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Abstract

A class G of graphs is χ-bounded if there is a function f such that for
every graph G P G and every induced subgraph H of G, χpHq ď fpωpHqq.
In addition, we say that G is polynomially χ-bounded if f can be taken
as a polynomial function. We prove that for every integer n ě 3, there
exists a polynomial f such that χpGq ď fpωpGqq for all graphs with no
vertex-minor isomorphic to the cycle graph Cn. To prove this, we show
that if G is polynomially χ-bounded, then so is the closure of G under
taking the 1-join operation.

1 Introduction

A class G of graphs is said to be hereditary if for every G P G, every graph
isomorphic to an induced subgraph of G belongs to G. A class G of graphs
is χ-bounded if there is a function f such that for every graph G P G and

∗Supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2018R1C1B6003786).
†Supported by the National Research Foundation of Korea (NRF) grant funded by the

Ministry of Education (No. NRF-2018R1D1A1B07050294).
‡Supported by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (No. NRF-2017R1A2B4005020).
1E-Mail addresses: ringikim@gmail.com, ojoungkwon@gmail.com, sangil@kaist.edu,

vaidysivaraman@gmail.com

1



every induced subgraph H of G, χpHq ď fpωpHqq. The function f is called
a χ-bounding function. This concept was first formulated by Gyárfás [9]. In
particular, we say that G is polynomially χ-bounded if f can be taken as a
polynomial function.

Recently, many open problems on χ-boundedness have been resolved; see a
recent survey by Scott and Seymour [15]. Yet we do not have much information
on graph classes that are polynomially χ-bounded. For instance, Gyárfás [9]
showed that the class of Pn-free graphs is χ-bounded but it is still open [8, 14]
whether it is polynomially χ-bounded for n ě 5. Regarding polynomially χ-
boundedness, Esperet proposed the following question, which remains open.

Question 1.1 (Esperet; see [10]). Is every χ-bounded class of graphs polyno-
mially χ-bounded?

Towards answering this question, it is interesting to know some graph oper-
ations that preserve the property of polynomial χ-boundedness. If we have such
graph operations, then we can use them to generate polynomially χ-bounded
graph classes.

In this direction, Chudnovsky, Penev, Scott, and Trotignon [3] showed that
if a hereditary class C is polynomially χ-bounded, then its closure under taking
the disjoint union and substitution operations is again polynomially χ-bounded.

We prove the analog of their result for the 1-join. For graphs G1 and G2

with |V pG1q|, |V pG2q| ě 3 and V pG1q X V pG2q “ H, we say that a graph G
is obtained from G1 and G2 by 1-join, if there are vertices v1 P V pG1q and
v2 P V pG2q such that G is obtained from the disjoint union of G1 and G2 by
deleting v1 and v2 and adding all edges between every neighbor of v1 in G1 and
every neighbor of v2 in G2. If so, then we say that G is the 1-join of pG1, v1q and
pG2, v2q. For a class G, let G& be its closure under taking the disjoint union and
1-join. Note that G& is also a class of graphs, that has to be closed under taking
isomorphisms. We will see in Section 2 that G& is hereditary if G is hereditary.

Theorem 1.2. If G is a polynomially χ-bounded class of graphs, then so is G&.
Dvořák and Král [7] and Kim [11] independently showed that for every hered-

itary class G of graphs that is χ-bounded, its closure under taking the 1-joins
is again χ-bounded. However, in both papers, the χ-bounding function g for
the new class is recursively defined as gpnq “ Opfpnqgpn´ 1qq for a χ-bounding
function f for G. So, gpnq is exponential under their constructions.

We shall see that if f is a polynomial, then gpn ´ 1q in the recurrence
relation can be replaced by some polynomial f˚. This technique allows us to
prove Theorem 1.2.

As an application, we investigate the following conjecture of Geelen proposed
in 2009. The definition of vertex-minors will be reviewed in Section 4.

