV \X.
For all Z D X, ML|cz) > k if and only if there is a complete vector a € KV \X

such that A(L|% ) > k and a(v) # b(v) for allv € V \ X.
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The actual proof of Proposition is based on a construction of a forest with
a certain k-labeling from branch-decompositions of isotropic systems, and applying
lemmas described above.

In subsequent sections, we will prove those lemmas and we will prove Proposition

6.20] in Section [6.5]

6.1 Lemmas on totally isotropic subspaces

In this section, L is a totally isotropic subspace of KV, not necessarily dim(L) = |V/|.
We prove some general results on totally isotropic subspaces.

Lemma 6.5. Let L be a totally isotropic subspace of KV and v € V, x € K \ {0}.
Then, (L[2)* = L[

Proof. Suppose that y € Lt[?. There exists § € Lt such that g(v) € {0,z} and
Yy = pv\{} (7). For every z € L|?, there exists Z € L such that Z(v) € {0,z} and
P} (2) = 2. Since (y,2) = (7, 2) — (G(v), 2(v)) = 0, y € (L[;)*.

Conversely, suppose that y ¢ L*[2. Let y®x € KV be such that py\ (o} (ySz) =y
and (y @ z)(v) = z. By assumption, y @ x ¢ L. Therefore, there exists z € L such
that

(@ 2) =1=(y,pr\(v}(2)) + (z, 2(v)).

If (z, z(v)) = 0, then pyr 1 (2) € L|% and (y, py\ (o1 (2)) = 1, and therefore y ¢ (L|2)* .
So, we may assume that (z, z(v)) = 1.

Let y ® 0 € KV such that py\(,)(y ® 0) =y and (y @ 0)(v) = 0. By assumption,
y®0 ¢ L*. Therefore, there exists w € L such that (y @ 0,w) =1 = (y, py\ o} (w)).
If w(v) € {0,z}, then py\(y(w) € L|% and y ¢ (L|2)*. Hence we may assume that
(x,w(v)) = 1.

Now, we obtain that (z,w(v) + z(v)) = 0, and so w(v) + z(v) € {0, z}. Therefore
pv\(or(w + 2) € L|Y. Furthermore (py\ (o) (w + 2),y) = 1. So, y & (L|2)* . O

Lemma 6.6. If L is a totally isotropic subspace of KV and X CV, then
(Llex)t = LHx.

Proof. We use an induction on |V \ X|. If | X| < |V| — 1, then we pick v ¢ X, and
deduce that (L|cy\qtlcx)™ = (Llever) lx = Lngulx = LY|x. Therefore we
may assume that V' '\ X = {v}.

For z € KX and y € K, we let @y denote a vector in KV such that px(z®y) = x
and (z @ y)(v) = .

(1) We claim that L*|x C (L|cx)*.

Suppose that there exists a € Lt|x. There is b € K such that a ® b € L+. For
any ¢ € L|cx, {a ®b,c® 0) =0, and therefore {a,c) = 0. Thus, a € (L|cx)*.

(2) We claim that (L|cx)t C Lt|x.

Suppose that there exists a € (L|cx)* such that a ¢ L*|x.

For every z € K, a® z ¢ L+, and therefore there exists a, ® ¢, € L such that
(a, @ cpya ® ) = (ag,a) + (¢, x) = 1. Thus, (ag,a) = 1.
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If ¢, =0, then a, € L|cx and so (a,,a) = 0 and (c,,z) = 0, contrary to the
assumption that (a,,a) + (c;, ) = 1. Therefore ¢, # 0 for all x € K.

If ¢, = ¢, for x # y, then a, + a, € L|cx. Thus, 0 = (a, + ay,a) = 1 +
(Csyx) + 1+ (cy,y) = (czyx +y). Since ¢, #0and x +y # 0, ¢, = ¢, =+ y and
(ag,a) =1+ (z+y,z) =14 (z,y).

If ¢; = ¢y = ¢, for distinct z, y, 2z, thenz +y =y +2=2+2. So, v =y = z,
which is a contradiction.

If ¢ = ¢y, c. = ¢, for distinct z, y, z, w, then a, = v +y = 2+ w = a,. So,
xr =y =z =w. This is a contradiction.

Therefore, there are exactly one pair z,y € K such that ¢, = ¢,. Let {z,w} =
K\ {z, 9}

Since ¢, # ¢, and ¢, ¢, € K\ {0,z +y}, ¢, + ¢, = v + y = ¢, = ¢,. Therefore,
a,+ay,+a,; € Llcx and (a,+a,+a,, a) = 0. Since (a,, a) + (a,, a) = (¢, 2) + (Cw, W),

0=(a,+ ay+az,a) =1+ (z,y) + (¢, 2) + {cu, w).

If x =0, then ¢,, ¢, € {z,w}. So, (¢, z) + (¢y, w) = 0. Thus, (a,+a, +a,,a) = 1.
A contradiction.

So we may assume that x # 0, y # 0, z = 0, and then x +y = w and (¢, w) = 0.
But, this implies that ¢, = w = x + y = ¢,. A contradiction. O]

Proposition 6.7. Let V be a finite set and L be a totally isotropic subspace of KV
andv € V.
im(L fov e LY\ L
aim(rfy) = )T B
dim(L) —1 otherwise.
A(L) if 0 ¢ LT\ L

In other words, \(L|%) = .
ML) —1 otherwise.

Proof. For w € KV} and v € K, let w @ u denote a vector in KV such that
P} (W G u) = w and (w @ u)(v) = u.

A basis of L|Y extends to a set of independent vectors in L. Thus, dim(L|?) <
dim(L).

Suppose C'is a basis of L. We may assume that at most one vector of C' has x on
v. Let us choose y € K \ {0, 2} such that at most one, possibly none, of C' has y on
v and all other vectors in C have either 0 or z on v.

(1) If 6% € L+ \ L, then, no vector in L has y on v. Thus, for every z € C,
z(v) € {0,2}. Since 8% ¢ L, py\(}(C) is linearly independent and py\ 1) (C) C L|2.
So, dim(L) < dim(L|2).

(2) If 62 ¢ L*, then there exists z € C with 2(v) ¢ {0,z}. Since 0° ¢ L,
P} (C\ {z}) is linearly independent and py\ (3 (C'\ {2}) € L[%. So, dim(L|%) >
dim(L) —1. Conversely, let D be a basis of L|. Let z € L be such that z(v) ¢ {0, z}.
For each w € L|Y, there exists a unique w € L such that w = w & 0 or w & z,
because §Y ¢ L. Let D' = {w : w € D} U{z}. Then, D' is linearly independent. So,
dim(L) > dim(L|%) + 1.
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(3) If 62 € L, then we may assume 07 € C. For all z € C, if z # §2, then
z(v) = 0. Thus, py\(}(C \ {2}) is linearly independent and py ;3 (C'\ {z}) € LI2.
So, dim(L|?) > dim(L) — 1. Conversely, let D be a basis of L|%. For any vector
w e LY, w0, wdz € L because 02 € L. Since every vector of L has either 0 or z on
v, {wd0 : w € D}U{6?} is linearly independent in L. So, dim(L) > dim(L[?)+1. O

Corollary 6.8. Let V be a finite set and L be a totally isotropic subspace of KV
and v € V. Let C C K\ {0}, |C| = 2. Then, either there is v € C such that
AL|2) = ML) or for ally € K\ {0},

Ll; = Llcw\y and A(L[;) = ML) — 1.

