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Abstract

Given a class C of graphs and a fixed graph H, an online Ramsey game for H
on C is a game between two players Builder and Painter as follows: an unbounded
set of vertices is given as an initial state, and on each turn Builder introduces a new
edge with the constraint that the resulting graph must be in C, and Painter colors
the new edge either red or blue. Builder wins the game if Painter is forced to make
a monochromatic copy of H at some point of the game. Otherwise, Painter can avoid
creating a monochromatic copy of H forever, and we say Painter wins the game.

We initiate the study of characterizing the graphs F such that for a given graph
H, Painter wins the online Ramsey game for H on F -free graphs. We characterize all
graphs F such that Painter wins the online Ramsey game for C3 on the class of F -free
graphs, except when F is one particular graph. We also show that Painter wins the
online Ramsey game for C3 on the class of K4-minor-free graphs, extending a result by
Grytczuk, Ha luszczak, and Kierstead.

1 Introduction

All graphs in this paper are finite. For a host graph G and a target graph H, let G → H
mean that there exists a monochromatic copy of H for every (not necessarily proper) 2-edge-
coloring of G. For a graph parameter ρ, let Rρ(H) denote the minimum ρ(G) where G→ H.
When ρ counts the number of vertices in a graph, Rρ(H) is the Ramsey number of H and it
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is often denoted R(H). The well-known Ramsey’s Theorem [22] from 1930 states that R(H)
is finite for every graph H.

Burr, Erdős, and Lovász [3] introduced the chromatic Ramsey number and the degree
Ramsey number, which is when ρ is the chromatic number and the maximum degree, respec-
tively. Erdős et al. [9] introduced the size Ramsey number, denoted Re(H), which is when
e(G) is the number of edges in a graph G. We redirect the readers to a thorough survey by
Conlon, Fox, and Sudakov [6] for more history regarding these parameters.

Another variant of Ramsey theory is online Ramsey theory, introduced by Beck [2] in
1993. Given a class C of graphs and a fixed graph H, an online Ramsey game for H on C is
a game between two players Builder and Painter with the following rules: an unbounded set
of vertices is given as an initial state, and on each turn Builder introduces a new edge with
the constraint that the resulting graph must be in C, and Painter colors the new edge either
red or blue. Builder wins if Painter is forced to make a monochromatic copy of H at some
point of the game, and we say Builder wins the online Ramsey game for H on C. Otherwise,
Painter can avoid creating a monochromatic copy of H forever, and we say Painter wins the
online Ramsey game for H on C.

If no graph in C contains H as a subgraph, then Painter wins the online Ramsey game
for H on C since a copy of H cannot be created, let alone a monochromatic one. Therefore
it must be that H is a subgraph of at least one graph in C for a result to be nontrivial. If C
is the class of graphs with bounded maximum degree, then this is the online version of the
degree Ramsey number; see [4, 23, 24] for results regarding this topic.

This paper concerns the online version of the size Ramsey number. For a graph H, the
online (size) Ramsey number of H, denoted r(H), is the minimum number of rounds required
for Builder to win, assuming that both Builder and Painter play optimally. When there are
no restrictions on the graphs Builder can create, it is an easy consequence of Ramsey’s
theorem [22] that Builder always wins the online Ramsey game for every target graph H,
so r(H) ≤ Re(H). For a fixed graph H, studying the ratio of r(H) and Re(H) was initiated
in [2, 10, 14] and has drawn much attention since then [11, 12, 13, 20]. There is also a line
of research trying to determine some exact online Ramsey numbers [5, 7, 8, 12, 20, 21].
Additionally, there are some results on the behavior of r(H) in various random settings [1,
15, 16, 17, 19].

The investigation of online (size) Ramsey theory on specific graph classes was initiated
in 2004 by Grytczuk, Ha luszczak, and Kierstead [11]. They studied online Ramsey theory
on forests, k-colorable graphs, outerplanar graphs, and planar graphs. In particular, they
conjectured that Builder wins the online Ramsey game for H on planar graphs if and only
if H is an outerplanar graph. This conjecture was recently disproved by Petř́ıčková [18]; she
showed that one direction of the conjecture is true while the other direction is not.

Proposition 1.1 ([18]). For every outerplanar graph H, Builder wins the online Ramsey
game for H on planar graphs.

Proposition 1.2 ([18]). Builder wins the online Ramsey game for K2,3 on planar graphs.

In [11], it is shown that Painter wins the online Ramsey game for C3 on outerplanar
graphs, and the graphs containing C3 as a subgraph are the only known graphs where
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Painter wins the online Ramsey game on outerplanar graphs. On the other hand, they also
demonstrate that Builder wins the online Ramsey game for C3 on 2-degenerate planar graphs.

Theorem 1.3 ([11]). Painter wins the online Ramsey game for C3 on outerplanar graphs.

Proposition 1.4 ([11]). Builder wins the online Ramsey game for C3 on 2-degenerate planar
graphs.

We extend the class of graphs where Painter wins the online Ramsey game for C3 from
outerplanar graphs to K4-minor-free graphs.

Theorem 2.4. Painter wins the online Ramsey game for C3 on K4-minor-free graphs.