Conjecture 1.3 (Geelen; see [7]). For every graph H, the class of graphs with
no vertex-minor isomorphic to H is χ-bounded.

Conjecture 1.3 is known to be true when H is a wheel graph, shown by Choi,
Kwon, Oum, and Wollan [1]. Motivated by the question of Esperet, we may ask
the following.
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Question 1.4. Is it true that for every graph H, the class of graphs with no
vertex-minor isomorphic to H is polynomially χ-bounded?

If this holds for H, then the class of H-vertex-minor free graphs satisfies
the Erdős-Hajnal property, which means that there is a constant c ą 0 such
that every graph G in this class has an independent set or a clique of size at
least |V pGq|c. Recently, Chudnovsky and Oum [2] proved that the Erdős-Hajnal
property holds for the class of H-vertex-minor free graphs for all H.

In Section 4, we prove the following theorem. We write Pn to denote the
path graph on n vertices and Cn to denote the cycle graph on n vertices.

Proposition 1.5. The class of graphs with no vertex-minor isomorphic to Pn

is polynomially χ-bounded.

Kwon and Oum [12] proved the following theorem, stating that a prime
graph with long induced path must contain a long induced cycle as a vertex-
minor. A graph is prime if it is not isomorphic to the 1-join of pG1, v1q and
pG2, v2q for some graphs G1, G2 with |V pG1q|, |V pG2q| ě 3.

Theorem 1.6 (Kwon and Oum [12]). If a prime graph has an induced path of
length r6.75n7s, then it has a cycle of length n as a vertex-minor.

We deduce the following stronger theorem from Proposition 1.5 by using
Theorems 1.2 and 1.6. This answers Question 1.4 for a long cycle.

Theorem 1.7. The class of graphs with no vertex-minor isomorphic to Cn is
polynomially χ-bounded.

Proof. Let G be the class of graphs having no vertex-minor isomorphic to Pm

for m “ r6.75n7s. By Proposition 1.5, G is polynomially χ-bounded. By Theo-
rem 1.2, G& is polynomially χ-bounded.

Let H be the class of graphs having no vertex-minor isomorphic to Cn. Let
G P H. We claim that G P G&. We may assume that G is connected and
has at least 4 vertices. Every connected prime induced subgraph of G is in G
by Theorem 1.6. Then G can be obtained from copies of K1,2, copies of K3

and connected prime induced subgraphs of G on at least 4 vertices by taking
1-join repeatedly. (Such a decomposition is called a split decomposition [6, 13].)
Since m ą 3, G contains both K1,2 and K3. Thus, G P G&. This proves that
H Ď G&.

Because Cm contains Cn as a vertex-minor whenever m ě n, we may ask
a stronger question on whether or not the class of graphs with no induced
subgraph isomorphic to Cm for some m ě n is polynomially χ-bounded. It is
not known. The following theorem of Chudnovsky, Scott, and Seymour [5] was
initially a conjecture of Gyárfás [9] in 1985.

Theorem 1.8 (Chudnovsky, Scott, and Seymour [5]). The class of graphs with
no induced subgraph isomorphic to a graph in tCm : m ě nu is χ-bounded.
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We remark that as far as we know, it is not known whether the class of
graphs with no P5 induced subgraph is polynomially χ-bounded.

This paper is organized as follows. We will review necessary definitions in
Section 2. In Section 3, we will present a proof of Theorem 1.2. In Section 4,
we will prove Proposition 1.5. In Section 5, we focus on the special case of
Proposition 1.5 for n “ 5 and find the best possible bound.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G, let V pGq
and EpGq denote the vertex set and the edge set of G, respectively. A clique
of a graph is a set of pairwise adjacent vertices. For a graph G, let ωpGq be
the maximum number of vertices in a clique of G and χpGq be the chromatic
number of G.