Proof. Let C' = {a,b}. Suppose there is no such z € C. §¢,6¢ € L+ \ L. Therefore,
for all 2 € L, z(v) = 0. Thus, L[j = L|cv\{yy and A(L[}) = A(L) — 1 for all
y € K\ {0}. O

6.2 Scraps

In this section, we prove that a minor of a scrap is well-defined. Definitions related
to scraps were described in the beginning of this chapter.

Lemma 6.9. Let P = (V,L, B) be a scrap andv € V. If§2 ¢ L\ L, then there is a
sequence by, by, ... by, € Lt such that b;(v) € {0,2} and B = {by+L,by+L,... by +
L}.

Proof. Let B = {a1+L,as+L,...,a,+L} witha; € L. Tf6Y € L, then a;(v) € {0, 2}
for all . Hence we may assume that 6% ¢ L and so 6% ¢ L*.
There is y € L such that (y,d7) = 1. Thus, y(v) ¢ {0,2}. Let

by — {ai if a;(v) € {0, x},

a; +vy otherwise.

Then, b; + L = a; + L and b;(v) € {0, x}. O

Proposition 6.10. Let P = (V, L, B) be a scrap. If 6° ¢ L+ \ L, then P|° is well-
defined and is a scrap.

Proof. Let us first show that it is well-defined. Let by, bs, ..., b, € L+ be such that
bi(v) € {0,z} and B ={b;+ L :i=1,2,...,k}. We claim that the choice of b; does
not change P|’. Suppose b; — b, € L and b;(v), b(v) € {0,x}. Since b; — b, € L and
(b;—=0))(v) € {0, 2}, pv\(u} (b:—D}) € L|%. Therefore, py 1o} (b;) + L[ = py\ oy (b5) + L2

Now, we claim that P|? is a scrap.

First, we show that L|” is a totally isotropic subspace of KV}, For all a,b € L|Y,
there are @,b € L such that a(v),b(v) € {0,2}, p\((@) = a, py}(b) = b, and
a,b € L. Hence {(a,b) = (a,b) = 0.
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Next, we show that {py\(uy(b;) + LY < i
Since b;(v) € {0, 2}, we have py\ () (b;) € (L]
C # () such that

= 1,2,...,k} is a basis of (L|2)*/(L[2).
)t = (L1)]. Suppose that there exists

xT

> vy (b) + L2 = 0+ LI,

icC
Since Y ;.o Pv\fo}(bi) € LY, there exists z € L C L+ such that z(v) € {0,z} and
Py (2) = ZieC’pV\{U}(bi)‘ By assumption, ZieC’ b; ¢ L. Since pV\{U}(ZiEC b; —
2) =0, >, ccbi—2z =202 € L\ L. A contradiction. Therefore, {py\(o3(b;) + LI :
i=1,2,...,k} is linearly independent. Moreover, dlm((L];)L/(L];’)) =2(|V]|—-1-
dim(L|%)) = 2(]V| — dim(L)) = dim(L*/L) because 6% ¢ L+ \ L. O

6.3 (Generalization of Tutte’s linking theorem

In this section, we show an extension of Tutte’s linking theorem [57]. We note that
we already have one generalization of Tutte’s linking theorem into graphs in Section
B.1

The following inequality is analogous to Lemma [3.27]

Lemma 6.11. Let V be a finite set and v € V. Let L be a totally isotropic subspace
of KV. Let X1, Y1 CV \ {v}. Let v,y € K\ {0}, = # y.

dim(L|cx,ny;) + dim(L|cx,uviufey) = dim(Lp[cx, ) + dim(L[y]cy; )-
In other words,

MLzlex,) + MLljley:) > MLlcxinvy) + ML|exuvugey) — 1.

Proof. We may assume that V' = X; UY; U {v} by taking L' = L|cxuyufu}-

Let B be a minimum set of vectors in L such that px,ny, (B) is a basis of L|cx,nv,
and for every z € B, z(w) =0 for all w ¢ X; NY].

Let C' be a minimum set of vectors in L such that px, (BUC) is a basis of L|’|cx,
and for every z € C, z(w) = 0 for all w ¢ X; U {v} and z(v) € {0,z2}. We may
assume at most one vector in C' has = on v.

Let D be a minimum set of vectors in L such that py, (BU D) is a basis of L[} |cy,
and for every z € D, z(w) = 0 for all w ¢ Y, U{v} and z(v) € {0,y}. We may assume
at most one vector in D has y on v.

We claim that B U C U D is linearly independent. Suppose there is B’ C B,
C'C C, D' C D such that

Yb+d e+ > d=o.

beB’ ceC’ deD’

No element of C' has z on v, because the LHS has 0 on v. Since }_ .., c(w) =0
for all w € V' \ (X1 NY1), px;ovi (Qpeer ©) € Llcxiny;- Since px,ny; (B) is a basis,



CHAPTER 6. WELL-QUASI-ORDERING WITH VERTEX-MINORS 72

there is B” C B such that px,nyv,(D_.ccr ¢) = Pxinvi (Q_pepr b)- So,

Zc+Zb:O.

ceC’ beB"

This means that C’ = () because C' U B is a basis.
Similarly D' = () and so B’ = ().
dim(L) > |B| + [C| + |D| = dim(L[7|cx,) + dim(L[j|cy,) — dim(L[cx,y;). O

Now, we translate Tutte’s linking theorem into isotropic subspaces. As a matter
of fact, we are proving Theorem [3.28| in terms of isotropic systems.

Theorem 6.12. Let V' be a finite set and X be a subset of V. Let L be a totally
isotropic subspace of KY. Let k be a constant. Let b be a complete vector of KV \X.
For all Z O X, M(L|cz) > k if and only if there is a complete vector a € KV \X

such that M(L|% ™) > k and a(v) # b(v) for allv € V \ X.

Proof. (<) Let Z be a subset of V such that X C Z. Let a; = py\z(a), az = px x(a).
Since L|cz C LI\?, ML|cz) = A(L|n\9).
k< ALY = MLIVZY) < ML) < MLlcz).

ai az

(=) Induction on |V \ X|. Suppose that there is no such complete vector a €
K"\X. We may assume that |V \ X| > 1.

Pick v € V'\ X. Let K\ {0,b(v)} = {z,y}. Since there is no complete vector a’ €
KYMYNX such that )\(L|Z|Z,\{U}\X) > k, there exists X; such that X C X; C V \ {v}
and M(L|%|cx,) < k.

Similarly, there exists Y7 such that X C Y; C V \ {v} and A(L|)|cy,) < k. By
Lemma [6.11} either A(L|cx,ny;) < k or A(L|cx,uviu}) < k. A contradiction. O

Corollary 6.13. Let V' be a finite set and X be a subset of V. Let L be a totally
isotropic subspace of KY. Let b be a complete vector of KV\X.
If M(Llcz) > ML|cx) for all Z O X, then there is a complete vector a € KV\X

such that L];/\X = L|cx and a(v) # b(v) for allv e V' \ X.