We initiate the study of characterizing the graphs F such that for a given graph H,
Painter wins the online Ramsey game for H on F -free graphs. A graph class is F -free if
every graph in the class does not contain F as a subgraph. We characterize all graphs F
such that Painter wins the online Ramsey game for C3 on F -free graphs, except when F is
one special graph. Note that for technical reasons we assume that F has no isolated vertices.
The following theorem is our main result.

Theorem 3.1. Let X1, . . . , X5 be the graphs in Figure 1, and let F be a graph with no
isolated vertices. Given that F is not isomorphic to X5, Painter wins the online Ramsey
game for C3 on F -free graphs if and only if F is isomorphic to a subgraph of a graph in
{X1, X2, X3, X4}.

X1 X2 X3 X4 X5

Figure 1: The graphs X1, X2, X3, X4, X5.

This paper is organized as follows.In Section 2, we prove Theorem 2.4 and in Section 3,
we prove Theorem 3.1. Section 3 is further divided into three subsections. Subsection 3.1 and
Subsection 3.2 deals with the classes of graphs where Builder and Painter wins, respectively.
Subsection 3.3 concludes Section 3.

We say that “Painter cannot color e”, if there is a monochromatic copy of H whenever
Painter colors an edge e by either red or blue; in other words, Builder wins the game no
matter what color Painter uses on e. Also, we say that “Painter cannot color e red (blue)”
or “Painter must color e blue (red)”, if there is a monochromatic copy of H when Painter
colors an edge e red (blue).
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2 The online Ramsey game for C3 on K4-minor-free

graphs

Grytczuk, Ha luszczak, and Kierstead [11] proved that Builder wins the online Ramsey game
for C3 on 2-degenerate planar graphs, but Painter wins the online Ramsey game for C3 on
outerplanar graphs. We extend the class the graphs where Painter wins the online Ramsey
game for C3. Since a graph is outerplanar if and only if it does not contain K2,3 and K4 as a
minor, we focus on K2,3-minor-free graphs and K4-minor-free graphs. We were able to show
that Painter wins the online Ramsey game for C3 on K4-minor-free graphs, but Builder still
wins the online Ramsey game for C3 on K2,3-minor-free graphs.

The following proposition shows that Builder wins the online Ramsey game for C3 on
K2,3-minor-free graphs. Builder will use Strategy 2.1.

Strategy 2.1. Builder draws a copy of K1,5 and let u be the vertex of degree 5. By the pigeon-
hole principle, Painter will color at least three edges with the same color, say uv1, uv2, uv3.
Builder draws the edges v1v2, v2v3, and v3v1.

Proposition 2.2. Builder wins the online Ramsey game for C3 on K2,3-minor-free graphs.

Proof. Builder uses Strategy 2.1. Assume uv1, uv2, uv3 are colored red. If Painter colors one of
v1v2, v2v3, v3v1 red, then this creates a red C3. Therefore Painter must color all v1v2, v2v3, v3v1
with blue, but then this creates a blue C3 with vertices v1, v2, and v3.

The resulting graph of Strategy 2.1 has no K2,3 as a minor. Thus Builder wins the online
Ramsey game for C3 on K2,3-minor-free graphs.

Now, we will prove that Painter wins the online Ramsey game for C3 on K4-minor-free
graphs. Given a vertex u of H, the branch set of u of an H-minor of G is a set of (connected)
vertices of G that represents u in the H-minor. When the branch set has one vertex, we also
call it a branch vertex. For two vertices x, y in G, an x, y-path is a path in G from x to y.

Lemma 2.3. Let xy be an edge of a K4-minor-free graph G, and let P and Q be two x, y-
paths in G − xy. For an integer k ≥ 3, if x = v1, . . . , vk = y are the common vertices of P
and Q, then these vertices are in the same order on both P and Q.

Proof. It is trivial when k = 3. So we may assume k > 3. By reordering the indicies, let
v1, . . . , vk be the order of these vertices on P .

We claim that for j > i+ 1, if there is a vi, vj-path R in G that is internally disjoint with
P , then there is no path from {vi+1, vi+2, . . . , vj−1} to V (P ) \ {vi, vi+1, . . . , vj}. Suppose not.
Take an a, b-path P ′ where a ∈ {vi+1, vi+2, . . . , vj−1} and b ∈ V (P ) \ {vi, vi+1, . . . , vj}. If P ′

and R share a vertex z, then G has a K4-minor where the branch vertices are z, vi, vj, a. If
P ′ and R are vertex disjoint, then G has a K4-minor where the branch vertices are a, b, vi, vj.

Thus, if R is a subpath of Q, then Q can never visit vi+1, vi+2, . . . , vj−1 because otherwise
Q will contain a subpath from {vi+1, vi+2, . . . , vj−1} to x or y. This is a problem since Q is
an x, y-path and must go through all v1, . . . , vk. Therefore, we conclude that v1, . . . , vk are
in the same order on both P and Q.
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Given two vertices u, v on a path P , let P [u, v] denote the subpath of P from u to v. For
a 2-edge-colored graph H, let f(H) denote the number of red edges minus the number of
blue edges in H modulo 3. A 2-edge-colored graph H is zero, positive, and negative if f(H) is
0, 1, and 2, respectively. Given a 2-edge-colored graph G, a zero cycle C is good if there exist
two vertices α, β on V (C) such that an α, β-path on C is zero and there exists an α, β-path
in G whose internal vertices are disjoint from V (C).

Theorem 2.4. Painter wins the online Ramsey game for C3 on K4-minor-free graphs.