Let G be a graph. For a vertex subset S of G, we denote by GrSs the
subgraph of G induced by S. For a vertex v of G, we denote by Gzv the graph
obtained from G by removing v. For an edge e of G, we write Gze to denote the
subgraph obtained from G by deleting e. For v P V pGq, let NGpvq be the set of
neighbors of v in G. For a set X of vertices, let NGpXq “ p

Ť

vPX NGpvqqzX.
For two graphs G1 and G2, the disjoint union of G1 and G2 is a graph

pV pG11qYV pG
1
2q, EpG

1
1qYEpG

1
2qq where G11 is an isomorphic copy of G1 and G12 is

an isomorphic copy ofG2 such that V pG11qXV pG
1
2q “ H. If V pG1qXV pG2q “ H,

then we take G11 “ G1 and G12 “ G2 for convenience.
For two graphs G1 and G2 on disjoint vertex sets and a vertex v P V pG1q,

we say that a graph G is obtained from G1 by substituting G2 for v in G1, if

• V pGq “ pV pG1qztvuq Y V pG2q,

• EpGq “ EpG1zvq Y EpG2q Y txy : x P NG1
pvq, y P V pG2qu.

For two sets A, A1 with A Ď A1, we say that a function f 1 : A1 Ñ B extends
a function f : AÑ B if f 1paq “ fpaq for all a P A. For a positive integer m, we
denote rms :“ t1, 2, . . . ,mu.

Lemma 2.1. If G is a hereditary class of graphs, then so is G&.

Proof. We show that for every G P G& and v P V pGq, Gzv P G&. We proceed
by induction on |V pGq|. If G P G, then we are done since G is hereditary.

So, we may assume that G R G. Then, G is the disjoint union of G1 and G2

for some G1, G2 P G& or the 1-join of pG1, v1q and pG2, v2q for some G1, G2 P G&
and vi P V pGiq for i “ 1, 2 where |V pG1q|, |V pG2q| ě 3.

In the first case, we may assume that v P G1. Then, by the induction
hypothesis, G1zv P G&, and since Gzv is the disjoint union of G1zv and G2, it
follows that Gzv is contained in G&.

In the second case, by symmetry, we may assume that v P V pG1qztv1u. By
the induction hypothesis, G1zv P G&. If |V pG1q| ą 3, then Gzv is in G& since it
is the 1-join of pG1zv, v1q and pG2, v2q. If |V pG1q| “ 3, then Gzv is isomorphic to
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either G2 or the disjoint union of K1 and G2zv2. In either case Gzv is contained
in G&.

3 Polynomially χ-boundedness for 1-join

For a class G of graphs, let G˚ be the closure of G under taking the disjoint union
and the substitution. We will use the following result due to Chudnovsky, Penev,
Scott, and Trotignon [3].

Theorem 3.1 (Chudnovsky, Penev, Scott, and Trotignon [3]). If G is a poly-
nomially χ-bounded class of graphs, then G˚ is polynomially χ-bounded.

The following observation relates two graph classes G& and G˚.

Lemma 3.2. Let G be a hereditary class of graphs. If G P G& and v P V pGq,
then GrNGpvqs P G˚.

Proof. We prove by induction on |V pGq|.
If G P G, then we are done, since G is closed under induced subgraphs and

G Ď G˚. If G is the disjoint union of two graphs G1, G2 from G& and v P V pG1q,
then by the induction hypothesis on the graph G1, the claim follows.

Suppose that G is the 1-join of two graphs pG1, v1q and pG2, v2q where
G1, G2 P G& and |V pG1q|, |V pG2q| ě 3. Without loss of generality, we may as-
sume that v P V pG1zv1q. Let G1rNG1

pvqs “ Gv, and G2rNG2
pv2qs “ G12. Then,

by the induction hypothesis, Gv P G˚, and G12 P G˚ because |V pG1q|, |V pG2q| ă
|V pGq|.