Proof. By Theorem , there exists a complete vector a € KV\X such that
ML) = ML|cx) and a(v) # b(v) for all v € V' \ X.

Since L|cx C L|4 " and dim(L|cx) = dim(L|% ), Llcx = LY ¥ 0

Corollary 6.14. Let P = (V, L, B) be a scrap and X C V. If

AMP) =AML|cx) = min AL|cz),

n
XCZCV

then there is an ordered set B' such that Q = (X, L|cx, B’) is a scrap and an of3-
minor of P.



CHAPTER 6. WELL-QUASI-ORDERING WITH VERTEX-MINORS 73

Proof. By applying Corollary with b(v) = v for all v € V'\ X there is a complete
vector a € KV such that L|) X = L|cy and a(v) € {o, 8} for all v € V' \ X. Let
VAX ={y1,42, ..., ym} and a; = a(y;). Then, L|cx = L[§}|%2---|4». Let Ly = L and

L; = L;_1|%. By Proposition ML|cx) = ML) = X\L;) implies 051} ¢ L\ L;.
So, P[#t[#2 ... |ym = (X, L|cx, B') is well-defined and is an a/3-minor of P. O
6.4 Sum

A scrap P = (V, L, B) is called a sum of two disjoint scraps P, = (V4, Ly, By) and
P2 = (‘/Q,LQ,BQ) if V= ‘/1 U ‘/2, Ll = L|gv1, and L2 = L|§V2- For given two
disjoint scraps, there could be many scraps that are sums of those. In this section,
we define the connection type, which determines a sum uniquely. Let [n] denote the

set {1,2,3,...,n}.

Definition 6.15. Let P = (V| L, B) be a sum of two disjoint scraps P, = (V1, L1, By)
and Py = (Vo, Ly, By) where B = {by + L,by + L,... b, + L}, By = {b} + Ly,b +
Ly,....,bL + L1}, and By = {b3+ Ly, b3+ Lo, ..., b} +Lo}. Forxy € KV and zy € K2,
let 1 ® xo denote a vector in KV such that py.(z1 ® x3) = x; fori=1,2. Let

Co = {(X,Y) ' X C [m],Y C 1], (Zb}) o (Zb§> € L}

Cs = {(X,Y) : X C[ml,Y C [, (szl) ® (Zb?) —bSEL} s=1,...,n

A sequence C(P, Py, Py) = (Cy,C1,Ca,...,Cy) is called the connection type of this
sum.

It is easy to see that if A\(P),A\(P;),\(P) < k, then the number of distinct
connection types is bounded by a function of k, because |B| = 2A(P) < 2k and
|B;| = 2\(P;) < 2k for : =1 and 2.

Proposition 6.16. The connection type is well-defined.

Proof. Tt is enough to show that the choice of b;, b}, and b? does not affect C;. Suppose
bi+L=d;+L,bl + Ly =d} + Ly, and b? + Ly = d? + Lo. For any (X,Y) such that
X C[m]and Y C [l], we have =, (b} —dj) © >,y (b7 —d7) € L and by — d; € L,
and therefore Cy and C are well-defined. O

Proposition 6.17. The connection type uniquely determines the sum of two disjoint
scraps Py and Ps.

Proof. Suppose not. Let P = (V,L,B), Q = (V,L’, B’) be two distinct sums of
P = (Vi,Ly,B;) and P, = (V4, Lo, By) by the same connection type. Let By =
{b} + Ly,bi+ Ly, ..., 0L + L1}, and By = {b + Ly, b2 + Lo, ..., bF + Lo}.
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We claim that L = L’. To show this, it is enough to show that L C L'. For any
a € L, py;(a) € (L|cy, )t and py,(a) € (L|cy,)*. Therefore there is (X,Y) such that

Z b pvl 6 L; and zy = Z b pv2 E Lo.

1€X €Y

Since z1®0,0®xy € L, 11®x3 € L. We deduce that ), b; @ZZEY P =a+11B1y €
L. Therefore, (X,Y) € Cyand a+x1 Dz € L. Since 10,00z € L/, 21Dy € L,
and so a € L'.

Now, we show that B = B’. Let b, + L be the s-th element of B with b, € L™ .
Let V), + L be the s-th element of B’ with ¥, € L*. Since py:(bs) € (L|cv;)* =
there is (X, Y’) such that

= bl —py(b) €Ly and x5 =Y b7 —pry(bs) € La.

i€eX €Y

Since 21 ® 0,0 ® 25 € L, x1 & x5 € L, and therefore Y, bl & >,y b7 — by € L.
Thus, (X,Y) € C,, and

dbied -t el =L

1€X €Y
Thus, b+ L =V, + L = b, + L. 0

Proposition 6.18. Let P, = (V4, L1, By), Po» = (Va, Lo, By) be two disjoint scraps.
Let P be the sum of P, and P, by connection type C(P, Py, P). If v € Vi and
6Y ¢ L\ Ly. then, 6% ¢ L\ L and P|’ is the sum of Pi|% and Py by connection type
C(P, P, P,).

PTOOf. If (5; € LL \ L, then 5;) € (LL)lvl = (L’g{ﬁ)L = LlL and (Sg ¢ L|QV1' This
contradicts to 6° ¢ Li \ Ly. So, 6 ¢ L\ L.

First, we claim that P|Y is a sum of P;|? and P,. It is equivalent to show that

v
Llylcvivpy = Llcw |y, and  L|j|cy, = Llcy,.

It is easy to see that L||cvi\fv} = Llcw |y and Llcw, € L|%|cv,. Therefore, it is
enough to show that
Llzlcvs € Llcvs,-

Suppose z € L|%|cy,. Let z € KV such that py, (2) = z, 2(v) € {0,2}, and py;\ (o} (2) =
0. If 2(v) = 0, then 2z € L|cy,. If 2(v) = z, then py,(2) = §° € Lt|y, = Ly, and
therefore 62 € Ly. So, 62 € L and z+ 6% € L. Since (z+62)(v) =0, 2z € L|cy,.

Now, let us show that C'(P, P, P,) = C(P|%, Pi|%, P2). Let By = {bj + L1,b} +
Ll,--~ab71n+L1}7 and BQ = {b%—FLQ,b%—FLQ,,bz—I—LQ} For x € Kvl andy S KVQ,
let x @ y denote a vector in KV such that py,(x @ y) = x and py,(z B y) = y. We
may assume that b} (v) € {0,2} for all i by Lemma[6.9] Let b € L be such that

b(v) € {0,2}. Let a(X,Y) = (X ,cx bl) @ (Z;ey ]> — b. Suppose we have (X,Y)
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such that X C [m], Y C [k], and a(X,Y) € L. Since (3,5 b} (v)) — b(v) € {0, 2},

pviop(a(X,Y)) = (ZPV\{’U}( ) (Zb> Py (b) € L.

1€X JjEY

Conversely, let us suppose that there is (X,Y’) such that X C [m], Y C [k], and

(val\{u}( ) (Zb> P} (b) € L.

