Approximation algorithm for the Clique-width

Sang-il Oum Applied & Computational Math. Princeton Univ. sangil@princeton.edu

Dec, 2003

Abstract

 $O(n^9 \log n)$ -time algorithm to output either clique-width > k or $\leq f(k)$, where f(k) is independent of n. Cowork with Paul Seymour.

Approximating Clique-width

Clique-width

Definition 1. [Courcelle and Olariu, 2000]

k-expression: expression on vertex-labelled graphs with labels $\{1, 2, \dots, k\}$ using the following 4 operations

$G_1\oplus G_2$	disjoint union of G_1 and G_2	
$oldsymbol{\eta}_{i,j}(G)$	add edges $uv \ s.t. \ lab(u) =$	
	$i, lab(v) = j \ (i \neq j)$	
$ ho_{i o j}(G)$	relabel all vertices of label i	
	into label j	
·i	create a graph with one	
	vertex with label i	

Clique-width of G, denoted by cwd(G): minimum k such that G can be expressed by k-expression (after forgetting the labels)

Clique-width and Algorithms

For graphs of clique-width $\leq k$, if an input is given by its *k*-expression, then many NP-complete problems can be solved in polynomial time, assuming *k* is a constant.

- All graph properties, expressible in monadic second order logic with quantifications over vertices and vertex sets [Courcelle et al., 2000] (a logic formula with ¬, ∨, ∧, (,), x = y, x ~ y, x ∈ X, ∀x, ∃y, ∀X, ∃Y)
- Hamiltoian path/circuit [Espelage et al., 2001], [Wanke, 1994]
- Finding the chromatic number [Kobler and Rotics, 2003]

If we don't have a *k*-expression,

Suppose our input graphs have cliquewidth ≤ 10 , but inputs are given by its adjacency list. How to constuct a 10expression of an input graph?

It's open for k > 3 whether there exists a poly-time algorithm to find a k-expression assuming $cwd(G) \le k$.

k = 3: [Corneil et al., 2000]

k = 2: [Corneil et al., 1985]

Any algorithms that guarantee to find a f(k)-expression also make algorithms based on k-expressions run in poly time, because f(k) is independent of n.

Overview

Instead of clique-width, we develoved the techniques for branch-width of a symmetric submodular functions, and apply it to some function on graphs to get the 'rank-width'.

- Rank-width and clique-width are compatible: if one is bounded, another is also bounded. rank-width ≤ clique-width ≤ 2^{rank-width+1}
- For fixed k, ∃ O(n⁹log n)-time algorithm, which confirms rank-width>k or outputs a rank-decomposition of width ≤ 3k+1.
- We have a O(n)-time algorithm to convert the rank-decomposition of width ≤ 3k+1 into 2^{3k+2}-expression.

Branch-width of a symmetric submodular function

Let $f: V \to \mathbb{Z}$ be s.t.f(X) = f(V - X), $f(X) + f(Y) \ge f(X \cap Y) + f(X \cup Y)$, $f(\{v\}) - f(\emptyset) \le 1 \quad \forall v$. Assume $f(\emptyset) = 0$.

Definition 2. [Geelen et al., 2002]

Branch-decompositon of f: cubic tree Twith a bijection between leaf nodes of T and V

Width of T: $\max_{e \in T} f(A_e)$ where (A_e, B_e) is a partition of V induced by $e \in T$

Branch-width of f, denoted by bw(f): minimum width over all possible branchdecomposition of f

Well-Linkedness and Branch-Width

Definition 3. $A \subseteq V$ is called well-linked iff for any partition (X,Y) of A,

 $X \subseteq Z \subseteq V \setminus Y \quad \Rightarrow \quad f(Z) \ge \min(|X|, |Y|).$

- **Theorem 1.** 1. If f has a well-linked set A of size k, then $bw(f) \ge k/3$.
- 2. If f has no well-linked set of size k, then $bw(f) \le k$; \exists a poly-time algorithm that constructs the branch-decomp. of width $\le k$ or finds a well-linked set of size k.

⇒ poly-time algorithm to confirm bw(f) > k or $bw(f) \le 3k+1$ and output its branch-decomposition of width $\le 3k+1$.

Rank-width

Definition 4. Let G be a simple graph. $f_G^*(A,B) = \operatorname{rank}(M_A^B)$, where M_A^B is a 0-1 Aby-B matrix $(m_{ij})_{i \in A, j \in B}$ such that $m_{ij} = \begin{cases} 1 & \text{if } i \text{ is adjacent to } j \text{ in } G \\ 0 & \text{otherwise.} \end{cases}$ Let $f_G(X) = f_G^*(X, V - X)$ "rank of a cut". **Proposition 1.** f_G^* is symmetric, uniform and submodular. f_G is symmetric and

submodular.