Proof. Assume Builder drew the edge e = xy to the previous graph to obtain the current
graph G, which is 2-edge-colored except for e. We will show by induction that if G− e has a
2-edge-coloring such that every zero cycle is good, then this coloring can be extended to G
so that every zero cycle is good. Note that if every zero cycle is good, then there cannot be
a monochromatic C3, since a monochromatic C3 cannot have a zero path as a subgraph.

Suppose whenever Painter tries to color e red and blue, there is a zero cycle Cr and Cb

in G that is not good, respectively. Let P r = Cr − e and P b = Cb − e. Since Cr and Cb

are zero cycles, P r is negative and P b is positive. Let x = v1, v2, . . . , vt = y be the common
vertices of P r and P b. By Lemma 2.3, they are in the same order on P r and P b. Without
loss of generality, let v1, . . . , vt be the ordering of these vertices on P r and P b. Note that
P r[vj, vj+1] = P b[vj, vj+1] might happen for some j ∈ {1, . . . , t− 1}, but there must exist an
i where P r[vi, vi+1] 6= P b[vi, vi+1], since P r is negative and P b is positive. Fix such an i, and
note that P r[vi, vi+1] and P b[vi, vi+1] are internally disjoint.

We claim that both P r[vi, vi+1] and P b[vi, vi+1] are not zero. Without loss of generality,
assume P r[vi, vi+1] is zero. Since P b[vi, vi+1] is a path from vi to vi+1 whose internal vertices
are disjoint from V (Cr), this implies that Cr is a good cycle, which is a contradiction.

Now we claim that P r[vi, vi+1] and P b[vi, vi+1] are either both positive or both negative.
Without loss of generality assume P r[vi, vi+1] is positive and P b[vi, vi+1] is negative. Since
the cycle D formed by P r[vi, vi+1] and P b[vi, vi+1] is zero even before Builder drew e, we
know that D is a good cycle by the induction hypothesis. Therefore, there are two vertices
α, β on D where an α, β-path on D is zero and G − e (also, G) has an α, β-path whose
internal vertices are disjoint from V (D). Note that this latter α, β-path cannot share its
internal vertices with P r and P b since this would create a K4-minor. If both α, β are on the
same P j for some j ∈ {r, b}, then because there are two zero α, β-paths (on Cj) and another
internally disjoint α, β-path, we can conclude Cj is good, which is a contradiction. If α, β
are on different paths of P r, P b, then G contains K4 as a minor where the branch vertices
are vi, vi+1, α, β, which is again a contradiction.

Now we know that P r[vi, vi+1] and P b[vi, vi+1] are both positive or both negative for every
i ∈ {1, . . . , t − 1}, which implies that P r and P b are both positive or both negative, which
contradicts that P r is negative and P b is positive.

Thus, Painter can color e so that every zero cycle in G is good, and hence there is no
monochromatic C3 in the coloring Painter produces.

We remark that the proof of Theorem 2.4 works for not only K4-minor-free graphs, but
also K4-topological-minor-free graphs.
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v1 v2 v3 v4 v5 v6 v7

Figure 2: A strategy for Builder to win the online Ramsey game for C3 on K4-free graphs.

3 The online Ramsey game for C3 on F -free graphs

In this section, we attempt to characterize all graphs F such that Painter wins the online
Ramsey game for C3 on F -free graphs. We succeed in the characterization except when F
is the graph X5, which is in Figure 1. Note that we put the extra constraint that F has no
isolated vertices because the game is defined to have infinitely many isolated vertices as the
initial state. Here is our main result.

Theorem 3.1. Let X1, . . . , X5 be the graphs in Figure 1. Suppose that F is a graph with no
isolated vertices that is not isomorphic to X5. Painter wins the online Ramsey game for C3

on F -free graphs if and only if F is isomorphic to a subgraph of a graph in {X1, X2, X3, X4}.

3.1 When does Builder win the online Ramsey game for C3 on
F -free graphs?

In this subsection, we provide three different classes where Builder wins the online Ramsey
game for C3. We investigate the classes of (1) K4-free graphs, (2) K1,5-free graphs, and (3)
Y -free graphs where Y is the graph in Figure 4.

Proposition 3.2. Builder wins the online Ramsey game for C3 on K4-free graphs.

Proof. We will present a winning strategy for Builder.
Given a forest S, it is known that Builder wins the online Ramsey game for S on the

class of all forests by [11]. Thus, we may assume that Builder has forced Painter to create
a monochromatic path of length six, where the seven vertices on the path are v1, v2, . . . , v7
in this order. Without loss of generality, assume the edges of the path are colored red. Note
that there might be more edges incident with vi for i ∈ {1, . . . , 7}, but since the whole graph
is a forest, it is K4-free.

Next, Builder draws v1v5 and v3v7. We claim that Painter must color both v1v5 and v3v5
red. Without loss of generality assume that v1v5 is colored blue. Now Builder draws both
v1v3 and v3v5. Painter must color v1v3 blue, otherwise there is a red C3 with three vertices
v1, v2, v3. Now Painter cannot color v3v5. Therefore, both v1v5 and v3v7 must be colored red.

Finally, Builder draws three edges v1v3,v3v6, and v6v1. If Painter colors any of them red,
then a red C3 is created. Otherwise, Painter colors all of them blue, and this creates a blue
C3 with three vertices v1, v3, and v6. See Figure 2.
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Figure 3: A strategy for Builder to win the online Ramsey game for C3 on K1,5-free graphs.

