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Abstract

For a class C of graphs G equipped with functions fG defined on
subsets of EpGq or V pGq, we say that C is k-scattered with respect
to fG if there exists a constant ` such that for every graph G P C,
the domain of fG can be partitioned into subsets of size at most k so
that the union of every collection of the subsets has fG value at most
`. We present structural characterizations of graph classes that are
k-scattered with respect to several graph connectivity functions.

In particular, our theorem for cut-rank functions provides a rough
structural characterization of graphs having no mK1,n vertex-minors,
which allows us to prove that such graphs have bounded linear rank-
width.

1 Introduction

All graphs in this paper are undirected and simple. For a graph G, we write
V pGq and EpGq to denote vertex set and edge set of G, respectively.
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In the theory of split decompositions, Cunningham [5] introduced the
concept of a brittle graph that is a connected graph whose every non-trivial
vertex bipartition is a split, which is a partition pA,Bq of the vertex set such
that |A|, |B| ě 2, and there exist A1 Ď A, B1 Ď B such that the set of edges
incident with both A and B is exactly tvw : v P A1, w P B1u. In undirected
graphs, only complete graphs and stars are such graphs. Brittle graphs form
basic classes of graphs in canonical split decompositions.

Motivated by brittle graphs, we introduce general concept of a partition
pX1, X2, . . . , Xmq of the vertex set or the edge set of a graph such that
each Xi has at most k elements, and for every I Ď t1, 2, . . . ,mu, some
complexity measurement between

Ť

iPI Xi and the rest is at most `, for
given integers k and `. Brittle graphs then can be seen as graphs that
admit a partition pX1, X2, . . . , Xmq, whereX1, X2, . . . , Xm consist of distinct
individual vertices, and for every I Ď t1, 2, . . . ,mu, the cut-rank function
of

Ť

iPI Xi is at most 1. This concept trades off between the allowed sizes
of parts in a partition and the allowed values for a selected complexity
measurement.

We formally define this concept and provide examples. Let X be a finite
set and f : 2X Ñ Z. The f -width of a partition pX1, X2, . . . , Xmq of X, for
some m, is

max

#

f
`

ď

iPI

Xi

˘

: I Ď t1, 2, . . . ,mu

+

.

The k-brittleness of f is the minimum f -width of all partitions of X into
parts of size at most k.

We are mainly interested in the following four functions arising from
graphs naturally.

• For a subset F of EpGq, let κGpF q be the number of vertices incident
with both an edge in F and an edge not in F .

• For a subset S of V pGq, let ηGpSq be the number of edges incident
with both a vertex in S and a vertex not in S.

• For a subset S of V pGq, let νGpSq be the size of a maximum matching
of a bipartite subgraph of G obtained by taking edges joining S and
V pGqzS.

• For a subset S of V pGq, let ρGpSq be the rank of the SˆpV pGqzSq 0-1
matrix over the binary field whose pa, bq-entry for a P S, b R S is 1 if
a, b are adjacent and 0 otherwise. This function is called the cut-rank
function of G.
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A

Figure 1: The graph 4P4{A for a path P4 “ abcd with A “ ta, du.

The k-brittleness of κG, ηG, νG, ρG are called the vertex k-brittleness
βκk pGq, the edge k-brittleness βηkpGq, the matching k-brittleness βνk pGq, the
rank k-brittleness βρkpGq of G, respectively. We say that a class C of graphs
is vertex k-scattered if vertex k-brittleness of graphs in C are bounded, edge
k-scattered if edge k-brittleness of graphs in C are bounded, matching k-
scattered if matching k-brittleness of graphs in C are bounded, and rank
k-scattered if rank k-brittleness of graphs in C are bounded.

A class C of graphs is called a subgraph ideal if it contains every graph
isomorphic to a subgraph of a graph in C. We characterize subgraph ideals
which are vertex k-scattered, or edge k-scattered, or matching k-scattered.
Our first theorem characterizes a vertex k-scattered subgraph ideal. For a
graph H, we write mH to denote the disjoint union of m copies of H. For a
graph H and an independent set A Ĺ V pHq, we write mH{A to the graph
obtained from mH by identifying all m copies of each vertex in A into one
vertex. Note that the number of vertices of mH{A is mp|V pHq|´ |A|q` |A|
and 1H{A “ H. See Figure 1 for an illustration.

Theorem 1.1. Let k be a positive integer. A subgraph ideal C is vertex
k-scattered if and only if

t1H{A, 2H{A, 3H{A, 4H{A, . . .u Ę C

for every connected graph H with k ` 1 edges and each of its independent
subset A Ĺ V pHq.

Our second theorem characterizes an edge k-scattered subgraph ideal.

Theorem 1.2. Let k be a positive integer. A subgraph ideal C is edge k-
scattered if and only if

tK1,1,K1,2,K1,3, . . .u Ę C
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and
tT, 2T, 3T, 4T, . . .u Ę C

for every tree T on k ` 1 vertices.

Our third theorem characterizes a matching k-scattered subgraph ideal.

Theorem 1.3. Let k be a positive integer. A subgraph ideal C is matching
k-scattered if and only if

tT, 2T, 3T, . . .u Ę C

for every tree T on k ` 1 vertices.

Finally we characterize rank k-scattered graph classes. As the cut-rank
function may increase when we take a subgraph, subgraph ideals are not
suitable for the study of rank k-scattered graph classes. For instance, com-
plete graphs are rank 1-scattered and yet an arbitrary graph is a subgraph
of a complete graph.

Instead of subgraphs, the containment relation called vertex-minors is
more suitable for the study of rank k-scattered graph classes. A vertex-
minor of a graph G is an induced subgraph of a graph that can be obtained
from G by a sequence of local complementations [1, 2, 3, 14], where local
complementation at a vertex v is an operation to flip the adjacency relations
between every pair of neighbors of v. The precise definition will be presented
in Section 2. The cut-rank function is preserved when applying local com-
plementations [2, 14] and therefore, the rank k-brittleness of a graph does
not increase when taking vertex-minors.

A class C of graphs is called a vertex-minor ideal if it contains every graph
isomorphic to a vertex-minor of a graph in C. Here is our last theorem on
the characterization of rank k-scattered vertex-minor ideals.

Theorem 1.4. Let k be a positive integer. A vertex-minor ideal C is rank
k-scattered if and only if

tH, 2H, 3H, 4H, . . .u Ę C

for every connected graph H on k ` 1 vertices.

There are lots of interesting open problems on vertex-minors. In partic-
ular, the conjecture of Oum [15] implies that for every circle graph H, every
graph G with sufficiently large rank-width has a vertex-minor isomorphic
to H. This conjecture is known to be true when G is a bipartite graph, a
circle graph, or the line graph [14, 15]. Kanté and Kwon [11] proposed the
following analogous conjecture for linear rank-width.
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Conjecture 1.5 (Kanté and Kwon [11]). For every fixed tree T , there is
an integer fpT q such that every graph of linear rank-width at least fpT q
contains a vertex-minor isomorphic to T .

By the Ramsey theorem, every sufficiently large connected graph con-
tains one of K1,n, Kn, or Pn as an induced subgraph and if n is huge, then
each of these graphs contains a large star graph as a vertex-minor. Therefore
for each fixed n, each component of a graph having no K1,n vertex-minor
has bounded number of vertices and thus it has bounded linear rank-width.
Thus, Conjecture 1.5 is true when T is a star.

We can strengthen this observation by Theorem 1.4 and verify Conjec-
ture 1.5 when T is the disjoint union of stars.

Theorem 1.6. For positive integers m and n, the class of graphs having no
vertex-minor isomorphic to mK1,n has bounded linear rank-width.

By Theorem 1.6, we can recognize whether a graph contains a vertex-
minor isomorphic to the fixed disjoint union of stars and complete graphs in
polynomial time. This works as follows. By Theorem 1.6 if the input graph
has large linear rank-width, then trivially it has a vertex-minor isomorphic
to mK1,n for some large m and n where mK1,n contains the disjoint union of
stars and complete graphs as a vertex-minor. Otherwise, the input graph has
bounded rank-width and so the theorem of Courcelle and Oum [4] provides
a polynomial-time algorithm.

This paper is organized as follows. In Section 2, we present necessary
definitions and notations. Section 3 proves Theorem 1.1 for vertex k-scatted
subgraph ideals, Section 4 proves Theorem 1.2 for edge k-scatted subgraph
ideals, Section 5 proves Theorem 1.3 for matching k-scatted subgraph ideals,
and Section 6 proves Theorem 1.4 for rank k-scatted vertex-minor ideals.
Section 7 discusses the application of Theorem 1.4 for linear rank-width and
proves Theorem 1.6.