Definition 5. Rank-decomposition of $G \equiv$ branch-decomposition of f_G . Rank-width of $G \equiv$ branch-width of f_G .

Rank-width and Clique-width

Proposition 2.

 $rank-width \leq clique-width \leq 2^{rank-width+1}$

Proof. (Idea) If M has at most k distinct rows, then $rank(M) \le k$. Conversely, $rank(M) \le k$ implies M has at most 2^k distinct rows/columns, if M is a 0-1 matrix. \Box

Time Complexities

- Calculating f_G^* : $O(n^3)$ time
- Converting rank-decomposition of width ≤ k into 2^{k+1}-expression: O(n) time.

What is f^* in general?

We need a general f^* to apply our algorithm to general f other than f_G . Let $3^V = \{(A,B) : A \cap B = \emptyset, A, B \subseteq V\}.$

Definition 6. $f^*: 3^V \to \mathbb{Z}$ is an extension of a submodular function $f: V \to \mathbb{Z}$ iff

1. $f^*(X, V - X) = f(X)$ for all $X \subseteq V$,

- 2. (uniform) if $A \subseteq C$, $B \subseteq D$, then $f(A,B) \leq f(C,D)$,
- 3. (submodular) $f^*(A,B) + f^*(C,D) \ge f^*(A \cap C, B \cup D) + f^*(A \cup C, B \cap D).$

If we fix B, then $f^*(X,B)$ is a rank function on a matroid over V - B.

What is f^* ? — continued

There is at least one extension of f.

Proposition 3. $f_{\min}(A, B) = \min_{A \subseteq Z \subseteq (V-B)} f(Z)$ is an extension of f.

Fact: f_G^* is an extension of f_G .

For each problem, we can choose the most convenient f^* to reduce the running time. For instance, calculating $(f_G)_{\min}$ is much slower than calculating f_G^* .

Time Complexity when f^* is given

Suppose we have a function f^* , whose running time is $O(\gamma)$.

We use the submodular function minimization algorithm by [Iwata et al., 2001], whose running time is $O(n^5\delta \log M)$. *M* is the maximum value of the submodular function and δ is the running time of the submodular function.

Job	Time
Find a basis	$O(n\gamma)$
Find Z	$O(2^{k-1}(n^5\gamma \log n))$

 $O(n(n\gamma+2^{k-1}n^5\gamma\log n)) = O(n^6\gamma\log n).$

For rank-width: $\gamma = O(n^3) \Rightarrow O(n^9 \log n)$.

Time Complexity when f is given

Suppose we have a function f, whose running time is $O(\gamma)$. Let's use f_{\min} as an extension of f. We can calculate f_{\min} by the submodular function minimization algorithm.

Job	Time
Find a basis	$O(n \cdot n^5 \gamma \log n)$
Find Z	$O(2^{k-1}(n^5\gamma \log n))$

 $O(n(n^{6}\gamma \log n + 2^{k-1}n^{5}\gamma \log n)) = O(n^{7}\gamma \log n).$

Branch-width of a matroid

Let *M* be a matroid with the rank function *r*. $\lambda(X) = r(X) + r(E - X) - r(M) + 1$ is a connectivity function.

Definition 7. Branch-width of $M \equiv$ branchwidth of λ .

Note that $\lambda(\emptyset) = 1$. So there's a small adjustment.

Corollary 1. For given k, there is an algorithm using the rank oracle to output bw(M) > k or output a branch-decomposition of order $\leq 3k - 1$, and its running time and number of oracle calls is at most $O(n^7 \log n)$.

Other aspects

Proposition 4. For fixed k, deciding $bw(f) \le k$ is in $NP \cap co-NP$.

Proof. To achieve co-NP, use tangles [Robertson and Seymour, 1991], [Geelen et al., 2003]

Let W(G) be size of the largest well-linked set w.r.t. f_G . By the theorem 1, W(G) is compatible with clique-width and rank-width. Assume rank is calculated over \mathbb{Z}_2 .

Proposition 5. For fixed k, $W(G) \le k$ can be decided in $O(n^9 \log n)$.

Proof. $W(G) \le k$ is expressible by monadic second order logic. \Box

Summary

- \exists well-linked set of size $k \Rightarrow bw(f) \ge \frac{k}{3} + b$, \nexists well-linked set of size $k \Rightarrow bw(f) \le k + b$, if $b = f(\emptyset)$.
- Fixed-parameter-tractable algorithm that confirms bw(f) > k or outputs a branch-decomposition of width ≤ 3k+1-2f(Ø), if f is symmetric submodular and f({v}) f(Ø) ≤ 1. ⇒ can be applied to branch-width of a matroid and rank-width
- Rank-width $bw(f_G)$ is compatible with clique-width. Futhermore, there is a O(n) algorithm to convert the branch-decomposition of width $\leq k$ into a 2^{k+1} -expression.