1€X JjEY

Then, either a(X,Y) € L or a(X,Y)+ 62 € L. If 62 € L, then a(X,Y) € L. If
6v ¢ Lt then a(X,Y) + 0% ¢ Lt by a(X,Y) € L*, and therefore a(X,Y) € L. [

Lemma 6.19. Let P, P, Q1, Q2 be scraps. Let P be the sum of P, and P, and Q)
be the sum of Q1 and Q. If P; is a minor of Q; for i = 1,2 and the connection type
of Py and Py is equal to the connection type of Q1 and QQo, then P is a minor of Q).
Moreover, if P; is an af-minor of Q; fori € {1,2} and the connection type of P
and Py 1s equal to the connection type of Q1 and Qo, then P is an af-minor of Q.

Proof. Induction on |[V(Q1) \ V(P)| + [V (Q2) \ V(P)|. We may assume |V (Q1) \
V(P)| + [V(Q2) \ V(FP2)| > 0 and V(Q1) # V(P1) by symmetry. There are v €
V(Q)\V(P), z € K\{0}, X =V(Q1)\V(P1)\{v}, and a complete vector a € K~
such that P, = Q|¢|X. If P, is an a8-minor of Q1, then we may assume z € {a, 5}
and a(w) € {a, G} for all w € X.

Q]2 is the sum of Q4] and Q2. P is a minor of Q4|2. C(QY, Q1% Q2) =
C(Q,Q1,Q2) = C(P, P, P;). So, P is a minor of Q|? by induction. Thus, P is a
minor of Q.

Similarly if P; is an a-minor of (; and P, is an a-minor of ()5, then by induction
P is an aff-minor of Q). O

6.5 Well-quasi-ordering

Proposition 6.20. Let k be a constant. If {S1, 52,53, ...} is an infinite sequence of
1sotropic systems of branch-width at most k, then there exist i < j such that S; is
simply isomorphic to an af-minor of S;.

Proof. We may assume that each S; = (V;, L;) satisfies that |V;| > 1. By Lemmal[6.3]
there is a linked branch-decomposition (7;, £;) of S; of width at most k for each i. Let
F' be a forest such that the i-th component is 7;. In T}, we pick an edge and attach
a root and direct every edge so that each leaf has a directed path from the root.

For each edge e of T;, let X, be the set of leaves of T; having a directed path
from e. Let A, = L£;*(X.). We associate e with a scrap P. = (A., Li|ca., B.) and
Ae) = A(Li|ca.) < k where B, is chosen to satisfy the following:

If fis A-linked to e, then P, is an a8-minor of P.
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We claim that we can choose B, satisfying the above property. We prove it by
induction on the length of directed path from the root edge to e. If no other edge is
Mlinked to e, let B, be a basis of (L;|ca,)*/(Li|ca,) in an arbitrary order. If f, other
than e, is A-linked to e, choose f such that the distance between e and f is minimal.
We assign B, given by By by Corollary [6.14]

For e, f € E(F), let e < f denote that a scrap P, is isomorphic to an «/f-minor
of a scrap Py. Clearly, < has no infinite strictly descending sequences, since there
are finitely many scraps of bounded number of elements up to isomorphism. By
construction if f is A-linked to e, then e < f.

The leaf edges of F' are well-quasi-ordered, because there are only finitely many
distinct scraps of one element up to isomorphisms.

Suppose the root edges are not well-quasi-ordered. By Lemma[6.4] F' contains an
infinite sequence (e, €1, . ..) of non-leaf edges such that

(i) {eo,e1,...} is an antichain with respect to <,
(11) l(eo) S l(@l) S cee,
(iii) r(eg) <r(e) <---.

Since A(e;) < k for all i, we may assume that A(e;) is a constant for all 7, by taking
a subsequence.

Since the number of distinct connection types C(F,, Pye,), Pr(e,)) is finite, we may
assume that the connection types are same for all 7 also by taking a subsequence.

Then, by Lemma [6.19] P., is isomorphic to an af-minor of P, , which means
eo < ey. This contradicts that {eg, €1, ..., } is an antichain with respect to <.

Therefore, root edges are well-quasi-ordered, and there exist ¢ < j such that a
scrap (V;, L;, 0) is isomorphic to a a-minor of a scrap (V;, L;,0). Thus, S; is simply
isomorphic to an aS-minor of S;. O]

6.6 Pivot-minors and af-minors

In this section, we shall show a relation between a pivot-minor of graphs and an
a-minor of isotropic systems.

Proposition 6.21. For i € {1,2}, let S; be an isotropic system whose graphic pre-
sentation is (G, a;, b;) such that

a;(v),b;(v) € {a, B} for allv € V(G,).
If Sy = 55, then Gy can be obtained from Gy by applying a sequence of pivoting.

Proof. Let V =V (Gy) = V(Gs) and let S = S; = Sy = (V, L) be an isotropic system.
We show this by induction on N(ay,as) = |[{v € V : a1(v) # az(v)}|.

Suppose that N(ay,as) > 1. Let u € V with a1 (u) # az(u).

We first claim that there exists v € V such that wv € E(G3) and a1(v) # az(v).
Suppose not. By Proposition [4.6] there is a vector ¢ in L such that
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(i) e(u) = by(u) = a1 (u),
(ii) c(w) € {0, as(u)} for all w # w.

In G2, u and w are adjacent if ¢c(w) # 0. Therefore if c¢(w) = as(u), then c¢(w) = a;(u)
by our assumption. Thus, for all z € V, ¢(z) € {0,a;(x)} and ¢ # 0. A contradiction,
because a; is an Eulerian vector.
Now, we apply pivoting uv to Gg, and we obtain another graphic presentation of
S, that is,
(Go A uv, al, by)

where a, = as[V \ {u,v}] + bo[{u,v}| and b, = by[V \ {u,v}] + as[{u,v}]. Since
N(ay,ay) = N(a,az) — 2, by induction G can be obtained from Go A uv by applying
a sequence of pivoting, and so it can be obtained from G5 as well.

If N(Cll, (12) = O, then bl = b2 and G1 = GQ.

Hence we may assume that N(aj,a2) = 1. We claim that this is impossible. Let
v € V be such that a;(v) # as(v). By Proposition 4.6] we choose a unique vector
¢ € L such that c¢(v) = b;(v) = az(v) and c¢(w) € {0,as(w)} for all w # v. Then
¢ =ay[{w € V : ¢(w) # 0}] and we obtain a contradiction, because ay is an Eulerian
vector of S. O

Lemma 6.22. Fori € {1,2}, let S; be the isotropic system whose graphic presentation
is (Gy, ai, b;) such that a;(v),b;(v) € {a, B} for allv € V(G;). If Sy is an af-minor
of Ss, then G1 is a piwot-minor of Gs.

Proof. We use induction on |V(Gq)| — |V (G1)|.

If V(Gs) = V(G1), then Gy is a pivot-minor of G, by Proposition [6.21] Therefore
we may assume that |V(G)| > |V(Gy)].

Let v € V(G2) \ V(G1), = € {a, 8} and y € KV (@N\V(ED} be such that y(w) €
{a, B} for all w € V(G3) \ V(G1) \ {v} and Sy = Sof2[y @V @MY Note that S is
an af-minor of Ss|Y.

If as(v) = x, then

(G2 \ 0, Py (@) P (o} (03))

is a graphic presentation of S3|?. Thus by induction, GG; is a pivot-minor of G \ v,
and so is a pivot-minor of Gb.