2 Preliminaries

For a graph G and a vertex set S of G, we write GrSs to denote the subgraph
of G induced by S. For v P V pGq and S Ď V pGq, G´v is the graph obtained
from G by removing v and all edges incident with v, and G´S is the graph
obtained by removing all vertices in S. For F Ď EpGq, G´F is the subgraph
of G with the vertex set V pGq and the edge set EpGqzF . For a vertex v
of a graph G, NGpvq is the set of neighbors of v in G, and the degree of
v is the number of edges incident with v. For two disjoint vertex subsets
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Figure 2: An example of pivoting.

A and B of G, we write GrA,Bs to denote the bipartite subgraph on the
bipartition pA,Bq consisting of all edges of G having one end in A and
the other end in B. For two graphs G and H, let G Y H be the graph
pV pGq Y V pHq, EpGq Y EpHqq.

A matching of a graph is a set of edges of which no two edges share an
end. For a matching M , we write V pMq to denote the set of all vertices
incident with an edge in M . A clique in a graph is a set of pairwise adjacent
vertices, and an independent set in a graph is a set of pairwise non-adjacent
vertices.

The adjacency matrix of a graph G “ pV,Eq, denoted by ApGq, is a
V ˆV 0-1 matrix whose pv, wq entry is 1 if and only if v and w are adjacent.

We write Pn and Kn to denote a path on n vertices and a complete graph
on n vertices respectively. We write Km,n to denote a complete bipartite
graph with bipartition pA,Bq where |A| “ m and |B| “ n. For a graph G,
we denote by G the complement of G.

We write Rpn; kq to denote the minimum number N such that every
coloring of the edges of KN into k colors induces a monochromatic com-
plete subgraph on n vertices. The classical theorem of Ramsey implies that
Rpn; kq exists.

Vertex-minors For a vertex v in a graph G, performing a local comple-
mentation at v is to replace the subgraph of G induced on NGpvq by its
complement graph. We write G ˚ v to denote the graph obtained from G
by applying a local complementation at v. Two graphs G and H are locally
equivalent if G can be obtained from H by a sequence of local complementa-
tions. A graph H is a vertex-minor of a graph G if H is an induced subgraph
of a graph locally equivalent to G.

For an edge uv of a graph G, pivoting the edge uv in G is to take a series
of three local complementations at u, v, and u. We write G^ uv to denote
the graph obtained by pivoting uv. In other words, G^ uv “ G ˚ u ˚ v ˚ u.
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Figure 3: K5 aK5, K5 bK5, and K5 mK5.

Note that G^ uv is identical to the graph obtained from G by flipping the
adjacency relation between every pair of vertices x and y where x and y are
contained in distinct sets of NGpuqzpNGpvqYtvuq, NGpvqzpNGpuqYtvuq, and
NGpuq XNGpvq, and finally swapping the labels of u and v [14]. To flip the
adjacency relation between two vertices, we delete the edge if it exists and
add it otherwise. See Figure 2 for an example. For more details, see [14].

Graph operations For two graphs G and H on the disjoint vertex sets,
each having n vertices, we would like to introduce operations to construct
graphs on 2n vertices by making the disjoint union of them and adding some
edges between two graphs. Roughly speaking, G a H will add a perfect
matching, GbH will add the complement of a perfect matching, and GmH
will add a bipartite chain graph. Formally, for two n-vertex graphs G and H
with fixed ordering on the vertex sets tv1, v2, . . . , vnu and tw1, w2, . . . , wnu
respectively, letGaH, GbH, GmH be graphs on the vertex set V pGqYV pHq
whose subgraph induced by V pGq or V pHq is G or H, respectively such that
for all i, j P t1, 2, . . . , nu,

(i) viwj P EpGaHq if and only if i “ j,

(ii) viwj P EpGbHq if and only if i ‰ j,

(iii) viwj P EpGmHq if and only if i ě j.

See Figure 3 for illustrations of K5 aK5, K5 bK5, and K5 mK5. In each of
constructed graphs, we say that vi is matched with wj when i “ j.

3 Vertex k-scattered subgraph ideals

In this section, we characterize vertex k-scattered subgraph ideals.
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Theorem 1.1. Let k be a positive integer. A subgraph ideal C is vertex
k-scattered if and only if

t1H{A, 2H{A, 3H{A, 4H{A, . . .u Ę C

for every connected graph H with k ` 1 edges and each of its independent
subset A Ĺ V pHq.

For the forward part, we show the following.

Lemma 3.1. Let k, ` be positive integers. Let H be a connected graph with
k ` 1 edges and let A be an independent subset of vertices of H. Then the
vertex k-brittleness of p2`` 1qH{A is at least `` 1.

Proof. Suppose not. Let G “ p2` ` 1qH{A. Let pX1, X2, . . . , Xtq be a
partition of EpGq such that its κG-width is at most ` and |Xi| ď k for all
1 ď i ď t.

For each component C of G ´ A, there are at least two i ‰ j such
that vertices in C are incident with an edge in Xi and an edge Xj , because
|X1|, |X2|, . . . , |Xt| ď k, vertices in C are incident with more than k edges
in total and C is connected.

Let us pick a random subset I of t1, 2, . . . , tu. The probability that a
fixed component C of G´A has a vertex incident with both an edge in Xi for
some i P I and an edge in Xj for some j P t1, 2, . . . , tuzI is at least 1{2. By
the linearity of the expectation, there exists a subset I 1 of t1, 2, . . . , tu such
that at least half of the components of G´A has a vertex incident with both
an edge in Xi for some i P I and an edge in Xj for some j P t1, 2, . . . , tuzI.
This means that κGp

Ť

iPI Xiq ě `` 1, contradicting our assumption.

For the converse direction of Theorem 1.1, we prove that for positive
integers k and n, every graph with sufficiently large vertex k-brittleness
must contain a subgraph isomorphic to nH{A for some connected graph
H with k ` 1 edges and some independent subset A Ĺ V pHq. We prove
this statement by induction on k. The following lemma will be used in the
induction step.

Lemma 3.2. Let H be a graph with k edges and let A Ĺ V pHq be an
independent set. Let m, n be integers such that m ą kpk`1qpn´1qp4n`1q.
Let G be a graph containing mH{A as a subgraph. If for each component
C of pmH{Aq ´ A, G has an edge not in mH{A but incident with vertices
in C, then G contains a subgraph isomorphic to nH 1{A1 for some connected
graph H 1 with k ` 1 edges and an independent subset A1 Ĺ V pH 1q.

8



Proof. It is trivial if n “ 1. Thus we may assume that n ą 1. Let us choose a
minimal subgraph G1 of G such that V pGq “ V pG1q, EpG1qXEpmH{Aq “ H
and each component C of pmH{Aq ´ A has an edge in G1 incident with a
vertex of C. Then G1 is a forest and pV pGqzV pmH{AqqYA is independent in
G1 by the minimality. Moreover, between two components of pmH{Aq ´A,
G1 has at most one edge and for each component C of pmH{Aq ´ A, the
graph G1rA Y V pCqs has at most one edge. As one edge of G1 is incident
with at most two components, G1 has at least m{2 edges.

If there are more than
`

k`1
2

˘

pn´1q components C of pmH{Aq´A having
an edge in G1rAYV pCqs, then by the pigeon-hole principle, there are at least
n components C of pmH{Aq´A such that the (unique) edge in G1rAYV pCqs
is incident with the corresponding vertices by the isomorphism. Then let
H 1 be the graph obtained from H by adding that edge incident with the
corresponding vertices. Then G has nH 1{A as a subgraph. So, we may
assume that at most

`

k`1
2

˘

pn ´ 1q components C of pmH{Aq ´ A have an
edge in G1rA Y V pCqs. Let G2 be the subgraph of G1 obtained by deleting
edges in G1rAYV pCqs for all components C of pmH{Aq´A. Then |EpG2q| ě
m{2´

`

k`1
2

˘

pn´ 1q.
If G2 has a vertex v of degree more than pk` 1qpn´ 1q, then more than

pk ` 1qpn ´ 1q components of pmH{Aq ´ A have vertices adjacent to v in
G2. Then, for at least n components of pmH{Aq´A, their vertices adjacent
to v in G2 are the copies of the same vertex w of H. Let H 1 be the graph
obtained from H by adding a new vertex v of degree 1 adjacent to w. Let
A1 “ A Y tvu. Then G has nH 1{A1 as a subgraph and H 1 is connected. So
we may assume that the maximum degree of G2 is at most pk ` 1qpn´ 1q.