We may assume thatG12 has at least one vertex because otherwiseGrNGpvqs “
Gvzv1 P G˚. We may also assume that v is adjacent to v1 in G1 because oth-
erwise GrNGpvqs “ Gv P G˚. Then GrNGpvqs can be obtained from Gv by
substituting G12 for v1 and therefore GrNGpvqs belongs to G˚. This completes
the proof.

Let us now define a structure to describe how a connected graph in G& is
composed from graphs in G. A composition tree is a triple pT, φ, ψq of a tree T ,
a map φ defined on V pT q and a map ψ defined on EpT q such that

• for t P V pT q, φptq is a connected graph, say Gt, on at least 3 vertices
where graphs in tGt : t P V pT qu are vertex-disjoint,

• for st P EpT q, ψpstq “ tu, vu for some u P V pGsq and v P V pGtq, and

• for distinct e1 ‰ e2 P EpT q, ψpe1q and ψpe2q are disjoint.

If a composition tree pT, φ, ψq is given, then one can construct a connected graph
G from pT, φ, ψq by taking 1-joins repeatedly as follows:

• if |V pT q| “ 1, say V pT q “ ttu, then G “ φptq.
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• if |V pT q| ą 1, let e “ t1t2 P EpT q and Ti be the subtree of T ze containing
ti for each i “ 1, 2. Let φi be the restriction of φ on V pTiq and ψi be the
restriction of ψ on EpTiq for each i “ 1, 2. Let Gi be a graph constructed
from pTi, φi, ψiq for i “ 1, 2. Then, G is the 1-join of pG1, v1q and pG2, v2q
where vi P V pGiq X ψpeq. It is straightforward to see that the choice of e
does not make any difference to the obtained graph G.

If a vertex v of φptq for some node t of T is in ψpeq for some edge e of T ,
then v is called a marker vertex. After applying all 1-joins, marker vertices will
disappear.

Lemma 3.3. Let G be a class of graphs. Let G be a connected graph in G&
with at least three vertices. Then there exists a composition tree pT, φ, ψq that
constructs G such that φptq P G for every node t of T .

Proof. We proceed by induction on |V pGq|. We may assume that G R G. Since
G is connected, G is the 1-join of pG1, v1q and pG2, v2q for some graphs G1,
G2 in G& and v1 P V pG1q, v2 P V pG2q where |V pG1q|, |V pG2q| ě 3. Since G
is connected, both G1 and G2 are connected. By the induction hypothesis, we
obtain two composition trees. We can combine them to obtain a composition
tree pT, φ, ψq constructing G.

Lemma 3.4. Let c1, c2 be positive integers. Let G be a connected graph con-
structed by a composition tree pT, φ, ψq such that φptq is c1-colorable for each
node t of T and GrNGpwqs is c2-colorable for each vertex w of G. Let v be
a vertex of G. Then for every proper c2-coloring β of GrNGpvqs, there exist
functions α1 : V pGqztvu Ñ t0, 1, 2, . . . , c1u and β1 : V pGqztvu Ñ t1, 2, . . . , c2u
extending β such that

(1) α1pwq “ 0 for every neighbor w of v and

(2) c “ α1 ˆ β1 is a proper pc1 ` 1qc2-coloring of Gzv.

Proof. We proceed by induction on |V pGq|.
If |V pT q| “ 1, then G “ φptq for the unique node t of T and so G has a

proper c1-coloring h : V pGzvq Ñ t1, 2, . . . , c1u. We define α1 and β1 on V pGzvq
as follows:

α1pwq “

#

0 if w P NGpvq,

hpwq otherwise,
and β1pwq “

#

βpwq if w P NGpvq,

1 otherwise.