Proof of Theorem 1

Proof. 1. Suppose *T* is a branch decomposition of *f*. Then, there exists $e \in E(T)$ such that $|A_e \cap A| \ge k/3$ and $|B_e \cap A| \ge k/3$. Therefore, $f(A_e) \ge \min(|A_e \cap A|, |B_e \cap A|) \ge k/3$. $bw(f) \ge k/3$.

2. Greedy algorithm works. Let $B \subseteq V$ be such that we want a 'partial' branch-decomp. of B of width $\leq k$, which is a rooted binary tree.

If f(B) < k, move one vertex of B into V-B, and run this algorithm. Join the return with v. $f(B) \le f(B - \{v\}) + f(\{v\}) \le k$.

Say f(B) = k. Let A = V - B. Find a basis $X \subseteq A$ s.t. $|X| = f^*(X, B) = k$. X is not

well-linked, so find Z such that

 $f(Z) < \min(|Z \cap X|, |(V - Z) \cap X|).$

Want to split *B* into $Z \cap B$ and $(V - Z) \cap B$. $Z \cap B \neq \emptyset$ unless $f(Z) \ge f^*(Z \cap X, B) = |Z \cap X|$. *X*|. Similarly $(V - Z) \cap B \neq \emptyset$.

$$\begin{aligned} |(V-Z) \cap X| + f(B) \\ > f(Z) + f(B) &\geq f(Z \cup B) + f(Z \cap B) \\ &\geq f^*((V-Z) \cap X, B) + f(Z \cap B) \\ &= |(V-Z) \cap X| + f(Z \cap B) \end{aligned}$$

 $f(Z \cap B) < f(B)$ and similarly $f((V-Z) \cap B) < f(B)$.

Run for $B \leftarrow Z \cap B$ and $B \leftarrow (V - Z) \cap B$, and join two returns. \Box

References

- [Corneil et al., 2000] Corneil, D. G., Habib, M., Lanlignel, J.-M., Reed, B., and Rotics, U. (2000). Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In Gonnet, Gastón H. (ed.) et al., LATIN 2000: Theoretical informatics. 4th Latin American symposium, Punta del Este, Uruguay, April 10-14, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1776, 126-134.
- [Corneil et al., 1985] Corneil, D. G., Perl, Y., and Stewart, L. K. (1985). A linear recognition algorithm for cographs. *SIAM J. Comput.*, 14(4):926–934.
- [Courcelle et al., 2000] Courcelle, B., Makowsky, J. A., and Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded clique-width. *Theory Comput. Syst.*, 33(2):125–150.
- [Courcelle and Olariu, 2000] Courcelle, B. and Olariu, S. (2000). Upper bounds to the clique width of graphs. *Discrete Appl. Math.*, 101(1-3):77–114.
- [Espelage et al., 2001] Espelage, W., Gurski, F., and Wanke, E. (2001). How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In *Graph-theoretic concepts in computer science (Boltenhagen, 2001)*, volume 2204 of *Lecture Notes in Comput. Sci.*, pages 117–128. Springer, Berlin.
- [Geelen et al., 2003] Geelen, J. F., Gerards, A. M. H., Robertson, N., and Whittle, G. (2003). Obstructions to branch-decomposition of matroids. manuscript.
- [Geelen et al., 2002] Geelen, J. F., Gerards, A. M. H., and Whittle, G. (2002). Branch-width and well-quasi-ordering in matroids and graphs. *J. Combin. Theory Ser. B*, 84(2):270–290.
- [Iwata et al., 2001] Iwata, S., Fleischer, L., and Fujishige, S. (2001). A combinatorial strongly polynomial algorithm for minimizing submodular functions. *Journal of the ACM (JACM)*, 48(4):761–777.
- [Kobler and Rotics, 2003] Kobler, D. and Rotics, U. (2003). Edge dominating set and colorings on graphs with fixed clique-width. *Discrete Appl. Math.*, 126(2-3):197–221.
- [Robertson and Seymour, 1991] Robertson, N. and Seymour, P. D. (1991). Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B, 52(2):153–190.
- [Wanke, 1994] Wanke, E. (1994). k-NLC graphs and polynomial algorithms. *Discrete Appl. Math.*, 54(2-3):251–266. Efficient algorithms and partial k-trees.