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Abstract
O(n9 logn)-time algorithm to output

either clique-width > k or ≤ f (k), where

f (k) is independent of n.

Cowork with Paul Seymour.
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Clique-width

Definition 1. [Courcelle and Olariu, 2000]

k-expression: expression on vertex-labelled

graphs with labels {1,2, · · · ,k} using the

following 4 operations

G1⊕G2 disjoint union of G1 and G2

ηi, j(G) add edges uv s.t. lab(u) =
i, lab(v) = j (i 6= j)

ρi→ j(G) relabel all vertices of label i
into label j

·i create a graph with one

vertex with label i

Clique-width of G, denoted by cwd(G):
minimum k such that G can be expressed by

k-expression (after forgetting the labels)
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Clique-width and Algorithms

For graphs of clique-width ≤ k, if an

input is given by its k-expression, then

many NP-complete problems can be solved

in polynomial time, assuming k is a constant.

• All graph properties, expressible in monadic

second order logic with quantifications over

vertices and vertex sets [Courcelle et al., 2000]

(a logic formula with ¬, ∨, ∧, (, ), x = y,
x∼ y, x∈ X, ∀x, ∃y, ∀X, ∃Y)

• Hamiltoian path/circuit [Espelage et al., 2001],

[Wanke, 1994]

• Finding the chromatic number

[Kobler and Rotics, 2003]
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If we don’t have a k-expression,

Suppose our input graphs have clique-

width ≤ 10, but inputs are given by its

adjacency list. How to constuct a 10-

expression of an input graph?

It’s open for k > 3 whether there exists

a poly-time algorithm to find a k-expression

assuming cwd(G)≤ k.
k = 3: [Corneil et al., 2000]

k = 2: [Corneil et al., 1985]

Any algorithms that guarantee to find a

f (k)-expression also make algorithms based

on k-expressions run in poly time, because

f (k) is independent of n.
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Overview

Instead of clique-width, we develoved the

techniques for branch-width of a symmetric

submodular functions, and apply it to some

function on graphs to get the ‘rank-width’.

• Rank-width and clique-width are compatible:

if one is bounded, another is also bounded.

rank-width≤ clique-width≤ 2rank-width+1

• For fixed k, ∃ O(n9 logn)-time algorithm,

which confirms rank-width> k or outputs a

rank-decomposition of width ≤ 3k+1.

• We have a O(n)-time algorithm to convert

the rank-decomposition of width ≤ 3k+ 1
into 23k+2-expression.
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Branch-width of a symmetric
submodular function

Let f : V → Z be s.t. f (X) = f (V −X),
f (X)+ f (Y)≥ f (X∩Y)+ f (X∪Y), f ({v})−
f ( /0)≤ 1 ∀v. Assume f ( /0) = 0.

Definition 2. [Geelen et al., 2002]

Branch-decompositon of f : cubic tree T
with a bijection between leaf nodes of T and

V

Width of T: maxe∈T f (Ae) where (Ae,Be)
is a partition of V induced by e∈ T

Branch-width of f , denoted by bw( f ):
minimum width over all possible branch-

decomposition of f
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Well-Linkedness and
Branch-Width

Definition 3. A⊆V is called well-linked iff

for any partition (X,Y) of A,

X ⊆ Z⊆V\Y ⇒ f (Z)≥min(|X|, |Y|).

Theorem 1. 1. If f has a well-linked set A
of size k, then bw( f )≥ k/3.

2. If f has no well-linked set of size k, then

bw( f ) ≤ k; ∃ a poly-time algorithm that

constructs the branch-decomp. of width

≤ k or finds a well-linked set of size k.

⇒ poly-time algorithm to confirm bw( f ) >

k or bw( f ) ≤ 3k+ 1 and output its branch-

decomposition of width ≤ 3k+1.
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Rank-width

Definition 4. Let G be a simple graph.

f ∗G(A,B) = rank(MB
A), where MB

A is a 0-1 A-

by-B matrix (mi j)i∈A, j∈B such that

mi j =

{
1 if i is adjacent to j in G

0 otherwise.

Let fG(X) = f ∗G(X,V−X) “rank of a cut”.

Proposition 1. f ∗G is symmetric, uniform

and submodular. fG is symmetric and

submodular.

Definition 5. Rank-decomposition of G ≡
branch-decomposition of fG.

Rank-width of G ≡ branch-width of fG.
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Rank-width and Clique-width

Proposition 2.

rank-width≤ clique-width≤ 2rank-width+1

Proof. (Idea) If M has at most k
distinct rows, then rank(M)≤ k. Conversely,

rank(M)≤ k implies M has at most 2k distinct

rows/columns, if M is a 0-1 matrix. 2

Time Complexities

• Calculating f ∗G: O(n3) time

• Converting rank-decomposition of width ≤
k into 2k+1-expression: O(n) time.
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What is f ∗ in general?

We need a general f ∗ to apply our

algorithm to general f other than fG. Let

3V = {(A,B) : A∩B = /0,A,B⊆V}.