Clearly, α1 ˆ β1 is a proper pc1 ` 1qc2-coloring of Gzv.
Thus we may assume |V pT q| ą 1. Let t0 be the unique node of T such that

v P V pφpt0qq. Let G0 :“ φpt0q. Let t1, t2, . . ., tm be the neighbors of t0 in T .
For each i P t1, 2, . . . ,mu, let vi P V pG0q and ui P V pφptiqq be vertices such that
ψpt0tiq “ tvi, uiu and let Ti be the connected component of T zt0 containing ti.
For each i P t1, 2, . . . ,mu, let φi be the restriction of φ on V pTiq and ψi be the
restriction of ψ on EpTiq and Gi be the graph constructed from a composition
tree pTi, φi, ψiq.
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Let h : V pG0q Ñ t1, 2, . . . , c1u be a proper c1-coloring of G0. Let α10, β10 be
maps defined on V pG0qztv, v1, . . . , vmu such that for w P V pG0qztv, v1, . . . , vmu,

α10pwq “

#

0 if w P NG0
pvq,

hpwq otherwise,
and β10pwq “

#

βpwq if w P NGpvq,

1 otherwise.

Now we are going to define, for each i P t1, 2, . . . ,mu, a proper c2-coloring βi
of GirNGi

puiqs. If vi is adjacent to v in G0, then NGi
puiq is a subset of NGpvq

and so let us define βi to be a proper c2-coloring of GrNGi
puiqs induced by β.

If vi is non-adjacent to v in G0, then we claim that there exists a vertex
y of G such that NGipuiq Ď NGpyq. Since G0 is connected, vi has a neighbor
x in G0. If x is not a marker vertex, then GirNGi

puiqs Ď GrNGpxqs. If x is
a marker vertex, say x “ vj for some j ‰ i, then there exists a neighbor y
of uj in Gj because Gj is connected and |V pGjq| ‰ 1. Now we observe that
GirNGi

puiqs Ď GrNGpyqs. This proves the claim. By the claim, we can define
βi as a proper c2-coloring of GirNGipuiqs induced by a proper c2-coloring of
GrNGpyqs.

Observe that |V pGiq| ă |V pGq| for all i P t1, 2, . . . ,mu because G0 has at
least three vertices. Now, by the induction hypothesis, for each i P t1, 2, . . . ,mu,
there exist maps α1i : V pGizuiq Ñ t0, 1, . . . , c1u and β1i : V pGizuiq Ñ t1, 2, . . . , c2u
extending βi satisfying (1) and (2). If vi is non-adjacent to v in G0, then we
assume α1ipwq “ hpviq for all w P NGipuiq by swapping colors 0 and hpviq in α1i.

Now we define maps α1 and β1 on V pGqztvu such that for w P V pGqztvu,

α1pwq “ αipwq and β1pwq “ β1ipwq if w P V pGiq for some i P t0, 1, 2, . . . ,mu.

Clearly, β1 extends β. In addition, α1pwq “ 0 for all neighbors w of v in G.
We claim that c “ α1 ˆ β1 is a proper coloring of Gzv. Let x, y P V pGzvq

be adjacent vertices in Gzv. If both x and y are neighbors of v, then β1pxq “
βpxq ‰ βpyq “ β1pyq. So we may assume that y is not a neighbor of v.

• If x, y P V pG0q, then α1pxq ‰ α1pyq because α1pxq P t0, hpxqu and α1pyq “
hpyq ‰ 0.

• If x, y P V pGiq for some i P t1, 2, . . . ,mu, then pα1pxq, β1pxqq ‰ pα1pyq, β1pyqq
because α1i ˆ β

1
i is a proper coloring of Gizui.

• If x P V pG0q and y P V pGiq for some i P t1, 2, . . . ,mu, then x is adjacent
to vi in G0 and y is adjacent to ui in Gi. Since y is not adjacent to v, vi is
not adjacent to v in G0 and so α1pyq “ α1ipyq “ hpviq. As α1pxq P t0, hpxqu,
we deduce that α1pxq ‰ α1pyq.