It is easy to check that K4 does not appear as a subgraph in every step of the game.
Hence, Builder wins the online Ramsey game for C3 on K4-free graphs.

Proposition 3.3. Builder wins the online Ramsey game for C3 on K1,5-free graphs.

Proof. We will present a winning strategy for Builder.
Builder draws five induced copies of K1,3. We claim that Painter must not create a

monochromatic copy of K1,3. Otherwise, without loss of generality, assume that there is a
red K1,3. Now, Builder draws K4 containing the red K1,3 as a subgraph. If Painter colors any
of the newly drawn edges red, then a red C3 is created. Otherwise, Painter colors all of the
newly drawn edges blue, and a blue C3 is created.

Therefore, since there is no monochromatic copy of K1,3, we may assume that at least
three of the five induced copies of K1,3 contain two red edges and one blue edge; let each such
K1,3 be S0, S1, S2 where V (Si) = {v4i, v4i+1, v4i+2, v4i+3} and E(Si) = {v4iv4i+1, v4iv4i+2, v4iv4i+3}
for i ∈ {0, 1, 2} while v0v3, v4v7, and v8v11 are blue, and all other edges in E(S0) ∪ E(S1) ∪
E(S2) are red.

Next, Builder draws v3v4, v7v8, and v11v0. We claim that Painter must color all these
edges blue. Suppose without loss of generality that Painter colors v3v4 red. Then Builder
draws v3v5, v5v6, and v6v3. If Painter colors any of them red, then a red C3 is created. If
Painter colors all of them blue, then this creates a blue C3 with vertices v3, v5, and v6.

Therefore we may assume that Painter colors v3v4, v7v8, and v11v0 blue. Finally, Builder
draws v3v7, v7v11, and v11v3. If Painter colors any of them blue, then a blue C3 is created. If
Painter colors all of them red, then this creates a red C3 with vertices v3, v7, and v11. See
Figure 3.

It is easy to check that K1,5 does not appear as a subgraph in every step of the game.
Hence, Builder wins the online Ramsey game for C3 on K1,5-free graphs.
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Figure 4: The graph Y .

Lemma 3.4. Let Y be the graph in Figure 4. While playing the online Ramsey game for C3

on Y -free graphs, Builder can force Painter to create either a monochromatic copy of C3 or
a blue edge xy with deg(x) = 1 and deg(y) ≤ 2.

Proof. This can be proven by letting Builder draw an edge and extend it to a path of length
4. At any moment, if Painter colors any of these edges blue, then that creates the blue edge
we seek. Otherwise, we may assume Painter produced a red path of length 4. Let P be such
a red path with vertices x1, x2, x3, x4, and x5 in this order on P .

Now, Builder draws two edges x2x6 and x4x6 with a new vertex x6. We claim that Painter
must color both x2x6 and x4x6 with the color blue. Without loss of generality, suppose Painter
colors x2x6 red. Now, Builder draws x1x3, x3x6, and x6x1. If Painter colors any of these edges
red, then there is a red C3. If Painter colors all of these edges blue, then this creates a blue
C3. Therefore, Painter must color x2x6 and x4x6 blue.

Finally, Builder draws x2x4. Whenever Painter colors x2x4 red or blue, this creates a
monochromatic copy of C3.

It is easy to check that Y does not appear as a subgraph in every step of the game.
Hence, Builder can force Painter to create either a monochromatic copy of C3 or a blue edge
xy with deg(x) = 1, deg(y) ≤ 2, while playing the online Ramsey game for C3 on Y -free
graphs.

Proposition 3.5. Let Y be the graph in Figure 4. Builder wins the online Ramsey game for
C3 on Y -free graphs.

Proof. We will present a winning strategy for Builder.
Builder draws seven pairwise disjoint edges. By the pigeonhole principle, Painter colors

at least four edges with the same color. Without loss of generality, assume v1w1, v2w2, v3w3,
and v4w4 are red edges.

Next, Builder draws the four edges vvi for i ∈ {1, 2, 3, 4} with a new vertex v. We claim
that Painter must color two of them red and the other two blue. Suppose Painter colors vv1,
vv2, and vv3 red. Now Builder draws v1v2, v2v3, and v3v1. If Painter colors any of them red,
then a red C3 is created. If Painter colors all of these edges blue, then this creates a blue C3

with vertices v1, v2, and v3. Therefore, we may assume that vv1, vv2 are red and vv3, vv4 are
blue.
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Figure 5: A strategy for Builder to win the online Ramsey game for C3 on Y -free graphs.

Next, Builder draws w1w2. Suppose Painter colors w1w2 blue. Now, Builder draws vw1

and vw2. If Painter colors any of these edges red, then a red C3 is created. If Painter colors
both vw1 and vw2 blue, then a blue C3 with vertices v, w1, and w2 is created. Therefore we
may assume that Painter colors w1w2 red.

By Lemma 3.4, Builder can force Painter to create a blue edge xy with deg(x) = 1 and
deg(y) ≤ 2 as long as Painter did not lose yet. Next, Builder draws xw1 and xw2. We claim
that Painter must color these edges blue. Without loss of generality, suppose xw1 is colored
red. Then Builder draws two more edges xv1 v1w2. If Painter colors any of xw2, xv1, and
v1w2 red, then there is a red C3. If Painter colors all of them blue, then this creates a blue
C3 with vertices x, v1, and w2. Therefore, Painter must color xw1 and xw2 blue.