Now let us assume that as(v) # x, ans so as(v) = be(v) since by(v), az(v) € {«, 5}
and as(v) # be(v). Suppose there is u € V(G3) adjacent to v. Then

(G2 Auv\v, p oy (@ [V (G2) \ {u, v} +bil{w, v3]), Py (0i[V (G) \{u, v} +a:[{u, v}]))

is a graphic presentation of Sy|%. Thus by induction, G is a pivot-minor of Go Auv\ v,
and so is a pivot-minor of Gs.

Hence we may assume that v has no adjacent vertex in GGo. Then §Y is a vector
of v in the fundamental basis of Sy with respect to as. Let Lo be such that Sy, =
(V(G2), Lo). 1t follows that d; € Ly and so Sa; = o[y (,)- Thus in this case, we may
let « be ay(v). O



CHAPTER 6. WELL-QUASI-ORDERING WITH VERTEX-MINORS 78

6.7 Application to binary matroids

We would like to show that Theorem implies the well-quasi-ordering theorem of
Geelen, Gerards, and Whittle [27] for binary matroids. The proof uses the following
theorems.

(1) (Seymour [53]) If M, My are connected binary matroids on E, with the same
connecitivy function, then M; = My or M; = M3.

(2) (Higman’s lemma) Let < be a quasi-order on X. For finite subsets A, B C X, we
write A < B if there is an injective mapping f : A — B such that a < f(a) for
all @ € A. Then < is a well-quasi-ordering on the set of all finite subsets of X.
(For proof, see Diestel’s book [22], Lemma 12.1.3].)

For a binary matroid M with a fixed base B, we define a bipartite graph Bip(M, B)
such that V(Bip(M, B)) = E(M) and v € E(M) \ B is adjacent to w € B if and
only if w is in the fundamental circuit of v with respect to B. For a bipartite graph
G = (V, E) with a bipartition V.= AU B, Bin(G, A, B) is a binary matroid on V,
represented by a A x V matrix (IA MIA, B]), where [, is a A X A identity matrix
and M is the adjacency matrix of G.

Lemma 6.23. Let My, My be binary matroids and let B; be a fized base of M;. If
M is connected and Bip(My, By) is a pivot-minor of Bip(Ma, Bs), then My is a
minor of either My or Ms.

Proof. Let H = Bip(My,By) and G = Bip(Ms, B). In Corollary [3.22] it was
shown that if H is a pivot-minor of a bipartite graph G, then there is a bipartition
(A’, B') of H such that a binary matroid M3 = Bin(H, A’, B') is a minor of My =
Bin(G, By, V(G) \ By).

Since M; and M3 have the same connecitivity function and M is connected,
M3 is connected. By Seymour’s theorem [53], M; = M3 or M; = Mj. O

Corollary 6.24. Let k be a constant. If {My, My, M3, ---} is an infinite sequence
of binary matroids of branch-width at most k, then there exist 1 < j such that M; is
isomorphic to a minor of M;.

Proof. First, we claim that if M, is connected for all ¢, then the statement is true.
Let B; be a fixed base of M; and G; = Bip(M;, B;) for all i. The rank-width of
G; is at most k — 1, since rank-width of G; is equal to (branch-width of M;)—1.
By Theorem [6.1], there is an infinite subsequence Gy, , Gq,, Gq,, - . . such that G, is
isomorphic to a pivot-minor of G,,,, for all i. By Lemma[6.23 M,, is isomorphic to
a minor of either M, or M’ and M,, is isomorphic to a minor of either M,, or
M;, . Tt follows that M,, is isomorphic to a minor of M,, or M,, is isomorphic to a
minor of M,, or M,, is isomorphic to a minor of M,,. This proves the above claim.

Now, we prove the main statement. We may consider each M; as a set of disjoint
connected matroids and then M; is isomorphic to a minor of M, if and only if there
is an injective function f from components of M; to components of M; such that a
is isomorphic to a minor of f(a) for every component a of M;. By Higman’s lemma,
there exist ¢ < j such that M, is isomorphic to a minor of M;. m
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6.8 Excluded vertex-minors

In this section, we show that Corollary (6.2 has an elementary proof not using isotropic
systems. In other words, we show that for any fixed k, there is a finite set Cy, of graphs
such that for every graph G, rwd(G) < k if and only if no graph in Cy, is isomorphic to
a vertex-minor of G. Since the number of graphs with bounded number of vertices is
finite up to isomorphism, it is enough to show that if a graph G has rank-width larger
than k but every proper vertex-minor of G has rank-width at most k, then |V(G)]
is bounded by a function of k. We prove a stronger statement that if rwd(G) > k
and every proper pivot-minor has rank-width at most k, then |V (G)| is bounded by
a function of k. The analogous result for matroids was proved by Geelen, Gerards,
Robertson, and Whittle [26] and we extend their method to graphs.

Let us begin with some additional definitions from [26]. Let G be a graph and
(A, B) a partition of V(G). A branching of B is a triple (T, r, L) where T is a ternary
tree with a fixed leaf node r and L is a bijection from B to the set of leaf nodes of
T different from r. For an edge e of T of the branching (T, r, L), let T, be the set of
vertices in B mapped by £ to nodes in the component of 7"\ e not containing r. We
say B is k-branched if there is a branching (7', 7, £) of B such that for each edge e of
T, pc(T.) < k. Note that if both A and B are k-branched, then the rank-width of G
is at most k.

The following lemma is proved in [26, Lemma 2.1] in terms of matroids. But their
proof relies on the fact that A4 is integer-valued submodular, and since cut-rank also
has these properties, we can use basically the same argument.

Lemma 6.25. Let G be a graph of rank-width k. Let (A, B) be a partition of V(G)
such that pg(A) < k. If there is no partition (Ay, A, A3) of A such that p(A;) < p(A)
for alli € {1,2,3}, then B is k-branched.

Proof. (Obvious modification of the proof of Geelen et al. [20, Lemma 2.1]) Let (7', £)
be a rank-decomposition of G of width k. We may assume that 7" has degree-3 nodes,
as otherwise it is trivial. We may also assume that £ > 0. If v is a vertex of T" and
e is an edge of T, we let X,, = £L71(X,,) where X, is the set of leaves of T in the
component of T\ e not containing v (as defined in Lemma . We may assume
that X., # A for every v € V(T) and every edge e incident to v, otherwise B is
k-branched.

Let s be a vertex satisfying Lemmal5.4] let ey, e2, and ez be the edges of T" incident
with s, and let X; denote X, for each i € {1,2,3}. Note that pg(X; N A) > pa(A)
for some i € {1,2,3}; suppose that ps(X1 N A) > pe(A). Then by submodularity,

pc((X2U X3) N B) = pe(X1 U A)
< pa(X1) + pa(A) — pa(X1 N A)
< pG(Xl) < k.

Now we construct a branching (7”,r, L") of B; let 7" be a tree obtained from the
minimum subtree of T' containing both e; and nodes in £(B) by subdividing e; with
a vertex b, adding a new leaf r adjacent to b, and contracting one of incident edges
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of each degree-2 vertex until no degree-2 vertices are left. For each x € B, we define
L'(x) to be a leaf of 7" induced by L(x). Then (7”,r, L’) is a branching.