As G2 is a forest, G2 is bipartite. By the theorem of König, G2 is
pk ` 1qpn´ 1q-edge-colorable. So G2 has a matching M with

|M | ě |EpG2q|
pk ` 1qpn´ 1q

ě
m´ kpk ` 1qpn´ 1q

2pk ` 1qpn´ 1q
ą 2kn.

Let C1, C2, . . ., Cm be the components of pmH{Aq ´A. Let I be a ran-
dom subset of t1, 2, . . . ,mu andX “

Ť

iPI V pCiq and Y “
Ť

jPt1,...,muzI V pCjq.
The probability that e PM has one end in X and the other end in Y is 1{2.
Thus, there exist I and M 1 Ď M such that |M 1| ě |M |{2 ą kn and every
edge of M 1 has one end in X and the other end in Y .

By the pigeon-hole principle, there exists a vertex w of H such that at
least n edges e of M 1 have the property that the end in X is a copy of w.
Then let H 1 be the graph obtained from H by adding a new vertex v and
an edge from v to w and let A1 “ A. Then G has nH 1{A1 as a subgraph and
H 1 is connected.
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Lemma 3.3. Every graph with vertex 1-brittleness more than 64n3pn ´ 1q
contains nP3{A as a subgraph for some independent set A Ĺ V pP3q.

Proof. Let G be a graph with vertex 1-brittleness more than 64n3pn ´ 1q.
We may assume that G has no components with at most 2 vertices. If G
has at least n components, then each component has P3 as a subgraph and
therefore nP3{H is a subgraph of G. So we may assume that G has less
than n components.

Let G1 be the induced subgraph of G obtained by deleting all degree-1
vertices. Then if a vertex of G1 has degree less than 2, then it has its private
neighbor in V pG1qzV pGq of degree 1 in G.

If G1 has a vertex v of degree more than 2pn ´ 1qp4n ` 1q, then by
Lemma 3.2, G contains nP3{A for some independent set A Ĺ V pP3q. So we
may assume that every vertex of G1 has degree at most 2pn´ 1qp4n` 1q.

If G1 has a matching M of size more than 2pn ´ 1qp4n ` 1q, then by
Lemma 3.2, G contains nP3{A for some independent set A Ĺ V pP3q. So we
may assume that every matching of G1 has at most 2pn´ 1qp4n` 1q edges.

Then by the theorem of Vizing, |EpG1q| ď p2pn´ 1qp4n` 1q ` 1qp2pn´
1qp4n` 1qq. As G1 has at most n´ 1 components, |V pG1q| ď p2pn´ 1qp4n`
1q`1qp2pn´1qp4n`1qq`n´1. Then the vertex 1-brittleness of G is at most
p2pn´1qp4n`1q`1qp2pn´1qp4n`1qq`n´1 “ 64n4´96n3`12n2`19n`1 ď
64n3pn´ 1q, which is a contradiction.

For a set A of vertices of a graph G, a Tutte bridge of A in G is either
an edge joining two vertices in A or a subgraph of G consisting of one
component C of G´ A and all edges joining C and A and all vertices of A
incident with those edges. For a Tutte bridge B of A in G, deleting B from
G is to remove all edges in B and remove all vertices in V pBqzA. (For an
edge e of G, V peq denotes the set of ends of e.)

Lemma 3.4. Let G be a graph and A be a set of vertices of G. If G1 is the
subgraph of G obtained by deleting all edges in each Tutte bridge of A with
at most k edges, then βκk pG

1q ě βκk pGq ´ |A|.

Proof. Let P 1 “ pX1, X2, . . . , Xtq be a partition of EpG1q whose κG1-width
is equal to βκk pG

1q. We extend P 1 to a partition P of EpGq by adding
EpBq as one part for each Tutte bridge B of A in G with at most k edges.
Then the κG-width of P is at most βκk pG

1q ` |A| and therefore βκk pGq ď
βκk pG

1q ` |A|.

Lemma 3.5. Let m, n, k be positive integers. Let H be a connected graph
with k edges and let A Ĺ V pHq be a non-empty independent subset. Let G
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be a graph having mH{A as a subgraph and let X be a set of vertices of G.
If no subgraph of G is isomorphic to nH 1{A1 for some connected graph with
k ` 1 edges and an independent set A1 Ĺ V pH 1q and

m ą 4n2kpk ` 1q ` |X|,

then G has two distinct Tutte bridges B1, B2 of A, satisfying the following.

(i) Each Bi has exactly k edges.

(ii) V pB1q XA “ V pB2q XA.

(iii) neither B1 ´A nor B2 ´A has a vertex in X.

Proof. By Lemma 3.2, we may assume that no more than kpk`1qpn´1qp4n`
1q components C of mH{A are incident with an edge in EpGqzEpmH{Aq.
As kpk ` 1qpn ´ 1qp4n ` 1q ` 1 ď 4n2kpk ` 1q, there are at least |X| ` 2
components of mH{A that form Tutte bridges of A in G with exactly k
edges. Among them, at least two will not intersect X.

We need the sunflower lemma. Let F be a family of sets. A subset
tM1,M2, . . . ,Mpu of F is a sunflower with core A (possibly an empty set)
and p petals if for all distinct i, j P t1, 2, . . . pu, Mi XMj “ A.

Theorem 3.6 (Sunflower Lemma [8, Erdős and Rado]). Let k and p be
positive integers, and F be a family of sets each of cardinality k. If |F| ą
k!pp´ 1qk then F contains a sunflower with p petals.

Lemma 3.7. Let m, n, k, t be positive integers. Let G be a graph. Let
F1, F2, . . ., Fm be a connected subgraph with t edges and for each i P
t1, 2, . . . ,mu, let Si be an independent subset of V pFiq such that |Si| ď k
and Fi ´X is connected for all X Ĺ Si, and V pFiq X V pFjq Ď Si X Sj for

all 1 ď i ă j ď m. If m ą k ¨ k!
`

pt`1qt{2
t

˘k
pn ´ 1qk, then G has a sub-

graph isomorphic to nH{A for some connected graph H with t edges and an
independent set A Ĺ V pHq.

Proof. Let p “
`

pt`1qt{2
t

˘

pn ´ 1q ` 1. We may assume that Si is non-empty
because every connected graph H with at least two vertices has a vertex v
such that H´v is connected. By Theorem 3.6, there exist i1 ă i2 ă ¨ ¨ ¨ ă ip
such that tSi1 , Si2 , . . . , Sipu is a sunflower with p petals. Let A be the core,
that is

Şp
j“1 Sij . Since V pFiq X V pFjq Ď Si X Sj for all 1 ď i ă j ď m, we

deduce that Fi1 ´A, Fi2 ´A, . . ., Fip ´A are vertex-disjoint. There are at

most
`

pt`1qt{2
t

˘

graphs having t edges and so at least n of Fi1 ´ A, Fi2 ´ A,
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. . ., Fip ´ A are pairwise isomorphic with isomorphisms fixing A, because

p ą
`

pt`1qt{2
t

˘

pn´ 1q. This proves the lemma.

Proposition 3.8. For positive integers k and n, there exists an integer ` “
`pk, nq such that every graph with vertex k-brittleness more than ` contains
nH{A for some connected graph H with k` 1 edges and an independent set
A Ĺ V pHq.

Proof. We define that

`p1, nq :“ 64n3pn´ 1q,

and for k ě 2,

`pk, nq :“ `

˜

k ´ 1, 4n2kpk ` 1q ` k ¨ k!

ˆ

p2k ` 1qk

2k

˙k

pn´ 1qk

¸

` k2 ¨ k!

ˆ

p2k ` 1qk

2k

˙k

pn´ 1qk.

We prove the statement by induction on k. If k “ 1, then it is true by
Lemma 3.3. Now, we prove for k ě 2. Suppose G has vertex k-brittleness
more than ` “ `pk, nq and no subgraph of G is isomorphic to nH 1{A1 for a
connected graph H 1 with k ` 1 edges and an independent set A1 Ĺ V pH 1q.