Finally, Builder draws yw1 and yw2. If Painter colors any of them blue, then there is a
blue C3. If Painter colors all of them red, then this creates a red C3 with vertices y, w1 and
w2. See Figure 5.

It is easy to check that Y does not appear as a subgraph in every step of the game.
Hence, Builder wins the online Ramsey game for C3 on Y -free graphs.

3.2 When does Painter win the online Ramsey game for C3 on
F -free graphs?

In this section, we will prove that Painter wins the online Ramsey game for C3 on F -free
graphs for various F . For a fixed F , it is sufficient to provide a strategy for Painter so that a
monochromatic C3 does not appear forever on F -free graphs. We will provide three different
winning strategies for Painter for three different F . We start by proving the following lemma,
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which shows that we only need to consider F to be a subgraph of the graph X, which is in
Figure 6.

Figure 6: The graph X.

Lemma 3.6. Let X be the graph in Figure 6. If a graph F is not isomorphic to a subgraph
of X, then Builder wins the online Ramsey game for C3 on F -free graphs.

Proof. Builder uses Strategy 2.1. Assume uv1, uv2, uv3 are colored red. If Painter colors one of
v1v2, v2v3, v3v1 red, then this creates a red C3. Therefore Painter must color all v1v2, v2v3, v3v1
with blue, but then this creates a blue C3 with vertices v1, v2, and v3.

There is no F as a subgraph in every step of the game since the resulting graph is X and
F is not isomorphic to any of the subgraphs of X. Hence, Builder wins the online Ramsey
game for C3 on F -free graphs.

Strategy 3.7. Painter colors each new edge with red, unless doing so creates a red K1,3, a
red C3, or a red C4, in which case the new edge is colored blue.

Proposition 3.8. Let X1 be the graph in Figure 1. Painter wins the online Ramsey game
for C3 on X1-free graphs.

Proof. Painter will use Strategy 3.7. We claim that Painter can always color the new edge
e = xy with Strategy 3.7. Let G be the graph when Builder draws e. We will use induction
on the number of edges. It is trivial for the base case.

By the induction hypothesis, we may assume that there is no red K1,3, no red C3, no red
C4, and no blue C3 in G \ e. The strategy fails when coloring e blue and red results in a blue
C3 and red K1,3, C4, or C3, respectively. Let x, y, z be the vertices of the blue C3 when e is
colored blue. We will prove that if the strategy fails, then G has X1 as a subgraph, which
is a contradiction, and thus the strategy does not fail. We will divide the cases according to
which red subgraph appears when Painter colors e red.

Case 1 Assume a red C3 is created when Painter colors e red, and let w be the third vertex
of this red C3. Since Painter colored neither xz nor zy red, coloring each of xz and yz red
must have created a red C4, a red C3, or a red K1,3 in G \ e. We will show that a red C3 or
a red C4 cannot be created by coloring either xz or yz red. Without loss of generality, let us
consider xz.
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If coloring xz red resulted in a red C4 with vertices x, s, t, z in cyclic order, then t 6= y
and s 6= y since yz is blue and e does not exist in G \ e, respectively. We also know that
t 6= w, since otherwise G \ e has a red K1,3 as a subgraph, which is a contradiction to the
induction hypothesis. If s = w, then it must be that t = y in order for G \ e to not have a
red K1,3, but this contradicts that t 6= y. This implies that s, t 6∈ {x, y, z, w}, which means
G has X1 as a subgraph, which is a contradiction.

If coloring xz red resulted in a red C3 with vertices x, z, u, then u 6= w, since otherwise
G \ e has a red K1,3 as a subgraph, which contradicts the induction hypothesis. This implies
that u 6∈ {x, y, z, w}. Now, y and z cannot have neighbors outside of {u, x, y, z, w} since that
would create a copy of X1 in G. There is no red edge between u and w because that would
create a red C3 in G \ e. Since either a red yu or a red zw would create a red K1,3, both y
and z cannot have more incident red edges, which means yz could have been colored red,
which is a contradiction.

This boils down to the case where both xz and zy were colored blue because coloring
either one red would create a red K1,3. Since zw cannot be a red edge (creates a red K1,3 in
G\ e) and z cannot have two neighbors outside of {x, y, w} (creates a copy of X1 in G), each
of x and y have a neighbor x′ and y′, respectively, such that xx′ and yy′ are red. It cannot
be that x′ = y′, since this creates a red C4 with vertices x,w, y, x′ in G \ e. If x′ 6= y′, then
this creates a copy of X1 in G. In either case, we obtain a contradiction.

Case 2 Assume a red K1,3 is created when Painter colors e red, and without loss of gen-
erality let x, y, u, v be the vertices of the red K1,3 so that ux, xv are the red edges. Now, z
and y cannot have neighbors outside of {x, y, z, u, v} since that would create a copy of X1.
This implies that each of z and y cannot have two red edges incident to it, since that would
create a red C4, with vertices z, u, x, v. Also, uv cannot be a red edge since G \ e would have
a red C3, with vertices u, v, x. Since zy was not colored with red, coloring zy with red must
create a red K1,3, a red C3, or a red C4 in G \ e. The only possible case is when coloring zy
with red creates a red C3, which implies that either u or v is a vertex of this red C3, which
implies the existence of a red K1,3 in G \ e, which is a contradiction.