• If x P V pGiq and y P V pGjq for distinct i, j P t1, 2, . . . ,mu, then x is
adjacent to ui in Gi, vi is adjacent to vj in G0, and uj is adjacent to y
in Gj . Since y is not adjacent to v, vj is not adjacent to v in G0 and
so α1pyq “ α1jpyq “ hpvjq. Note that α1pxq P t0, hpviqu and therefore
αpxq ‰ αpyq because h is a proper coloring of G0.
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Therefore, c is a proper coloring of Gzv. This completes the proof.

Proof of Theorem 1.2. We may assume that G is hereditary, by replacing G with
the closure of G under isomorphism and taking induced subgraphs, if necessary.

Let f be a χ-bounding function for G that is a polynomial. We may assume
that 1 ď fp0q ď fp1q ď fp2q ď ¨ ¨ ¨ , by replacing fpxq “

ř

i aix
i with

ř

i|ai|xi if
needed. By Theorem 3.1, G˚ is χ-bounded by a polynomial f˚. We may assume
that 1 ď f˚p0q ď f˚p1q ď f˚p2q ď ¨ ¨ ¨ .

We claim that

χpGq ď pfpωpGqq ` 1qf˚pωpGq ´ 1q

for all G P G&. This claim implies the theorem because G& is hereditary by
Lemma 2.1.

Let k “ ωpGq. We may assume that k ą 1. We may assume that G is con-
nected because G& is hereditary and both f and f˚ are non-decreasing. We may
assume that G has at least three vertices. By Lemma 3.3, G has a composition
tree pT, φ, ψq with φpxq P G for every node x of T . Note that ωpφpxqq ď k be-
cause φpxq is isomorphic to an induced subgraph of G and therefore χpφpxqq ď
fpωpφpxqqq ď fpkq. For each vertex w P V pGq, ωpGrNGpwqsq ď k ´ 1 and
GrNGpwqs belongs to G˚ by Lemma 3.2, and so GrNGpwqs is f˚pk´1q-colorable.
Let v be a vertex of G. By Lemma 3.4, there exist a proper pfpkq`1qf˚pk´1q-
coloring c “ α1ˆβ1 of Gzv such that α1pwq “ 0 for every neighbor w of v. Then
we can easily extend this to a proper pfpkq`1qf˚pk´1q-coloring of G by taking
α1pvq ‰ 0.

4 Graphs with no Pn vertex-minors

For a vertex v in a graph G, the local complementation at v results in the
graph obtained from G by replacing the subgraph of G induced on NGpvq by its
complement. We write G ˚ v to denote the graph obtained from G by applying
local complementation at v. In other words, G ˚ v is a graph on V pGq such that
two distinct vertices x, y are adjacent in G ˚ v if and only if exactly one of the
following holds.

(i) Both x and y are neighbors of v in G.

(ii) x is adjacent to y in G.

A graph H is locally equivalent to G if H can be obtained from G by a sequence
of local complementations. See Figure 2 for an illustration. We say that a graph
H is a vertex-minor of a graph G if H is an induced subgraph of a graph locally
equivalent to G.

Let Kn mKn be the graph on 2n vertices ta1, a2, . . . , an, b1, b2, . . . , bnu such
that ta1, a2, . . . , anu is a clique, tb1, b2, . . . , bnu is a stable set, and for all 1 ď
i, j ď n, ai is adjacent to bj if and only if i ě j. See Figure 1 for an illustration of
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Figure 1: K6 mK6.

K6 mK6. The proof will use this graph Kn mKn because it is locally equivalent
to P2n, shown by Kwon and Oum [12, Lemma 2.8].

Now we are ready to prove Proposition 1.5, which states that the class of
graphs with no vertex-minor isomorphic to Pn is polynomially χ-bounded. Es-
sentially we show that the class of graphs with no induced subgraph isomorphic
to Pn or Kn mKn is polynomially χ-bounded.