Let m “ 4n2kpk` 1q`k ¨k!
`

p2k`1qk
2k

˘k
pn´ 1qk. Let G1 be the subgraph of G

obtained by deleting all components with at most k edges. By Lemma 3.4,
βκk pG1q “ βκk pGq. By the induction hypothesis, G1 has mH1{A1 as a sub-
graph for some connected graph H1 with k edges and an independent subset
A1 Ĺ V pH1q. By Lemma 3.5, G1 has two Tutte bridges B1,1 and B1,2 of
A1, each having exactly k edges such that V pB1,1q X A1 “ V pB1,2q X A1.
Note that A1 is non-empty because every component of G1 has at least k`1
edges. Let F1 “ B1,1 Y B1,2 and S1 “ V pF1q X A1. Then for all X Ĺ S1,
F1 ´X is connected.

For i “ t2, . . . , k ¨ k!
`

p2k`1qk
2k

˘k
pn´ 1qku, we define Gi as the subgraph of

Gi´1 obtained by deleting all Tutte bridges of Ai´1 having at most k edges.
By Lemma 3.4, βκk pGiq ě βκk pGi´1q ´ |Ai´1| ě βκk pGi´1q ´ k. By induction,

βκk pGiq ą `pk´ 1,mq ` k2 ¨ k!

ˆ

p2k ` 1qk

2k

˙k

pn´ 1qk ´ pi´ 1qk ě `pk´ 1,mq

and so Gi has a subgraph isomorphic to mHi{Ai for some connected graph
Hi with k edges and an independent subsetAi Ĺ V pHiq. Again by Lemma 3.5,
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Gi has two Tutte bridges Bi,1 and Bi,2 of Ai, each having exactly k edges
such that V pBi,1qXAi “ V pBi,2qXAi and neither Bi,1´Ai nor Bi,2´Ai has
a vertex in A1 YA2 Y ¨ ¨ ¨ YAi´1. Let Fi “ Bi,1 YBi,2 and Si “ V pFiq XAi.
Then for all X Ĺ Si, Fi ´X is connected.

We claim that for i ă j, V pFiq X V pFjq Ď Si X Sj . Suppose not. Let
x P V pFiq X V pFjq. If x R Si, then x R Ai and so x R V pGjq because
when we construct Gi`1 from Gi, we remove all Tutte bridges of Ai with
at most k edges. Since Fj is a subgraph of Gj , we deduce that x R V pFjq,
contradicting the assumption. Thus x P Si. If x R Sj , then x R Aj and so
by the construction, x R S1 Y S2 Y ¨ ¨ ¨ Y Sj´1, contradicting the assumption
that x P Si. Thus, x P Si X Sj . This proves the claim.

By applying Lemma 3.7 to Fi and Ai for all i, we deduce that G has a
subgraph isomorphic to mH{A for some connected graph H with 2k edges
and an independent set A Ĺ V pHq. This contradicts our assumption because
H contains a connected subgraphH 1 with k`1 edges andG containsmH 1{A1

as a subgraph where A1 “ AX V pH 1q.

Lemma 3.1 and Proposition 3.8 imply Theorem 1.1.

4 Edge k-scattered subgraph ideals

In this section, we characterize edge k-scattered subgraph ideals.

Theorem 1.2. Let k be a positive integer. A subgraph ideal C is edge k-
scattered if and only if

tK1,1,K1,2,K1,3, . . .u Ę C

and
tT, 2T, 3T, 4T, . . .u Ę C

for every tree T on k ` 1 vertices.

We prove that for some connected graph H on k`1 vertices, the disjoint
union of sufficiently many copies of H should have large edge k-brittleness.
In fact, this is same for matching k-brittleness and rank k-brittleness, we
prove at the same time.

Lemma 4.1. Let m, n, k be positive integers with n ą 2m and H be a
connected graph on k ` 1 vertices. Then the following hold.

(i) nH has edge k-brittleness at least m` 1.
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(ii) nH has matching k-brittleness at least m` 1.

(iii) nH has rank k-brittleness at least m` 1.

Proof. Let G :“ nH. Let pX1, X2, . . . , Xtq be a partition of V pGq such
that |Xi| ď k. Let C1, C2, . . . , Cn be the components of G. Note that each
Ci intersects at least two of X1, X2, . . ., Xt. Let I be a random subset
of t1, 2, . . . , tu. For each `, the probability that C` contains both a vertex
in

Ť

iPI Xi and a vertex in
Ť

jPt1,2,...,tuzI Xj is at least 1{2. Thus, by the
linearity of expectation, more than m components of G have both a vertex in
Ť

iPI Xi and a vertex in
Ť

jPt1,2,...,tuzI Xj . This implies that ηGp
Ť

iPI Xiq ą m,
νGp

Ť

iPI Xiq ą m, and ρGp
Ť

iPI Xiq ą m.

For edge k-brittleness, a large star is also an obstruction.

Lemma 4.2. For positive integers k and m, K1,k`m has edge k-brittleness
at least m` 1.

Proof. Let pX1, X2, . . . , Xtq be a partition of V pK1,k`mq such that |Xi| ď k.
We may assume that X1 contains the center of K1,k`m. Then ηK1,k`m

pX1q ě

pk `mq ´ pk ´ 1q.

Now, we show the converse direction of Theorem 1.2.

Proposition 4.3. For every positive integers k and n, there exists an integer
` “ `pk, nq such that every graph with edge k-brittleness more than ` contains
a subgraph isomorphic to either K1,n or nT for some tree T on k`1 vertices.

Proof. Let `p1, nq “ npn´1q and `pk, nq “ `pk´1, 4kpn´1q2`1q for k ě 2.
We proceed by induction on k. We may assume that every vertex has

degree at most n ´ 1. If k “ 1, then by the theorem of Vizing, G has a
matching of size at least |EpGq|{n. Since the edge 1-brittleness is less than
or equal to |EpGq|, we have a matching of size more than `p1, nq{n “ n´ 1.
Thus, we may assume that k ą 1.

We may assume that every component of G has more than k vertices,
because otherwise removing them does not decrease the edge k-brittleness.
By the induction hypothesis, G has a subgraph isomorphic to mT for a tree
T on k vertices where m “ 4kpn´1q2`1. Let C1, C2, . . ., Cm be the disjoint
copies of T in G.

Let G1 be a minimal subgraph of G such that for all 1 ď i ď m, G1 has
at least one edge joining Ci with a vertex not in Ci. Since each edge of G1

is incident with at most two of C1, C2, . . ., Cm, we have |EpG1q| ě rm{2s ą

2kpn ´ 1q2. Note that G1 is a forest. So by the theorem of König, G1 is
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pn ´ 1q-edge-colorable and so it has a matching M with |M | ą 2kpn ´ 1q.
Each edge of M is incident with a copy of some vertex of T in mT .

Let I be a random subset of t1, 2, . . . ,mu. Let X “
Ť

iPI V pCiq and
Y “

Ť

jPt1,2,...,muzI V pCjq. The probability that an edge in M has one end

in X and the other end in Y is 1{2 and therefore there exist I and M 1 ĎM
such that |M 1| ě |M |{2 ą kpn ´ 1q and each edge of M 1 has one end in X
and the other end in Y .

Now M 1 has a subset M2 with |M2| ą n ´ 1 such that there exists a
vertex w of T with the property that for every edge of M2, its end in X is
a copy of w in mT . Let T 1 be the tree obtained from T by adding a new
vertex adjacent to w only. Then G has nT as a subgraph.

Proposition 4.3 and Lemmas 4.1 and 4.2 imply Theorem 1.2.

5 Matching k-scattered subgraph ideals

In this section, we characterize matching k-scattered subgraph ideals. We
already proved in Lemma 4.1 that for a connected graph H on k ` 1 ver-
tices, the disjoint union of sufficiently many copies of H has large matching
k-brittleness. Such obstructions exactly characterize matching k-scattered
subgraph ideals.

Theorem 1.3. Let k be a positive integer. A subgraph ideal C is matching
k-scattered if and only if

tT, 2T, 3T, . . .u Ę C

for every tree T on k ` 1 vertices.

First let us prove that deleting a vertex does not decrease the matching
k-brittleness a lot.

Lemma 5.1. Let k be a positive integer. For a vertex v of a graph G,

βνk pGq ď βνk pG´ vq ` 1.

Proof. Let P 1 “ pX1, X2, . . . , Xtq be a partition of V pG ´ vq such that
|Xi| ď k and the νG´v-width of P 1 is minimum, that is βνk pG´ vq. Let P “
pX1, X2, . . . , Xt, tvuq. Then the νG-width of P is at most βνk pG´ vq` 1.

The following proposition with Lemma 4.1 proves Theorem 1.3.
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Proposition 5.2. For every positive integers k and n, there exists ` “
`pk, nq such that every graph with matching k-brittleness more than ` con-
tains a subgraph isomorphic to nT for some tree T on k ` 1 vertices.