Definition 6. f ∗ : 3V→ Z is an extension of

a submodular function f : V→ Z iff

1. f ∗(X,V−X) = f (X) for all X ⊆V,

2. (uniform) if A⊆C, B⊆ D, then f (A,B) ≤
f (C,D),

3. (submodular) f ∗(A,B)+ f ∗(C,D) ≥ f ∗(A∩
C,B∪D)+ f ∗(A∪C,B∩D).

If we fix B, then f ∗(X,B) is a rank function

on a matroid over V−B.
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What is f ∗? — continued

There is at least one extension of f .

Proposition 3. fmin(A,B) = min
A⊆Z⊆(V−B)

f (Z)

is an extension of f .

Fact: f ∗G is an extension of fG.

For each problem, we can choose the most

convenient f ∗ to reduce the running time. For

instance, calculating ( fG)min is much slower

than calculating f ∗G.
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Time Complexity when f ∗ is given

Suppose we have a function f ∗, whose

running time is O(γ).

We use the submodular function

minimization algorithm by [Iwata et al., 2001],

whose runnning time is O(n5δ logM). M is the

maximum value of the submodular function

and δ is the running time of the submodular

function.

Job Time

Find a basis O(nγ)
Find Z O(2k−1(n5γ logn))

O(n(nγ +2k−1n5
γ logn)) = O(n6

γ logn).

For rank-width: γ = O(n3) ⇒ O(n9 logn).
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Time Complexity when f is given

Suppose we have a function f , whose

running time is O(γ). Let’s use fmin as an

extension of f . We can calculate fmin by the

submodular function minimization algorithm.

Job Time

Find a basis O(n·n5γ logn)
Find Z O(2k−1(n5γ logn))

O(n(n6
γ logn+2k−1n5

γ logn)) = O(n7
γ logn).
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Branch-width of a matroid

Let M be a matroid with the rank function

r. λ (X) = r(X) + r(E−X)− r(M) + 1 is a

connectivity function.

Definition 7. Branch-width of M ≡ branch-

width of λ .

Note that λ ( /0) = 1. So there’s a small

adjustment.

Corollary 1. For given k, there is an

algorithm using the rank oracle to output

bw(M) > k or output a branch-decomposition

of order ≤ 3k−1, and its running time and

number of oracle calls is at most O(n7 logn).
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Other aspects

Proposition 4. For fixed k, deciding

bw( f )≤ k is in NP∩ co-NP.

Proof. To achieve co-NP, use tangles

[Robertson and Seymour, 1991], [Geelen et al., 2003] 2

Let W(G) be size of the largest well-linked

set w.r.t. fG. By the theorem 1, W(G) is

compatible with clique-width and rank-width.

Assume rank is calculated over Z2.

Proposition 5. For fixed k, W(G) ≤ k can

be decided in O(n9 logn).

Proof. W(G) ≤ k is expressible by monadic

second order logic. 2
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Summary

• ∃ well-linked set of size k⇒ bw( f )≥ k
3+b,

6 ∃ well-linked set of size k⇒ bw( f )≤ k+b,

if b = f ( /0).

• Fixed-parameter-tractable algorithm that

confirms bw( f ) > k or outputs a branch-

decomposition of width ≤ 3k+ 1−2 f ( /0),
if f is symmetric submodular and f ({v})−
f ( /0) ≤ 1. =⇒ can be applied to branch-

width of a matroid and rank-width

• Rank-width bw( fG) is compatible with

clique-width. Futhermore, there is a

O(n) algorithm to convert the branch-

decomposition of width ≤ k into a 2k+1-

expression.
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Proof of Theorem 1

Proof. 1. Suppose T is a branch

decomposition of f . Then, there exists e∈
E(T) such that |Ae∩A| ≥ k/3 and |Be∩A| ≥
k/3. Therefore, f (Ae) ≥ min(|Ae∩A|, |Be∩
A|)≥ k/3. bw( f )≥ k/3.

2. Greedy algorithm works. Let B⊆V be

such that we want a ‘partial’ branch-decomp.

of B of width ≤ k, which is a rooted binary

tree.

If f (B) < k, move one vertex of B into

V−B, and run this algorithm. Join the return

with v. f (B)≤ f (B−{v})+ f ({v})≤ k.

Say f (B) = k. Let A = V −B. Find a

basis X ⊆ A s.t. |X|= f ∗(X,B) = k. X is not
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well-linked, so find Z such that

f (Z) < min(|Z∩X|, |(V−Z)∩X|).

Want to split B into Z∩B and (V−Z)∩B.

Z∩B 6= /0 unless f (Z)≥ f ∗(Z∩X,B) = |Z∩
X|. Similarly (V−Z)∩B 6= /0.

|(V−Z)∩X|+ f (B)

> f (Z)+ f (B)≥ f (Z∪B)+ f (Z∩B)

≥ f ∗((V−Z)∩X,B)+ f (Z∩B)

= |(V−Z)∩X|+ f (Z∩B)

f (Z∩B) < f (B) and similarly f ((V−Z)∩B) <

f (B).

Run for B← Z∩B and B← (V −Z)∩B,

and join two returns. 2
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