It is easy to see that pg(T)) < k for all e in 7" by Lemma [5.4 So, B is k-
branched. O

We continue to follow [26]. Let Z* be the set of nonnegative integers. Let g :
7+ — Z7 be a function. A graph G is called (m, g)-connected if for every partition

(A, B) of V(G), pa(A) =1 < m implies either |A| < g(I) or |B| < g(1).

Lemma 6.26. Let f : ZT — Z* be a nondecreasing function. Let G be a (m, f)-
connected graph and let v € V(G) and vw € E(G). Then either G\ v or G ANvw \ v
is (m, 2f)-connected.

Proof. The proof for matroids in Geelen et al. [26, Lemma 3.1] works for general
graphs. For the completeness of this paper, the proof is included here.
Suppose not. There are partitions (X, X3), (Y1,Y2) of V(G) \ {v} such that

a = pc\o(X1) <m, | X4| > 2f(a), | Xo| > 2f(a),
b= pG/\vw\v(le) <m, |Y1| > Qf(b)a |}/2| > Qf(b)

We may assume that a > b by replacing G by G Avw. We may assume that | X;NY7| >
f(a) by swapping Y7 and Y5.
By Lemma |3.27], we obtain

pe(X1NY)) 4+ pa(XanNYs) <a+b+1.

Thus, either pa(X1 NY1) < a or pa(Xe NY2) < b. So, either | X; NYi| < f(a) or
| X2 N Ys| < f(b). By assumption, | Xz N Ya| < f(b).

Similarly we apply the same inequality after swapping X; and X5. Either | X5 N
Yi| < f(a) or |X, NYa| < f(b). Since | X, N Y| = [Ya| - [Ya N Xa| > F(b), |Xo N Yi] <
(o).

Then | X;5| = | XoNY |4+ XoNYs| < f(a)+f(b) < 2f(a). Thisis a contradiction. [

Let g(n) = (6™ —1)/5. Note that g(0) =0, g(1) =1, and g(n) = 6g(n —1)+1 for
alln > 1.

Lemma 6.27. Let k > 1. If G has rank-width larger than k but every proper pivot-
minor of G has rank-width at most k, then G is (k + 1, g)-connected.

Proof. We continue to follow the proof of Geelen et al. [26, Lemma 4.1] with a slight
modification.

It is easy to see that G is (1, g)-connected, because if G is disconnected, then the
rank-width of G is the maximum of the rank-width of each component.

Suppose that m < k and G is (m, g)-connected and G is not (m+ 1, g)-connected.
Then there exists a partition (A, B) with pg(A) = m such that |A|,|B| > g(m) =
6g(m—1)+1. Since G has rank-width greater than k, either A or B is not k-branched.
We may assume that B is not k-branched. Let v € A. Since G is connected, there is
a neighbor w of v in G.
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By Lemma [6.26] either G\ v or G Avw \ v is (m, 2g)-connected. Since both G'\ v
and G A vw \ v are proper pivot-minors of GG, they have rank-width at most k.

We may assume that G \ v is (m, 2g)-connected by swapping G and G' A vw. Let
(A1, A, A3) be a partition of A\ {v}. Since |A| > 6g(m — 1) + 1, |A;] > 2g(m — 1)
for some i € {1,2,3}. Since G \ v is (m, 2g)-connected and |B| > 2g(m — 1),

pave(Ai) > m > pavo(A\ {v}).

Therefore by Lemma m, B is k-branched in G\ v. Since B is not k-branched in G,
there exists X C B such that pg(X) = pew(X)+1. Let M = A(G) be the adjacency
matrix of G over GF(2). By submodular inequality (Proposition [3.2), we obtain

V(G)\ B\ {v}]) + rk(M[X, V(G) \ X])
V(G )\B])+rk(M[ V(G N XA\ A{v}])

peve(B) + pa(X) = Tk(M

and therefore pe\,(B) = pe(B) —1 = m—1. But this is a contradiction because G'\ v
is (m, 2g)-connected. O

Theorem 6.28. Let k > 1. If G has rank-width larger than k but every proper
pivot-minor of G has rank-width at most k, then |V(G)| < (6571 —1)/5.

Proof. Let v € V(G). Since G is connected, pick w such that vw € E(G). We may
replace G by G A vw, and hence we may assume that G \ v is (k + 1, 2g)-connected.
Since G \ v has rank-width &, there exists a partition (X, Xs) of V/(G) \ {v} such
that | X1, [Xo| > 2(|V(G)] — 1) and peo(X1) < k. By (k+ 1, 2g)-connectivity, either
| X:1| < 2g(k) or \XQ\ < 2¢(k). Therefore, |V(G)| —1 < 6g(k) and consequently
V(G)| <6g(k)+1=g(k+1). O

One of the main corollary of the above theorem is the following corollary. This
corollary will be used in Chapter [7] to construct a polynomial-time algorithm to
recognize graphs of rank-width at most k.

Corollary 6.29. For each k > 0, there is a finite list Cy of graphs having at most
max((65T1 — 1)/5,2) vertices such that a graph has rank-width at most k if and only
if no graph in C, is isomorphic to a vertex-minor of G.

Proof. If k = 0, then we let K, be a graph with two vertices and one edge joining
them and let Cy = {K>,}. Since a graph G has rank-width 0 if and only if G has no
edge, the rank-width of G is 0 if and only if K5 is not isomorphic to a vertex-minor
of G. Now we may assume that k£ > 1.

Let Cy be the set of graphs H with V(H) = {1,2,...,n} for some integer n such
that rwd(H) > k and every proper vertex-minor has rank-width at most k. By
Theorem [6.28] Cj is finite and each graph in Cj, has at most (6¥7 — 1)/5 vertices.

Suppose the rank-width of a graph G is at most k. Since every graph in C has
rank-width larger than k, no graph in Cj is isomorphic to a vertex-minor of G.
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Conversely, suppose that the rank-width of a graph G is larger than k. Let H be a
proper vertex-minor of G with the minimum number of vertices such that rwd(H) > k.
Then there exists a graph H' € C;, isomorphic to H. O

Let us discuss this corollary when k£ = 1. We obtain C; such that every graph in
C; has at most 7 vertices. Then what is C;? In Section [3.3] we proved that a graph
has rank-width at most 1 if and only if it is distance-hereditary. Bouchet [4] [6] proved
that a graph is distance-hereditary if and only if it has no vertex-minor isomorphic
to the 5-cycle. So, Cy = {5-cycle}.

By Corollary [3.22] Theorem [6.28|implies the following corollary, which is a special
case of Geelen et al. [26] Theorem 1.1].

Corollary 6.30. Let k > 2. If a binary matroid M has branch-width larger than k
but every proper minor of M has branch-width at most k, then |E(M)| < (6* —1)/5.



Chapter 7

Recognizing Rank-width

7.1 Approximating rank-width quickly

In this section, we show that, for fixed k, there is a O(n*)-time algorithm that, with a
n-vertex graph, outputs a rank-decomposition of width at most 3k+1 or confirms that
the input graph has rank-width larger than k. Since rank-width is defined as branch-
width of the cut-rank function, it is easy to see from Corollary that we have
a O(n®logn)-time algorithm using algorithms that can minimize any submodular
functions. To obtain a O(n*)-time algorithm, we construct a direct combinatorial
algorithm that minimizes the cut-rank function so that we can obtain it faster. The
main idea of this section was due to Jim Geelen (private communication).