Proof. Let `pk, nq “ pk ` 1qkpn ´ 1q. Let G be a graph with matching
k-brittleness more than `pk, nq. Let G0 “ G and S0 “ H. We claim
that there exist disjoint subsets S1, S2, . . ., Spk`1qk´1pn´1q, Spk`1qk´1pn´1q`1

such that each Si induces a connected subgraph of G with k ` 1 vertices.
For i “ 1, 2, . . . , pk ` 1qk´1pn ´ 1q ` 1, let Gi be the induced subgraph of
Gi´1 ´ Si´1 obtained by deleting all components with at most k vertices.
Notice that by Lemma 5.1, βνk pGiq ě βνk pGi´1q´ |Si´1| “ βνk pGi´1q´pk`1q.
By induction, we deduce that βνk pGiq ě βνk pGq ´ pk ` 1qpi ´ 1q ą 0. Thus
Gi contains a component with more than k vertices and therefore it has a
vertex set Si of size k ` 1 inducing a connected subgraph. This proves the
claim.

Let Ti be a spanning tree of GrSis for each i. Since the number of labeled
trees on k ` 1 vertices is pk ` 1qk´1, there exist more than n ´ 1 of these
spanning trees that are pairwise isomorphic.

6 Rank k-scattered vertex-minor ideals

We characterize rank k-scattered vertex-minor ideals. As we mentioned, the
rank k-brittleness of a graph may increase when taking a subgraph. Instead
we use vertex-minors because of the following lemma.

Lemma 6.1 (See Oum [14, Proposition 2.6]). If G is locally equivalent to
G1, then for every subset X of vertices of G, ρGpXq “ ρG1pXq.

Here is our main theorem for rank k-scattered vertex-minor ideals.

Theorem 1.4. Let k be a positive integer. A vertex-minor ideal C is rank
k-scattered if and only if for every connected graph H on k ` 1 vertices,

tH, 2H, 3H, 4H, . . .u Ę C.

First, it is easy to observe the following.

Proposition 6.2. If H is a vertex-minor of G, then

βρkpGq ď βρkpHq ` |V pGq|´ |V pHq|.
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Proof. Let G1 be a graph locally equivalent to G such that H is an induced
subgraph of G. Note that applying local complementation does not change
the rank k-brittleness of a graph by Lemma 6.1. Therefore, we have βρkpG

1q “

βρkpGq. It is easy to observe that removing a vertex may decrease the rank
k-brittleness by at most 1 by a proof analogous to the proof of Lemma 5.1.
Therefore, βρkpHq ě βρkpG

1q ´ p|pV pG1q| ´ |V pHq|q “ βρkpGq ´ p|pV pGq| ´
|V pHq|q, as required.

Lemma 4.1 states that for a connected graph H on k ` 1 vertices, the
disjoint union of sufficiently many copies of H has large rank k-brittleness.
It means that if tH, 2H, 3H, 4H, . . .u Ď C for some connected graph H on
k ` 1 vertices, then C is not rank k-scattered. So we focus on the other
direction of Theorem 1.4. We need the following Ramsey-type theorem for
bipartite graphs without twins.

Theorem 6.3 (Ding, Oporowski, Oxley, Vertigan [7]). For every positive
integer n, there exists an integer fpnq such that for every bipartite graph
G with a bipartition pS, T q, if no two vertices in S have the same set of
neighbors and |S| ě fpnq, then S and T have n-element subsets S1 and T 1,
respectively, such that GrS1, T 1s is isomorphic to Kn a Kn, Kn m Kn, or
Kn bKn.

In the several places of the proof, when we obtain H1 a H2 or H1 b H2

where H1, H2 P tKn,Knu, we want to make each part an independent set.
The following lemma describes how to reduce each of them to Kn1 aKn1 for
some n1.

Lemma 6.4. Let n be an integer.

(1) If n ě 2, then KnaKn has a vertex-minor isomorphic to Kn´1 aKn´1.

(2) If n ě 3, then KnaKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(3) If n ě 3, then KnbKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(4) If n ě 3, then KnbKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(5) If n ě 2, then KnbKn has a vertex-minor isomorphic to Kn´1 aKn´1.

Proof. (1) Let V pKnq “ tvi : 1 ď i ď nu and V pKnq “ twi : 1 ď i ď nu.
The graph pKn aKn ´ w1q ˚ v1 ´ v1 is isomorphic to Kn´1 aKn´1.

(2) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph ppKn a Kn ´ tv1, w2uq ˚ v2 ˚ w1q ´ tv2, w1u is
isomorphic to Kn´2 aKn´2.
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(3) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph ppKn b Kn ´ tv1, w2uq ^ v2w1q ´ tv2, w1u is
isomorphic to Kn´2 aKn´2.

(4) Let V pKnq “ tvi : 1 ď i ď nu and V pKnq “ twi : 1 ď i ď nu. The
graph pKn b Kn ´ w1q ˚ v1 ´ v1 is isomorphic to Kn´1 a Kn´1. Thus, by
(1), it contains a vertex-minor isomorphic to Kn´2 aKn´2.

(5) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph pKn b Kn ´ w1q ˚ v1 ´ v1 is isomorphic to
Kn´1 aKn´1.

From H1 m H2 with H1, H2 P tKn,Knu, we can obtain a long induced
path as a vertex-minor. So, if n is sufficiently large, then this directly gives
us mPk`1 for some large m.

Lemma 6.5 (Kwon and Oum [12]). Let n be a positive integer.

(1) Kn mKn is locally equivalent to P2n.

(2) Kn mKn is locally equivalent to P2n.

(3) If n ě 2, then Kn mKn has a vertex-minor isomorphic to P2n´2.

Proof. (1) and (2) are proved in [12]. To prove (3), let tvi : 1 ď i ď nu and
twi : 1 ď i ď nu be the vertex sets of two copies of Kn, where vi is adjacent
to wj if and only if i ě j. Then pKn m Kn ´ w1q ˚ v1 ´ v1 is isomorphic to
Kn´1 mKn´1. Thus, the result follows from (2).

We will prove the converse direction of Theorem 1.4 by induction on k.
In the procedure, we find a vertex-minor containing a vertex set S which
induces a subgraph isomorphic to mH for some connected graph H on k
vertices. Generally, we meet two situations: the cut-rank of S is large or
small. In the next lemma, we prove that if the cut-rank of S is large, then
we can directly find a vertex-minor isomorphic to the disjoint union of many
copies of some connected graph on k ` 1 vertices. If the cut-rank is small,
then we will recursively find another such set after excluding S.

Lemma 6.6. For positive integers k and n, there exists a positive integer
m “ f1pk, nq such that if a graph G admits a set W “ tw1, . . . , wmu that is
a clique or an independent set satisfying the following two properties, then
G has a vertex-minor isomorphic to nH 1 for some connected graph H 1 on
k ` 1 vertices.

(i) G´W “ mH for some connected graph H on k vertices.
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(ii) For some vertex v of H and its copies v1, v2, . . ., vm in mH, vi is
adjacent to wj if and only if i “ j.

Proof. Let Hi be the i-th copy of H in G´W . We fix an isomorphism from
H to Hi and isomorphisms between copies of H so that these isomorphisms
are compatible.

Assume that m ą 2k´1pm1 ´ 1q. For each wi, there are at most 2k´1

possible sets of neighbors in Hi. So there exists a subset W1 of W with
|W1| “ m1 the set of all neighbors of each wi PW1 in Hi are identical up to
isomorphisms between copies of H.

Assume that m1 ě Rpm2; p2
k´1q2q. For a vertex wi and j ‰ i, there are

2k´1 possible ways of having edges between the j-th copy of H ´ v and wi.
By applying the theorem of Ramsey, we deduce that there exists a subset
W2 Ď W1 of size m2 such that for all i ă j with wi, wj P W2, the set of all
neighbors of wi in Hj are identical up to isomorphisms between copies of
H and the set of all neighbors of wj in Hi are identical up to isomorphisms
between copies of H.

Assume that m2 ě ppk ` 2qn ` 1q{2 ` 1. Suppose that there exist i1 ă
i2 ă i3 such that wi1 , wi2 , wi3 PW2 and there exists a vertex u of H so that
exactly one of the copies of u in Hi1 and Hi3 is adjacent to wi2 . Then G
contains Km2´1 m Km2´1 or Km2´1 m Km2´1 as an induced subgraph. By
Lemma 6.5, G has a vertex-minor isomorphic to Ppk`2qn´1 and therefore G
has nPk`1 as a vertex-minor.