Case 3 Assume a red C4 is created when Painter colors e red, and let xx′, x′y′, y′y be the red
edges of this red C4. Now both x and y cannot have a neighbor outside of {x, y, x′, y′, z} since
this would create a copy of X1 in G. Also, x′ and y′ cannot have a neighbor v 6∈ {x, x′, y′, y}
where x′v and y′v is red, respectively, since this would create a red copy of K1,3 in G\e. Since
Painter colored neither xz nor yz red, coloring each of xz and yz with red must create a red
K1,3, a red C4, or a red C3. The only possible case is when there is a red K1,3 when Painter
colors xz or yz red. In particular, z must have two neighbors z′, z′′ outside of {x, x′, y, y′}
where zz′ and zz′′ are red edges. Yet, this creates a copy of X1, which is a contradiction.

Therefore, Strategy 3.7 works and thus Painter wins the online Ramsey game for C3 on
X1-free graphs.

Before starting the proof for the case of X2-free graphs, we define some “good” subgraphs
of a graph. We say a subgraph H of G that is isomorphic to either K1,3 or C4 is good if H is
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red, and there exists a subgraph I of G where H is a subgraph of I in such a way that I is
isomorphic to one of the graphs in Figures 7 and 8, where the thick edges correspond to the
edges of H; moreover, for i ∈ {1, . . . , 5}, we say H is good by property Ai (or Bi) to mean
that the corresponding I is isomorphic to the graph labeled Ai (or Bi) in Figures 7 and 8.
For example, if H satisfies the property A1, then H is isomorphic to K1,3 and the vertex of
degree 3 of G[V (H)] has degree at least 5 in G. We say that a red subgraph H of G that is
isomorphic to either K1,3 or C4 is bad if it is not good.

The idea is that we want to forbid K1,3 and C4 in the graph as much as we can, but we
allow copies of K1,3 and C4 if we can guarantee that there is some structure we can utilize.

A1 A2 A3 A4 A5

Figure 7: The five good K1,3’s.

B1 B2 B3 B4 B5

Figure 8: The five good C4’s.

Lemma 3.9. Let X2 be the graph in Figure 1. Let G be a graph that has a good K1,3 with
vertices v, v1, v2, v3 where v is the vertex of degree 3. If v1v2, v2v3, and v3v1 are edges in G,
then G contains X2 as a subgraph.

Proof. See Figure 9. It is easy to check that there is X2 as a subgraph for each case.

Strategy 3.10. Painter colors each new edge red, unless doing so creates a red C3, a bad
K1,3, or a bad C4, in which case the new edge is colored blue.

Proposition 3.11. Let X2 be the graph in Figure 1. Painter wins the online Ramsey game
for C3 on X2-free graphs.
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A1 A2 A3 A4 A5

Figure 9: Observation for the proof of Lemma 3.9.

Proof. Painter will use Strategy 3.10. We claim that Painter can always color the new edge
e = xy with Strategy 3.10. Let G be the graph when Builder draws e. We will use induction
on the number of edges. It is trivial for the base case.

By the induction hypothesis, we may assume that none of a red C3, a bad K1,3, or a bad
C4 exists in G \ e. The strategy fails when coloring e blue results in a blue C3 and coloring
e red results in a red C3, a bad K1,3, or a bad C4. Let z be the vertex of the blue C3 so that
xz and zy are blue. Note that every blue edge has at least two red edges incident with it in
G while Painter uses Strategy 3.10. We will prove that if the strategy fails, then G has X2

as a subgraph, which is a contradiction, and thus the strategy does not fail. We will divide
the cases according to which red graph appears when Painter colors e red.

Case 1 Assume a red C3 is created when Painter colors e red, and let w be the third vertex
of this red C3. Since Painter did not color xz and yz red, coloring any of xz and yz red must
have created a red C3, a bad C4, or a bad K1,3. By Lemma 3.9, we may assume that there is
no red edge between z and w. Now, we consider three subcases where coloring xz red creates
one of a red C3, a bad K1,3, or a bad C4.

Subcase 1-1 Assume that coloring xz red creates a red C3 with vertices x, z, and u. Since
we assumed that there is no red edge between z and w, we know that u 6= w. By Lemma 3.9,
we may assume that there is no red edge between y and u. Moreover, y and z cannot have
neighbors outside of {x, y, z, u, w}, otherwise G has X2 as a subgraph. However, this is a
contradiction because Painter must have colored yz red (instead of blue) since this does not
create any of a bad K1,3, a bad C4, or a red C3. Note that although there can be an edge
uw in G \ e, Painter could not color uw red since this creates a red C3 in G \ e.

Subcase 1-2 Assume that coloring xz red creates a bad K1,3, say T1. If z is the center of
T1, then since there is no red edge between z and w, G has X2 as a subgraph, which is a
contradiction. Therefore, we may assume that x is a center of T1, and xz, xu1, and xu2 are
the three edges of T1 with new vertices u1 and u2. Then by symmetry, we may assume that
there is a bad K1,3, say T2, when Painter colors yz red, and also assume that yz, yv1, and yv2

13



are the three edges of T2 with new vertices v1 and v2. Note that w is not necessarily distinct
from u1, u2, v1, v2.