Lemma 4.1. Let k, d be positive integers. Let G be a graph. If ωpGq ď k and
χpGq ą kd, then there exist two vertices v and w of G and a component C of
GzNGpvq such that v and w are adjacent, w has a neighbor in C, and χpCq ą d.

Proof. We may assume that G is connected. Let K be a maximum clique of G.
By assumption, |K| ď k. For each vertex x of K, let Hx “ GzNGpxq. Since K
is a maximum clique, for every vertex y, there is x P K such that y P V pHxq

and therefore χpGq ď
ř

xPK χpHxq. So there exists v P K such that χpHvq ą d.
Let C be a component of Hv such that χpCq “ χpHvq. Since χpCq ą 1 and v
is an isolated vertex in Hv, v R V pCq. Since G is connected, G has a vertex w
adjacent to both v and some vertex of C.

For an induced path P from v to w in G, we write ΩpG,P q to denote
GzpV pP q YNGpV pP zwqqq. A component of ΩpG,P q is attached to P if it con-
tains a neighbor of w. A component C of ΩpG,P q is d-good if the neighbors of
w in C induces a graph of chromatic number larger than d. We say C is d-bad
if it is not d-good. We say P is d-good in G if ΩpG,P q has a d-good component.

Lemma 4.2. If a graph G has an induced path P of length at least 1 and
ΩpG,P q has a d-bad component C attached to P with χpCq ą d, then there
exist an induced path P 1 extending P by exactly 1 edge and a component C 1 of
ΩpG,P 1q attached to P 1 such that

χpC 1q ě χpCq ´ d.

Proof. Let w be the last vertex of P . Let Cw be the subgraph of C induced by
the neighbors of w. Since C is d-bad, χpCwq ď d and therefore χpCzNGpwqq ě
χpCq ´χpCwq ě χpCq ´ d ą 0. So CzNGpwq has a component C 1 with χpC 1q ě
χpCq ´ d. Since C is connected, there is a vertex w1 P V pCwq adjacent to some
vertex in C 1. We obtain P 1 by adding w1 as a last vertex to P . Then C 1 is a
component of ΩpG,P 1q attached to P 1.
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Lemma 4.3. Let n ě 4. Let G be a graph having no induced subgraph isomor-
phic to Pn. Let P be a path of length 1. If ΩpG,P q has a component C attached
to P with χpCq ą dpn´ 3q, then G has a d-good induced path P 1 extending P .

Proof. Suppose that G has no d-good induced path extending P . By applying
Lemma 4.2 pn ´ 3q times, we can find an induced path P 1 of length n ´ 2
extending P and a component C 1 of ΩpG,P 1q attached to P 1 such that χpC 1q ě
χpCq ´ dpn ´ 3q ą 0. We obtain an induced path of length n ´ 1 by taking
P 1 and one vertex in C 1 adjacent to the last vertex of P 1. This contradicts the
assumption that G has no induced path on n vertices.

Proposition 4.4. Let n ě 4 and k be integers. Let G be a graph. If

ωpGq ď k and χpGq ą pn´ 3qrn{2s´1krn{2s´1,

then G has an induced subgraph isomorphic to Pn or Krn{2s mKrn{2s.

Proof. Suppose that G has no induced subgraph isomorphic to Pn. We may
assume that G is connected. Let G0 “ G. Let di “ pn ´ 3qrn{2s´i´1krn{2s´i´1.
Note that χpG0q ą d0.

Inductively we will find, in Gi´1 of χpGi´1q ą di´1, an induced path Qi

and connected induced subgraphs Ci, Gi of χpGiq ą di as follows. For i “
1, . . . , rn{2s ´ 1, by Lemmas 4.1 and 4.3, Gi´1 has a di-good induced path Qi

of length at least 1, because di´1 “ dikpn´ 3q. Let Ci be a di-good component
of ΩpGi´1, Qiq attached to Qi. Among all components of the subgraph of Ci

induced by the neighbors of the last vertex of Qi, we choose a component Gi

of the maximum chromatic number. By definition of a di-good component,
χpGiq ą di. This constructs G1, G2, . . ., Grn{2s´1.