Thus, we may assume that for all i ‰ j with wi, wj P W2, the set of all
neighbors of wi in Hj are identical up to isomorphisms between copies of H.

Assume that m2 ě n` 3. Suppose that wi PW2 has no neighbors in Hj

when j ‰ i and wj P W2. If W2 is an independent set, then clearly G has
an induced subgraph isomorphic to m2H

1 for some connected graph H 1 on
k ` 1 vertices. If W2 is a clique, then for some wi P W2, G ˚ wi contains an
induced subgraph isomorphic to pm2 ´ 1qH 1 for some connected graph H 1

on k ` 1 vertices.
Thus, we may assume that wi P W2 has at least one neighbor uj in Hj

for some j ‰ i with wj PW2. Let G1 “ G^wiuj´V pHiq´V pHjq´wi´wj .
If W2 is an independent set, then G1 has an induced subgraph isomorphic
to pm2 ´ 2qH 1 for some connected graph H 1 on k ` 1 vertices. If W2 is a
clique, then let wi1 P W2ztwi, wju and G2 “ G1 ˚ wi1 ´ V pHi1q. Then G2

contains an induced subgraph isomorphic to pm2´ 3qH 1 for some connected
graph H 1 on k ` 1 vertices.

So we can take f1pk, nq :“ 2k´1pRpmaxpppk`2qn`1q{2`1, n`3q; p2k´1q2q´
1q ` 1.
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Figure 4: Obtaining G1 “ pG^ v1w2q ´ V pH1q ´ V pH2q ´ w1 ´ w2 from G
in the proof of Lemma 6.7.

Lemma 6.7. For positive integers k and n, there exists a positive integer
m “ f2pk, nq such that if a graph G admits a set W “ tw1, . . . , wmu that is
a clique or an independent set satisfying the following two properties, then
G has a vertex-minor isomorphic to nH 1 for some connected graph H 1 on
k ` 1 vertices.

(i) G´W “ mH for some connected graph H on k vertices.

(ii) For some vertex v of H and its copies v1, v2, . . ., vm in mH, vi is
adjacent to wj if and only if i ‰ j.

Proof. Let f2pk, nq :“ f1pk, nq ` 2 for the function f1 in Lemma 6.6. Let
G1 “ G^ v1w2 ´ V pH1q ´ V pH2q ´w1 ´w2 where H1, H2 are the first and
second copies of H. Then G1´pW ztw1, w2uq is isomorphic to pm´2qH and
G1 satisfies the condition for Lemma 6.6. See Figure 4 for an illustration.

Lemma 6.8. For positive integers k and n, there exists an integer N :“
Npk, nq with the following property. Let H be a connected graph on k ver-
tices, and G be a graph and S Ď V pGq such that GrSs is isomorphic to
qH for some integer q and ρGpSq ě N . Then G contains a vertex-minor
isomorphic to nH 1 for some connected graph H 1 on k ` 1 vertices.

Proof. Let f be the function defined in Theorem 6.3. Let f1, f2 be the
functions defined in Lemmas 6.6 and 6.7. We define that

n3pk, nq :“ maxpf1pk, nq, f2pk, nqq,

n2pk, nq :“

#

pk ´ 1qn3pk, nq ` 1 if k ą 1,

maxpn` 2, p3n` 1q{2q if k “ 1,

n1pk, nq :“ R pn2pk, nq; 2q ,

Npk, nq :“ fpn1pk, nqq.
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We shortly denote n1pk, nq, n2pk, nq, n3pk, nq as n1, n2, n3 respectively.
Let v1, v2, . . . , vk be the vertices of H, and for each component C of

GrSs, let vCi be the copy of vi in C. For each i P t1, 2, . . . , ku, let Ri be the
union of all copies of vi in the components of GrSs. Choose B Ď V pGqzS
such that |B| “ N and rank pApGqrS,Bsq “ N .

Observe that two distinct vertices in B have distinct sets of neighbors
in S. Since N “ fpn1q, by Theorem 6.3, there exist A1 Ď S and B1 Ď B
with |A1| “ |B1| “ n1 such that GrA1, B1s is isomorphic to Kn1 a Kn1 ,
Kn1 mKn1 , or Kn1 bKn1 .

Since n1 “ Rpn2; 2q, by Ramsey’s theorem, there exists B2 Ď B1 such
that |B2| “ n2 and B2 is a clique or an independent set. Let A2 Ď A1 be
the set of vertices matched with vertices in B2 in the subgraph GrA1, B1s.
Thus, GrA2, B2s is isomorphic to Kn2 aKn2 , Kn2 mKn2 , or Kn2 bKn2 .

If k “ 1, then by Lemma 6.4 or 6.5, GrA2YB2s contains a vertex-minor
isomorphic to Kn aKn, because n2 ě n`2, n2 ě p3n`1q{2, and P3n´1 has
Kn aKn as an induced subgraph. So, we may assume that k ě 2.

Observe that H has a vertex v1 such that A2 has at least rn2{ks “ n3
copies of v1. Let A3 be a set of n3 copies of v1 in A2, and B3 Ď B2 be the
set of vertices matched with vertices in A3 in the subgraph GrA2, B2s. Let
C be the set of components of GrSs containing a vertex in A3. Clearly, we
have

• |C| “ n3,

• GrA3, B3s is isomorphic to Kn3 aKn3 , Kn3 mKn3 , or Kn3 bKn3 ,

• A3 is an independent set,

• B3 is a clique or an independent set.

If GrA3, B3s is isomorphic to Kn3 mKn3 , then GrA3YB3s is isomorphic
to Kn3 mKn3 or Kn3 mKn3 , and thus by Lemma 6.5, it is locally equivalent
to P2n3 . As 2n3 ě pk ` 2qn, P2n3 contains an induced subgraph isomorphic
to nPk`1. Therefore, we may assume GrA3, B3s is isomorphic to Kn3 aKn3

or Kn3 bKn3 . By Lemmas 6.6 and 6.7, we deduce that G has a vertex-minor
isomorphic to nH 1 for some connected graph H 1 on k ` 1 vertices.

Lemma 6.9. Let k and n be positive integers and let ` “ k2kpNpk,nq´1q ` 1
for the function N in Lemma 6.8. Let F be a connected graph on k vertices.
If G has an induced subgraph isomorphic to `F , then at least one of the
following holds.
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(i) G has a vertex-minor isomorphic to nH for some connected graph H
on k ` 1 vertices.

(ii) There exists A Ď V pGq such that GrAs is isomorphic to pk ` 1qF and
for each vertex of F , its copies in GrAs have the same set of neighbors
not in A.

Proof. Let S Ď V pGq be a vertex set such that GrSs is isomorphic to `F .
If ρGpSq ě Npk, nq, then by Lemma 6.8, G contains a vertex-minor

isomorphic to nH for some connected graph H on k`1 vertices. Therefore,
we may assume that ρGpSq ă Npk, nq.

Let C :“ tC1, C2, . . . , C`u be the set of components of GrSs, and let
V pF q “ tz1, z2, . . . , zku. For each i P t1, 2, . . . , ku, let Zi be the set of all
copies of zi in

Ť

CPC V pCq. Since ρGpSq ă Npk, nq,

rankApGqrZi, V pGqzSs ď Npk, nq ´ 1

for each i P t1, 2, . . . , ku and so ApGqrZi, V pGqzSs has at most 2Npk,nq´1

distinct rows because it is a 0-1 matrix. In other words,

|tNGpvq X pV pGqzSq : v P Ziu| ď 2Npk,nq´1

for each 1 ď i ď k.
Thus, by the pigeon-hole principle, there exists I Ď t1, 2, . . . , `u with

|I| ě r `
2kpNpk,nq´1q s ě k ` 1 such that for each i P t1, 2, . . . , ku, vertices in

Zi X p
Ť

jPI V pCjqq have the same set of neighbors in V pGqzS. It implies
(ii).

Lemma 6.10. Let k, n be positive integers. If a graph has more than

2p
k`1
2 qpn´ 1q components having k ` 1 vertices, then it contains an induced

subgraph isomorphic to nH for some connected graph H on k ` 1 vertices.

Proof. The number of non-isomorphic graphs on k ` 1 vertices is at most

2p
k`1
2 q. By the pigeon-hole principle, at least n components are pairwise

isomorphic.