We first define a blocking sequence, defined by J. Geelen [25]. Let G be a graph
and A, B be two disjoint subsets of V(G). A sequence vy, vy, ..., v, of vertices in
V(G)\ (AUB) is called a blocking sequence for (A, B) in G if it satisfies the following:

(i) ps(A, BU{v1}) > pis(A, B).
(i)

(it}) p(AU {om}, B) > pis(A, B).

(iv) No proper subsequence satisfies (i)—(iii).

pe(AUu{v}, BU{vis1}) > pa(A,B) forall i € {1,2,...,m — 1}.

The following proposition is used in most applications of blocking sequences.

Proposition 7.1. Let G be a graph and A, B be two disjoint subsets of V(G). The
following are equivalent:

(i) There is no blocking sequence for (A, B) in G.
(ii) There exists Z such that A C Z CV(G)\ B and pc(Z) = pg(A, B).

Proof. (i)—(ii): We assume that a,b ¢ V(G) \ (AU B) by relabeling. Let k =
pe(A, B). We construct the auziliary digraph D = ({a,b} U (V(G) \ (AU B)), E)
from G such that for z,y € V(G) \ (AU B),

83
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i) (a,x) € Eif p,(A, BU{z}) >k,
ii) (z,b) € Eif p,(AU{z}, B) >k,
iii) (z,y) € Eif p5(AU{z}, BU{y}) > k.

Since there is no blocking sequence for (A, B) in G, there is no directed path from a
to bin D. Let J be a set of vertices in V(G) \ (AU B) having a directed path from
a in D. We show that Z = J U A satisfies pc(Z) = k.

To prove this, we claim that p;(AUX,BUY) =Fkforall X C J, Y CV(G)\
(Z U B). We proceed by induction on |X|+ Y.

If | X| <1and |Y| <1, then we have p5 (AU X,BUY) =k by the construction
of J.

If | X| > 1, then for all z € X we have

pa(AUX, BUY ) +pi (A, BUY) < pL(AU(X\{z}), BUY)+pe(Au{z}, BUY) = 2k,

because p&(AU{z}, BUY) = k by induction. So, p(AUX,BUY) = k.

Similarly if Y| > 1, then for all y € Y we have p5,(AUX, BUY )+ p5(AUX, B) <
pe(AUX, BU(Y' \{y}))+pc(AUX, BU{y}) = 2k, and therefore pf.(AUX, BUY) = k.

(ii)—(i): Suppose that there is a blocking sequence vy, v, ..., v,,. Then, v, ¢ Z
because pg(AU{vn,}, B) > pe(Z). Similarly v1 € Z because p (A, BU{v1}) > pa(Z).
Therefore there exists i € {1,2,...,m — 1} such that v; € Z but v;;; ¢ Z. But this
is a contradiction, because pg(Z) < p&(AU{v;}, BUAvin}) < pa(Z,V(G)\ Z) =
pc(Z). 0

Lemma 7.2. Let G be a graph (V, E) and A, B be two disjoint subsets of V' such that
pe(A,B) =k and |A],|B| <1. Let n = |V|. There is a polynomial-time algorithm to
either

e obtain a graph G' locally equivalent to G with pf,. (A, B) > k, or
e obtain a set Z such that AC Z CV\ B and pg(Z) = k.
The running time of this algorithm is O(n?) if | is fized or O(n?) if | is not fized.

Proof. If there is no blocking sequence for (A, B) in G, then minaczcv\p p(Z) = k
by Proposition [7.1] In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence vy, vs,...,v,,. We
will find another graph G’ locally equivalent to G such that rkg/(A, B) > k. Since
tkg(AU{vy,}, B) =k + 1, there is a vertex w € B adjacent to vy,.

(1) We claim that vy, v, ..., v,_1 is a blocking sequence of (A4, B) in G A vw if
m > 1.

By applying Lemma for G[A U B U {vy,v,}], a subgraph of G induced by
AU B U {v1, vy}, we have

p*G/\vmw(Av BU{Ul})+IO*G(AU{U1}7 B) > p*G(A7 BU{Ula Um})+pE(AU{U17 Um}v B) —L
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Since p&(A, BU{v, v} > p&(A, BU{v}) > k+ 1, ps(AU{v, v}, B) > pa(AU
{vm}, B) > k+1, and pg,(AU{v1 }, B) = k, we obtain that p,,, (A4, BU{v1}) > k+1.

By applying the same inequality we obtain that p,, (AU {v}, BU {viy1}) +
pe(AU{vi, vipa }, B) 2 p(AU{vi}, BU v, vn}) + oG (AU{vg, vigr, v}, B) =1 >
2k+1foreachi € {1,2,3,...,m—2} and therefore pf; ., ,,(AU{vi}, BU{viy1}) > k+1.

Moreover, p&p, w(A U {vm_1}, B) + pG(AU {vm1}, B) > pG(A U {vm_1}, BU
{vm}) + PE(AU{vp_1,vm}, B) =1 > 2k + 1 and therefore pf,,, (AU {vpm_1}, B) >
k+ 1.

We prove one lemma to be used later. If X and Y are disjoint subsets of V/
such that A € X, B CY, v, ¢ XUY and p5(X,Y) = k, then pg,, ,(X,Y) =
pe(X, Y U{vn,}) because

Plnomu(X:Y) + 06(XY) 2 po(X,Y U{vn}) + (X U{vn},Y) =1
> pa(X, Y Udon}) +k
- pz/\vmw(X7 Y U {Um}) + pz‘(X7 Y)

By letting X = AU{v,,—1} and Y = B, we obtain that pf,,, ,(AU{vm_1}, B) =
P& (AU{vy_1}, BU{v}) > k+1. We also obtain pg,,, (A, BU{v;}) = k for each i >
1 by letting X = A, Y = BU{v;}. Similarly we obtain pg,,, ,(AU{v;}, BU{v;}) =k
fori,7suchthat 1 <i<i4+1<j<m-—1.

Therefore, vy, vs,...,v,_1 is a blocking sequence for (A, B) in G A v,w.

(2) If m = 1 then we obtain p,,, (A4, B) > k41, by applying the previous lemma
with letting X = Aand Y = B.

(3) For each k, we claim that we can obtain another graph G’ locally equivalent
to G with pf, (A, B) > k or find Z satisfying A C Z C V \ B and pg(Z) = k.