• If |{u1, u2}∩{v1, v2}| = 0, then it is easy to check that Painter can color one of xz and
yz red since T1 or T2 must be good by property A3, which is a contradiction.

• If |{u1, u2}∩{v1, v2}| = 1, then it is easy to check that Painter can color one of xz and
yz red since T1 or T2 must be good by property A4, which is a contradiction.

• If |{u1, u2} ∩ {v1, v2}| = 2, then let w1 = u1 = v1 and w2 = u2 = v2. We may assume
that yz is drawn later than xz, by symmetry. Then right before Builder draws yz, each
of {x, y, z, w1, w2} cannot have neighbors outside of {x, y, z, w1, w2}, since otherwise T2
becomes good when Painter colors yz red. However, this is a contradiction since the red
C4 with vertices x,w1, y, w2, is bad in G \ e. This is because a red C4 in a component
of at most five vertices is always bad.

Subcase 1-3 Assume that coloring xz red creates a bad C4, say R, with vertices x, u, v,
and z in cyclic order. Since there is no red edge between z and w, we know that v 6= w.

Suppose u 6= w. Note that u, v, and z cannot have neighbors outside of {x, y, z, u, v, w}
and E(G) has none of vy, vx, vw, and uz, otherwise G has X2 as a subgraph. Therefore,
there was no red C3 when Painter colored yz red.

If there was a bad C4 when Painter colored yz red, then the only possible case is when
the bad C4 consists of vertices u, v, y, and z since u, v, and z has no neighbor outside of
{x, y, z, u, v, w}. Note that there is a red K1,3 with vertices u, v, x, and y. If {x, y} has no
neighbors outside of {x, y, z, u, v}, then this red K1,3 must be bad, which is a contradiction.
Therefore, whenever xz is drawn later than yz or yz is drawn later than xz, the later one
must be colored red since the corresponding red C4 is actually good.

The only remaining reason that Painter colored yz blue is that there are two red edges
incident with y so that coloring yz red creates a bad K1,3, say S. There are two cases: when
there is a red edge between y and u so that E(S) = {yz, yu, yw} and when there is no red edge
between y and u but there is a red edge ys with a new vertex s so that E(S) = {yz, ys, yw}.

• When there is a red edge between y and u so that E(S) = {yz, yu, yw}, suppose that
Builder drew xz later than yz. Then R is good by property B5, which is a contradiction.
Otherwise if Builder drew yz later than xz, then S is good by property A2, which is a
contradiction.

• When there is no red edge between y and u but there is a red edge ys with a new vertex
s so that E(S) = {yz, ys, yw}, suppose that Builder drew xz later than yz. Then R
is good by property B3, which is a contradiction. Otherwise if Builder drew yz later
than xz, then S is good by property A2, which is a contradiction.

Note that for both cases, xw may not be drawn at each step of the game.
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Now suppose u = w. It is easy to check that v, w, and z cannot have neighbors outside
of {v, w, x, y, z}, since otherwise G has X2 as a subgraph. Since a red K1,3 with vertices
x, y, w, v must be good, {x, y} must have at least one neighbor outside of {v, w, x, y, z}. Note
that this is only true for the step of the game when there is the red K1,3 in the graph at the
step. Suppose that yz is drawn later than xz.

• Coloring yz red cannot create a red C3 since z cannot have neighbors outside of
{v, w, x, y, z}.

• Coloring yz red cannot create a bad C4 since the only possible red C4 is of vertices
v, w, y, and z. Since there is a red K1,3, {x, y} must have at least one neighbor outside
of {v, w, x, y, z} and this implies that the red C4 is good.

• Coloring yz red cannot create a bad K1,3 since z cannot have neighbors outside of
{v, w, x, y, z}. Even though there is two red edges ys and yt for vertices s and t (one
of s and t may be equal to w, but not v or x), the red K1,3 with vertices s, t, y, and z
is good by property A2.

Note that there is no red edges between z and w, between v and y, between v and x,
or between x and y.

Therefore, we may assume that xz is drawn later than yz. Now, there are two cases:
when coloring yz red created a bad C4 or when coloring yz red created a bad K1,3. Note that
coloring yz red cannot create a red C3.

• When coloring yz red created a bad C4, it means that yw is drawn earlier than yz,
since v, w, and z cannot have neighbors outside of {v, w, x, y, z}. Now, xz must be
colored red since whenever x or y has a neighbor outside of {v, w, x, y, z}, R is good,
which is a contradiction.

• When coloring yz red created a bad K1,3, it means that there are two vertices s, t such
that ys and yt are red, and these are drawn earlier than yz. Whenever w ∈ {s, t} or
not, R is good, which is a contradiction.

Note that there is no red edge between v and x as well as between v and y.

Case 2 Assume a bad K1,3, say S, is created when Painter colors e red, and without loss of
generality let x, y, u, and v be the vertices of the bad S so that ux, xv are the red edges. Now,
y cannot have neighbors outside of {x, z, u, v} in G since otherwise S is good by property A2

when e is colored red in G. If there is a red edge between u and y or v and y, then this case
is covered by the Case 1. Therefore, we may assume that there is no red edge between u and
y as well as between v and y in G. Since the blue edge yz must have incident two red edges
in G, we may assume that the two red edges are incident with z, say zs, zt. We can check
that {s, t} = {u, v}, since otherwise S is good by the property A4 when e is colored red in
G. Since G \ e has a red C4 with vertices x, u, z, v, say R, by the induction hypothesis, R
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must be good. This implies that the component containing R must have at least six vertices,
thus, one of x, y, z, u, and v has a neighbor outside of {x, y, z, u, v}. However, this implies
that S is good when e is colored red, which is a contradiction.