Lemma 6.11. Let k, t be integers such that 1 ď t ď k. Let F be a connected
graph on k vertices. Let G be a graph such that every component has more
than k vertices and it contains pt` 1qF as an induced subgraph. If

• for each vertex of F , their copies in pt ` 1qF have the same set of
neighbors in V pGqzV ppt` 1qF q and
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• each component of pt ` 1qF has at most t vertices having a neighbor
in V pGqzV ppt` 1qF q,

then there exist a graph G1 locally equivalent to G, disjoint subsets S, T of
V pG1q and a vertex v in S such that

(i) G1rSs is a connected graph on k ` 1 vertices,

(ii) |T | ď tpk ` 1q, and

(iii) G1rSztvus is a component of G1 ´ pT Y tvuq.

Proof. Let A Ď V pGq such that GrAs is isomorphic to pt ` 1qF . Let
C :“ tC1, C2, . . . , Ct`1u be the set of components of GrAs, and let V pF q “
tz1, z2, . . . , zku. For each i P t1, 2, . . . , ku, let Zi be the set of all copies of
zi in A. Let Ui be the set of neighbors of vertices of Zi on V pGqzA in G,
that is, Ui “ NGprq X pV pGqzAq for r P Zi. Let X Ď t1, 2, . . . , ku be the set
of integers i such that Ui is non-empty. By the assumption |X| ď t. Since
each component of G has more than k vertices, we have |X| ą 0. Without
loss of generality, we may assume X “ t1, . . . , |X|u.

We proceed by induction on t.
If t “ 1, then let x P Z1 X V pC1q and y P U1. We obtain a new graph

from G by removing vertices of V pC1qztxu and pivoting xy. Note that
the set of neighbors of x in G ´ pV pC1qztxuq is exactly U1. Thus, after
pivoting xy, all edges between a vertex z in Z1 X V pC2q and U1ztyu are
removed and z has exactly one neighbor x on V pGqzV pC2q. Therefore,
pG1, S, T, vq “ pG ^ xy, V pC2q Y txu, pV pC1qztxuq Y tyu, xq is a required
tuple.

Now we may assume that t ě 2. We may assume that |X| “ t by the
induction hypothesis.

Let x P Z1 X V pC1q and y P U1. We obtain G1 from G by removing
vertices of V pC1qztxu and pivoting xy. Let A1 “ AzV pC1q. Note that in G,
the set of neighbors of x in V pGqzV pC1q is exactly U1. Thus,

• the adjacency relations between two vertices in A1 do not change by
pivoting xy,

• all edges between Z1ztxu and U1ztyu are removed by pivoting xy.

Furthermore, as vertices in each Zi have the same set of neighbors on
V pGqzA in G, G1 has the following properties.

• For all i1 P t2, . . . , tu, two vertices in Zi1 X A1 have the same set of
neighbors in V pG1qzA1.
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• If t ă k, then for i1 P tt ` 1, . . . , ku, vertices in Zi1 X A1 have no
neighbors in V pG1qzA1.

If vertices in Zj X A1 have no neighbors on V pG1qzA1 for all 2 ď j ď k
in G1, then pG1, S, T, vq “ pG ^ xy, V pC2q Y txu, pV pC1qztxuq Y tyu, xq is a
required tuple. Thus, we may assume that there is j P t2, . . . , ku such that
vertices in Zj XA1 have a neighbor on V pG1qzA1 in G1.

Note that G1´tx, yu contains an induced subgraph isomorphic to tF on
the vertex set A1 such that

• for each vertex of F , their copies in tF have the same set of neighbors
in V pG1 ´ tx, yuqzA1,

• each component of tF has at least one and less than t vertices having
a neighbor in V pG1 ´ tx, yuqzA1.

By the induction hypothesis, G1 ´ x´ y has the tuple pG1, S, T, vq. Let G2

be the graph locally equivalent to G such that G2 ´ V pC1q ´ y “ G1. Then
pG2, S, T Y V pC1q Y tyu, vq is a required tuple for G.

We prove the main proposition.

Proposition 6.12. For positive integers k and n, there exists an integer
` “ `pk, nq such that every graph with rank k-brittleness more than ` contains
a vertex-minor isomorphic to nH for some connected graph H on k ` 1
vertices.

Proof. Let f,N be the functions defined in Theorem 6.3 and Lemma 6.8,
respectively. We define

• `2p1, nq :“ maxpn` 2, rp3n` 1q{2sq,

• `1p1, nq :“ Rp`2p1, nq; 4q,

• `p1, nq :“ fp`1p1, nqq ´ 1,

and for k ě 2, let

• `3pk, nq :“ k2kpNpk,nq´1q ` 1,

• `2pk, nq :“ 2p
k`1
2 qpn´ 1q ` 2,

• `1pk, nq :“ Rp`2pk, nq; 2k`1q,

• `pk, nq :“ `pk ´ 1, `3pk, nqq ` pk ` 1q2p`1pk, nq ´ 1q.
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We will prove the statement by induction on k. We shortly denote `1pk, nq,
`2pk, nq, `3pk, nq as `1, `2, `3, respectively.

Let us first consider the case that k “ 1. Suppose G has rank 1-
brittleness more than `. Then, there exists a vertex set A such that ρGpAq ą
`. Choose A1 Ď A and B1 Ď V pGqzA such that |A1| “ |B1| “ ` ` 1 and
rank pApGqrA1, B1sq “ ` ` 1. Note that two vertices in B1 have distinct
neighbors on A1. Since ` ` 1 “ fp`1q, by Theorem 6.3 and there exist
A2 Ď A1 and B2 Ď B1 with |A2| “ |B2| “ `1 such that GrA2, B2s is isomor-
phic to K`1 aK`1 , K`1 mK`1 , or K`1 bK`1 .

As `1 “ Rp`2; 4q, by the theorem of Ramsey, there exist A3 Ď A2 and
B3 Ď B2 such that

• GrA3, B3s is isomorphic to K`2 aK`2 , K`2 mK`2 , or K`2 bK`2 , and

• each of A3 and B3 is a clique or an independent set.

If GrA3, B3s is isomorphic to K`2 m K`2 , then by Lemma 6.5, GrA3 Y B3s

contains a vertex-minor isomorphic to P2`2´2. As 2`2 ´ 2 ě 2p3n`12 q ´ 2 ě
3n´ 1, P2`2´2 contains an induced subgraph isomorphic to nK2. Therefore
we may assume that GrA3, B3s is isomorphic to K`2 a K`2 or K`2 b K`2 .
Because `2 ě n ` 2, by Lemma 6.4, G contains a vertex-minor isomorphic
to Kn aKn, which is isomorphic to nK2, as required.

Now, we prove for k ě 2. Suppose G has rank k-brittleness more than `.
Among all graphs G1 locally equivalent to G, choose G1 admitting a sequence
of m` 1 tuples with the maximum m

pS0, T0q, pS1, T1, v1q, pS2, T2, v2q, . . . , pSm, Tm, vmq

such that

• S0 “ T0 “ H,

• S1, S2, . . . , Sm, T1, T2, . . . , Tm are pairwise disjoint vertex subsets of G1,

• for each i P t1, 2, . . . ,mu,

– |Si| “ k ` 1 and G1rSis is connected,

– |Ti| ď kpk ` 1q,

– vi P Si,

– no vertex in Siztviu has a neighbor in V pG1qzp
Ť

0ďjďipSj Y Tjqq.
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Such a graph G1 exists trivially because pS0, T0q is a valid sequence for
G and so m ě 0.

Suppose that m ă `1. Let G1 :“ G1 ´ p
Ť

0ďjďmpSj Y Tjqq. Since G1 is
locally equivalent to G, βρkpG

1q “ βρkpGq, and therefore,

βρkpG
1q “ βρkpGq ą `pk ´ 1, `3q ` pk ` 1q2p`1 ´ 1q.

As |
Ť

0ďjďmpSjYTjq| ď pk`1q2m ď pk`1q2p`1´1q, by Proposition 6.2, we
have that βρkpG1q ą `pk ´ 1, `3q. Let G2 be the graph obtained from G1 by
removing all components of G2 having at most k vertices. It is not difficult
to observe that βρkpG2q “ βρkpG1q.

As βρk´1pG2q ě βρkpG2q, by the induction hypothesis, G2 contains a
vertex-minor isomorphic to `3F for some connected graph F on k vertices.
Thus, there exist a graph G3 locally equivalent to G2 and a vertex subset A
of G3 such that G3rAs is isomorphic to `3F .