As χpGrn{2s´1q ą drn{2s´1 “ 1, Grn{2s´1 contains at least one edge xy. By
collecting the last two vertices of Q1, Q2, . . ., Qrn{2s´1 and x, y, we obtain an

induced subgraph isomorphic to Krn{2s mKrn{2s.

Lemma 4.5 (Kwon and Oum [12, Lemma 2.8]). The graph Kn mKn is locally
equivalent to P2n.

By Lemma 4.5, we deduce the following corollary, proving Proposition 1.5.

Corollary 4.6. Let n ě 4. If a graph G has no vertex-minor isomorphic to Pn,
then

χpGq ď pn´ 3qrn{2s´1ωpGqrn{2s´1.

5 Graphs with no P5 vertex-minors

Corollary 4.6 provides some upper bound of the chromatic number for a graph
G with no vertex-minor isomorphic to Pn in terms of ωpGq. That bound is tight
if n “ 4, because a graph is perfect if it has no induced subgraphs isomorphic
to P4. We will present the best possible bound for n “ 5.
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Figure 2: Some graphs locally equivalent to P5.

Theorem 5.1. If a graph G has no vertex-minor isomorphic to P5, then

χpGq ď ωpGq ` 1.

The following proposition trivially implies Theorem 5.1. We denote by Wn

the wheel graph on n` 1 vertices.

Proposition 5.2. Every graph with no vertex-minor isomorphic to P5 is perfect,
unless it has a component isomorphic to C5 or W5.

In order to prove Proposition 5.2, we need to define the following graph
classes. See Figure 2 for an illustration.

• W 1
4: the graph obtained from W4 by deleting a spoke.

• Banner: the graph obtained from C4 by adding a pendant edge.

• Bull: the graph obtained from C3 by adding two pendant edges to distinct
vertices of C3.

• Dart: the graph obtained from K4ze for some edge e of K4 by adding a
pendant edge to a vertex of degree 3.

• HVN: the graph obtained from K4 by adding a vertex of degree 2.

• Kite: the graph obtained from K4ze for some edge e of K4 by adding a
pendant edge to a divalent vertex.

We say that G is H-free if G has no induced subgraph isomorphic to H. We
write G to denote the complement of a graph G.
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Proof of Proposition 5.2. From Figure 2, it is easy to check that W4, W 1
4, a

banner, a bull, a dart, an HVN and a kite are locally equivalent to P5. Therefore,
G has no induced subgraph isomorphic to any of those graphs.

We may assume that G is connected. If G is C5-free, then G does not contain
an odd hole because G is P5-free. Since C5 is isomorphic to C5, G is C5-free.
In addition, since W 1

4 is the disjoint union of P2 and P3, G is Ck-free for every
odd k ě 7. Therefore G is perfect by the strong perfect graph theorem [4].

Now we may assume that G contains C5 as an induced subgraph. Let Li be
the set of vertices of G having the distance i to C5. We may assume that G is
not C5, that is, L1 is not empty.

We claim that L1 is complete to L0. Suppose v P L1 is not complete to L0.
Then v has exactly 1, 2, 3 or 4 neighbors in L0. In each case it is easy to check
that we can find an induced subgraph isomorphic to P5, a bull, a banner or a
kite, a contradiction.

Now we claim that L2 “ H. Suppose v P L2. Let u P L1 such that uv is an
edge. Now we see that G contains a dart, a contradiction.

If two vertices u, v in L1 are adjacent, then G contains a HVN as an induced
subgraph, a contradiction. Thus, L1 is stable.

If L1 contains more than one vertex, then G contains W4, a contradiction.
So |L1| “ 1, and so G “W5.
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