Case 3 Assume a bad C4, say R, is created when Painter colors e red, and let xu, uv, vy be
the red edges of R. Now each of {x, y, z, u, v} cannot have neighbors outside of {x, y, z, u, v},
since otherwise R is good in G. This also implies that there is no red K1,3 in this component
since K1,3 in a component of at most five vertices must be bad. Then the blue edge zx has
no two red edges incident with it in G, which is a contradiction.

Therefore, Strategy 3.10 works, and thus Painter wins the online Ramsey game for C3

on X2-free graphs.

We present a winning strategy for Painter that can be used for the following proposition
covering two cases.

Strategy 3.12. When Builder draws an edge e, if a blue C3 is made when Painter colors
e blue or there is no red edge incident to e, then Painter colors e red. Otherwise, Painter
colors e blue.

Proposition 3.13. Let X3 and X4 be the graphs in Figure 1. Painter wins the online Ramsey
game for C3 on X3-free graphs and Painter wins the online Ramsey game for C3 on X4-free
graphs.

Proof. We will prove both statements at the same time. Painter will use Strategy 3.12. We
claim that Painter can always color the new edge e = xy with Strategy 3.12. Let G be the
graph when Builder draws e. We will use induction on the number of edges. It is trivial for
the base case.

By induction hypothesis, we may assume that every blue edge is incident with at least
one red edge and that there is no monochromatic C3 in G\e. The strategy fails when coloring
e blue and red results in a blue C3 and a red C3, respectively. Let z1, z2 be vertices such
that {x, z1, y} and {x, z2, y} are vertices of the blue C3 and the red C3, respectively. We will
prove that if the strategy fails, then G has X3 as a subgraph, which is a contradiction, and
thus the strategy does not fail.

Without loss of generality, we may assume that Builder has drawn xz2 later than z2y.
Consider the graph right after Builder drew xz2. Note that xz2 is incident to a red edge z2y.
Since Painter uses Strategy 3.12 and Painter colored xz2 red, there must be a blue C3 when
Painter colors xz2 blue. Let x, z2, v be the vertices of the blue C3. Note that xv and z2v are
drawn earlier than xz2. If v 6= z1, then G contains both X3 and X4 as a subgraph, and thus
v must be the same with z1.

Now consider the graph right before Builder drew xz2. Since Builder has already drawn
xz1 and Painter colored it blue, xz1 must have at least one incident red edge in G. This
red edge is incident with either x or z1, but in both cases G contains both X3 and X4 as a
subgraph, which is a contradiction, and thus the strategy works.

Therefore, Strategy 3.12 works, and thus Painter wins the online Ramsey game for C3

on both X3-free graphs and X4-free graphs.
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3.3 The final touch

In this subsection we prove Theorem 3.1. We need two additional lemmas to prove Theo-
rem 3.1.

Builder

Builder Builder Builder

Builder

Builder Painter Painter Painter Painter Builder
X5

X

X1 X2X3 X4K4

Y

K1,5

?

This contains K4. This contains K1,5.

This contains K1,5.

Painter Painter Painter Painter Painter

Painter

Figure 10: The lines between graphs imply that the lower graph is a subgraph of the higher
graph.

Lemma 3.14. If Builder wins the online Ramsey game for H on I-free graphs for a graph
I, then Builder wins the online Ramsey game for H on J-free graphs for every graph J that
has I as a subgraph.

Proof. Since a set of I-free graphs is a subset of a set of J-free graphs, Builder can use the
same strategy used in the case of J-free graphs.

Lemma 3.15. If Painter wins the online Ramsey game for H on I-free graphs for a graph
I, then Painter wins the online Ramsey game for H on J-free graphs for every graph J that
is a subgraph of I.
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Proof. Since a set of J-free graphs is a subset of a set of I-free graphs, Painter can use the
same strategy used in the case of I-free graphs.

Finally, we prove Theorem 3.1.

Proof of Theorem 3.1. By Propositions 3.8, 3.11, and 3.13, along with Lemma 3.15, Painter
wins the online Ramsey game for C3 on F -free graphs if F is isomorphic to a subgraph
of a graph in {X1, X2, X3, X4}. By Propositions 3.2, 3.3, and 3.5, along with Lemma 3.14,
Builder wins the online Ramsey game for C3 on F -free graphs if F contains a graph in
{X1, X2, X3, X4} as a subgraph.

It is easy to check that all graphs without isolated vertices are covered by the above
paragraph except for the graph X5. Figure 10 shows subgraphs of X. Moreover, “Builder”
and “Painter” written under some graph in Figure 10 means that Builder and Painter,
respectively, wins the online Ramsey game for C3 on F -free graphs.

We end this section with the only case that is unsolved.

Question 3.16. Let X5 be the graph in Figure 1. Who wins the online Ramsey game for C3

on X5-free graphs?
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Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 51–78. János Bolyai Math. Soc.,
Budapest, 1993.
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