Note that `3 “ k2kpNpk,nq´1q ` 1. So, by Lemma 6.9,

(1) G3 contains a vertex-minor isomorphic to nH for some connected graph
H on k ` 1 vertices or

(2) there exists A1 Ď V pG3q such that G3rA
1s is isomorphic to pk` 1qF and

for each vertex of F , its copies in G3rA
1s have the same set of neighbors

not in A1.

We may assume that p2q holds. Since every component of G3 has more than
k vertices, there is at least one edge between A1 and V pG3qzA

1 in G3. By
Lemma 6.11 (with t :“ k), there exist a graph G4 locally equivalent to G3,
disjoint subsets S, T of V pG4q and a vertex v in S such that

(i) G4rSs is a connected graph on k ` 1 vertices,

(ii) |T | ď kpk ` 1q, and

(iii) G4rSztvus is a component of G4 ´ pT Y tvuq.

In G1, no vertex in Siztviu has a neighbor in V pG1qzp
Ť

0ďjďmpSj Y Tjqq.
Let G2 be the graph obtained from G1 by applying the same sequence of
local complementations needed to obtain G4 from G2. Since G2 has no
vertex in

Ť

0ďjďmpSj Y Tjq, G
2rSis “ G1rSis. Therefore, G2 admits the

sequence pS0, T0q, pS1, T1, v1q, . . ., pSm, Tm, vmq, pS, T, vq, contradicting the
assumption on the choice of G1 with the maximum m. Thus we may assume
that m ě `1.
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In G1, for i, j P t1, 2, . . . , `1u with i ă j, vi may have neighbors on Sj ,
but vj has no neighbors on Siztviu. Let Si “ tvi, si,1, si,2, . . . , si,ku for each i.

We construct a complete graph on the vertex set tw1, w2, . . . , w`1u, and
for i, j P t1, 2, . . . , `1u with i ă j, we color the edge wiwj by one of 2k`1

colors, depending on the adjacency relation between vi and sj,j1 for all 1 ď
j1 ď k. As `1 “ Rp`2; 2k`1q, there exists a subset I Ď t1, 2, . . . , `1u such that
|I| “ `2 and edges between two vertices in twi : i P Iu are monochromatic.
This also implies that tvi : i P Iu is a clique or an independent set.

For some i, j P I with i ă j, if vi is adjacent to sj,j1 for some j1, then
for all i, j P I with i ‰ j, vi is adjacent to sj,j1 if and only if i ă j.
By taking vertices v1, v3, . . ., v2t`2{2u´1 and s2,j1 , s4,j1 , . . ., s2t`2{2u,j1 , we

obtain an induced subgraph of G1 isomorphic to either Kt`2{2u m Kt`2{2u or

Kt`2{2u m Kt`2{2u. By Lemma 6.5, G1 contains a vertex-minor isomorphic
to P`2´1. As `2 ´ 1 ě pk ` 2qn ´ 1, P`2´1 contains an induced subgraph
isomorphic to nPk`1. Thus, G contains a vertex-minor isomorphic to nPk`1.
Therefore we may assume that for i, j P I with i ă j, vi has no neighbors in
Sjztvju.

If tvi : i P Iu is independent in G1, then G1r
Ť

iPI V pSiqs is the disjoint
union of `2 connected graphs, each having exactly k ` 1 vertices. Since

`2 ą 2p
k`1
2 qpn ´ 1q, by Lemma 6.10, G contains a vertex-minor isomorphic

to nH for some connected graph H on k ` 1 vertices.
If tvi : i P Iu is a clique in G1, then let i1 P I and let G2 “ G ˚ vi1 .

Then G2r
Ť

iPI,i‰i1 V pSiqs is the disjoint union of `2 connected graphs, each

having exactly k ` 1 vertices. Since `2 ´ 1 ą 2p
k`1
2 qpn´ 1q, by Lemma 6.10,

G contains a vertex-minor isomorphic to nH for some connected graph H
on k ` 1 vertices.

Here is the proof of Theorem 1.3. Let C be a vertex-minor ideal. Suppose
C is rank k-scattered, that is, there exists an integer ` such that every graph
G P C has rank k-brittleness at most `. Then by (3) of Lemma 4.1, for every
connected graph H on k ` 1 vertices, C does not contain pk ` 1qp`` 1qH.

For the converse, suppose that for every connected graph H on k ` 1
vertices, there exists nH such that nHH R C. Since there are only finitely
many non-isomorphic graphs on k` 1 vertices, there exists the maximum n
among all nH . Then nH R C for all connected graphs H on k ` 1 vertices.
By Proposition 6.12, all graphs in C have rank k-brittleness at most `pk, nq.
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7 An application

As an application of Theorem 1.4, we prove that for fixed positive integers
m and n, mK1,n-vertex-minor free graphs have bounded linear rank-width.

First let us present the definition of linear rank-width [9, 10, 16]. For a
graph G, an ordering px1, . . . , xnq of the vertex set V pGq is called a linear
layout of G. If |V pGq| ě 2, then the width of a linear layout px1, . . . , xnq of
G is defined as max

1ďiďn´1
ρGptx1, . . . , xiuq, and if |V pGq| “ 1, then the width is

defined to be 0. The linear rank-width of G is defined as the minimum width
over all linear layouts of G. For two orderings px1, . . . , xnq, py1, . . . , ymq, we
write px1, . . . , xnq ‘ py1, . . . , ymq :“ px1, . . . , xn, y1, . . . , ymq to denote the
concatenation of two orderings.

We obtain a relation between rank k-brittleness and linear rank-width.
We use the submodularity of the matrix rank function.

Proposition 7.1 (See [13, Proposition 2.1.9]). Let M be a matrix over a
field F . Let C be the set of column indexes of M , and R be the set of row
indexes of M . Then for all X1, X2 Ď R and Y1, Y2 Ď C,

rankpM rX1, Y1sq ` rankpM rX2, Y2sq ě

rankpM rX1 XX2, Y1 Y Y2sq ` rankpM rX1 YX2, Y1 X Y2sq.

Proposition 7.2. For an integer k ą 0, the linear rank-width of a graph G
is at most βρkpGq ` tk{2u.

Proof. Let x :“ βρkpGq. Suppose G has rank k-brittleness x. By the defini-
tion of rank k-brittleness, there exists a partition pX1, X2, . . . , Xtq of V pGq
such that for each i P t1, 2, . . . , tu, |Xi| ď k, and for every I Ď t1, 2, . . . , tu,
ρGp

Ť

iPI Xiq ď x. For each i P t1, 2, . . . , tu, let Li be any ordering of Xi.
We claim that the ordering L “ L1 ‘ L2 ‘ ¨ ¨ ¨ ‘ Lt is a linear layout

of G having width at most x ` tk{2u. It suffices to prove that for each
i P t1, 2, . . . , tu and a partition pA,Bq of Xi, ρGpAY

Ť

jăiXjq ď x` tk{2u.
By symmetry, we may assume that |A| ď tk{2u. Let X “

Ť

jăiXj and
Y “ V pGqzX. Let M be the adjacency matrix of G. By the submodularity
of the matrix rank function in Proposition 7.1, we have

ρGpAYXq “ rankM rAYX,Y zAs ` rankM rH, Y s

ď rankM rX,Y s ` rankM rA, Y zAs ď x` tk{2u .

This proves the proposition.
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For the corollary, we will use the fact that every sufficiently large con-
nected graph contains either a vertex of large degree or a long induced path.

Theorem 7.3 (folklore; see Diestel [6]). For k ě 1 and ` ě 3, every con-
nected graph on at least k`´2` 1 vertices contains a vertex of degree at least
k or an induced path on ` vertices.

Here is a corollary of Theorem 1.4 and Proposition 7.2.

Theorem 1.6. For positive integers m and n, the class of graphs having no
vertex-minor isomorphic to mK1,n has bounded linear rank-width.

Proof. We may assume that n ě 3. Trivially K1,n is locally equivalent to
Kn`1. By Lemma 6.5, P2n is locally equivalent to Kn m Kn, and a vertex
of degree n in Kn mKn gives a vertex-minor isomorphic to K1,n. Therefore,
by Theorem 7.3, every connected graph on p2nqRpn;2q´2 ` 1 vertices has a
vertex-minor isomorphic to K1,n.

Let k :“ p2nqRpn;2q´2. Let C be the class of graphs having no mK1,n as a
vertex-minor. Then for every connected graph H on k`1 vertices, mH R C.
Therefore by Theorem 1.4, C is rank k-scattered. By Proposition 6.12, C
has bounded linear rank-width.
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