If [ is fixed, then we can test an adjacency in the auxiliary graph (defined in the
proof of Proposition in constant time by calculating rank of matrices of size no
bigger than (I+1) x (I41), and therefore it takes O(n?) time to construct the auxiliary
digraph. If [ is not fixed, then it takes O(n*) time to construct the auxiliary digraph
for finding a blocking sequence. We first obtain the diagonalized matrix R obtained
by applying elementary row operations to the matrix M[A, B] in O(n?) time. For each
vertex v not in AUB, we calculate the rank of M[AU{v}, B] by using the stored matrix
in O(n?) time. Similarly we calculate the rank of M[A, BU{v}] by storing the matrix
obtained by applying elementary column operations to M[A, B]. To check whether
pe(AU{z}, BU{y}) > k, it is enough to see when p§(AU{z}, B) = p& (A, BU{y}) = k.
We first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M[A, B] giving M[{z}, B]. By the same
linear combination, we check whether rows of M[A, {y}] gives M[{x},{y}]. Tt takes
O(n?) time for each z,y € V \ (AU B) and therefore we construct the auxiliary
digraph in O(n*) time (if [ is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this digraph
and it takes O(n?) time. If there is no blocking sequence, then we find Z in O(n?)
time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of v,,, in B and obtain G Av,w in O(n?) time. By (1), GAv,w
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has a blocking sequence vy, vy, ..., v, for (A, B). We apply this kind of pivoting m
times so that in the new graph G’ we have pf, (A, B) > k. Since m < n, we obtain
G in O(n?) time. O

Theorem 7.3. Let G be a graph (V, E) and A, B be two disjoint subsets of V.. Then,
there is a O(n®)-time algorithm to find Z with A C Z C V' \ B having the minimum
cut-rank.

Proof. We apply the algorithm given by Lemma [7.2 until it finds a cut. We will call
the algorithm at most n times, and therefore the running time is at most O(n®). O

Theorem 7.4. Let | be a fived constant. Let G be a graph (V, E) and A, B be two
disjoint subsets of V' such that |Al|,|B| < 1. Then, there is a O(n3)-time algorithm to
find Z with A C Z C V' \ B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma [7.2] until it finds a cut. We will call
the algorithm at most [ times, and therefore the running time is at most O(n?). O

Now we pay attention to our rank-width approximation algorithm, described in
Corollary [2.13] We continue running time analysis of Theorem done in Section
[2.4] For rank-width, we are given the natural interpolation p, of the cut-rank function
pc. It takes O(n?) time to find a set X C V(G) \ B such that p (X, B) = pg(B),
because we know that pg(B) < k. To show that X is not well-linked, we use Theorem
and this can be done in O(n?) time. Since the process is cycled through at most
O(n) times, it follows that the time complexity of obtaining a rank-decomposition or
a well-linked set is O(n?).

Theorem 7.5. For given k, there is an algorithm, for the input graph G = (V, E),
that either concludes that rwd(G) > k or outputs a rank-decomposition of G of width
at most 3k + 1; and its running time is O(|V|?).

7.2 Approximating rank-width more quickly

In this section, we show another algorithm that approximate rank-width as in the
previous section, but in O(n?) time with a worse approximation ratio. The algorithm
in Section [7.1] was based on the idea of Theorem with a quick method to find a
minimum of cut-rank functions. However, in this section we take a different approach
based on simple observation in Section [5.1 We use the following algorithm developed
by Hlinény [32].

Theorem 7.6 (Hlinény [32, Theorem 4.12]). For fized k, there is a O(n?)-
time algorithm that, for a given binary matroid with n elements, obtains a branch-
decomposition of width at most 3k + 1 or confirms that the given matroid has branch-
width larger than k 4+ 1. We assume that binary matroids are given by their matriz
representations.
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This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma we obtain a bipartite graph B(G) for each graph G such
that rwd(B(G)) = max(2rwd(G), 1). Moreover we can construct B(G) in O(n?) time
when n = |V(G)|. It is unclear whether we can transform the rank-decomposition
of B(G) of width k into a rank-decomposition of G of width at most k/2 in O(n?)
time. Instead we show that it is easy to transform the rank-decomposition of B(G)
of width k into a rank-decomposition of G of width at most 4k.

Lemma 7.7. Let G be a graph (V, E). Let (T, L) be a rank-decomposition of B(G) of
width k and T' be the minimum subtree of T' containing every leaf in L~ (V(G) x {1}).
Let L'(v) = L((v,1)). Then, (T",L') is a rank-decomposition of G of width at most
4k.

Proof. Let e be an edge of T', and (X,Y’) be a partition of leaves of 7" induced by
connected components of 7"\ e.

For four subsets Ay, Ay, A, Ay of V| we denote A;|As|As|Ay = (A x {1}) U (Ay x
{2}) U (A3 x {3}) U (A4 x {4}) to simplify our notation. Let L71(X) = A;|Ay|A3]A,.
Let B; =V \ A, for i € {1,2,3,4}.

It is easy to observe, for each i € {1,2,3}, that pj ) ((4; x {i}) U (Aipa x {2 +
1}),(Bi x {i}) U (Biy1 x {i + 1}) = |A; N Biya| + |Bi N Aip| = |AiAA;11]. Since
pB(G)(A1’A2’A3|A4) = p*B(G)(A1|A2|Ag‘A4,B1|32’B3‘B4> S k’, we have, for each ¢ S
11,2,3},

|AiAAi 1| < ppa)(Ai|Az|As|Ay) < k.

By adding these inequalities for all ¢, we obtain that |A;AA,| < 3k.
Let M be an adjacency matrix of G. We observe that rk(M[A4, B1]) = pp(a)(As x
{4}, By x {1}) < k. Then we have the following upper bound of pg(A;):

pc (A1)

I‘k(M[Al, Bl])
I'k(M[A4 U (A4AA1>, Bl])
k(M[Ay, B1]) + rk(M[A4AAL, By))

VAR VAN VAN
N
>

So (T", L") is a rank-decomposition of G and its width is at most 4k. O
Therefore, we obtain the following algorithm.

Corollary 7.8. For fized k, there is a O(n?®)-time algorithm that, for a given graph
with n vertices, obtains a rank-decomposition of width at most 24k (while confirming
that the rank-width of the input graph is at most 3k) or confirms that the rank-width
of the input graph s larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that F(G) # 0. First we
construct B(G) in O(n?) time. We run the algorithm of Theorem [7.6| with an input
M = Bin(B(G),V x {1,3},V x {2,4}) and a constant 2k.



CHAPTER 7. RECOGNIZING RANK-WIDTH 88

If it confirms that branch-width of M is larger than 2k 4 1, then rank-width of
B(QG) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then the
output is a rank-decomposition of B(G) of width at most 6k. This confirms that the
rank-width of G is at most 3k. This can be transformed into a rank-decomposition of
G of width at most 24k in linear time by Lemma (We use the depth-first-search
algorithm from one leaf of T" corresponding to a vertex in V(G) x {1}.) O

7.3 Recognizing rank-width

By Corollary for a fixed k, there are only finitely many graphs, such that a graph
does not contain any of them as a vertex-minor if and only if it has rank-width at most
k. By Theorem [4.232, for any fixed graph H, there is a CoMS formula expressing
that H is isomorphic to a vertex-minor of an input graph. Let n be the number of
vertices in the input graph. By Corollary , we have a O(n3)-time algorithm that
either confirms the input graph has rank-width at least k£ + 1 or outputs a rank-
decomposition of width at most 24k. In Proposition we develop a O(n?)-time
algorithm that converts the rank-decomposition into a k-expression. In Section [4.3]
we recall that any property specified by a CMS formula can be checked in linear time
on graphs given by k-expressions.
By combining all of these, we obtain the following theorem.

Theorem 7.9. For fized k, there is a O(n?®)-time algorithm to check that the input
graph with n vertices has rank-width at most k.
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