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A class G of graphs is said to be hereditary if for every G € G, every graph
isomorphic to an induced subgraph of G belongs to G. A class G of graphs
is x-bounded if there is a function f such that for every graph G € G and
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every induced subgraph H of G, x(H) < f(w(H)). The function f is called
a x-bounding function. This concept was first formulated by Gyarfas [9]. In
particular, we say that G is polynomially x-bounded if f can be taken as a
polynomial function.

Recently, many open problems on x-boundedness have been resolved; see a
recent survey by Scott and Seymour [15]. Yet we do not have much information
on graph classes that are polynomially x-bounded. For instance, Gyérfds [9]
showed that the class of P,-free graphs is y-bounded but it is still open [} [14]
whether it is polynomially y-bounded for n > 5. Regarding polynomially x-
boundedness, Esperet proposed the following question, which remains open.

Question 1.1 (Esperet; see [I0]). Is every x-bounded class of graphs polyno-
mially x-bounded?

Towards answering this question, it is interesting to know some graph oper-
ations that preserve the property of polynomial x-boundedness. If we have such
graph operations, then we can use them to generate polynomially x-bounded
graph classes.

In this direction, Chudnovsky, Penev, Scott, and Trotignon [3] showed that
if a hereditary class C is polynomially y-bounded, then its closure under taking
the disjoint union and substitution operations is again polynomially y-bounded.

We prove the analog of their result for the 1-join. For graphs G; and G2
with |V(G1)],|V(G2)| = 3 and V(G1) n V(G2) = J, we say that a graph G
is obtained from G; and G2 by 1-join, if there are vertices v; € V(G1) and
vy € V(G2) such that G is obtained from the disjoint union of G; and G2 by
deleting v; and v, and adding all edges between every neighbor of v in GG; and
every neighbor of vy in Go. If s0, then we say that G is the 1-join of (G, v1) and
(G, v3). For a class G, let G¥ be its closure under taking the disjoint union and
1-join. Note that G¥ is also a class of graphs, that has to be closed under taking
isomorphisms. We will see in Section [2] that G¥ is hereditary if G is hereditary.

Theorem 1.2. If G is a polynomially x-bounded class of graphs, then so is G¥.

Dvordk and Krél [7] and Kim [IT] independently showed that for every hered-
itary class G of graphs that is x-bounded, its closure under taking the 1-joins
is again y-bounded. However, in both papers, the y-bounding function g for
the new class is recursively defined as g(n) = O(f(n)g(n —1)) for a xy-bounding
function f for G. So, g(n) is exponential under their constructions.

We shall see that if f is a polynomial, then g(n — 1) in the recurrence
relation can be replaced by some polynomial f*. This technique allows us to
prove Theorem [1.2

As an application, we investigate the following conjecture of Geelen proposed
in 2009. The definition of vertex-minors will be reviewed in Section 4

Conjecture 1.3 (Geelen; see [7]). For every graph H, the class of graphs with
no vertex-minor isomorphic to H is x-bounded.

Conjecture[I.3]is known to be true when H is a wheel graph, shown by Choi,
Kwon, Oum, and Wollan [I]. Motivated by the question of Esperet, we may ask
the following.



Question 1.4. Is it true that for every graph H, the class of graphs with no
vertex-minor isomorphic to H is polynomially x-bounded?

If this holds for H, then the class of H-vertex-minor free graphs satisfies
the Erdds-Hajnal property, which means that there is a constant ¢ > 0 such
that every graph G in this class has an independent set or a clique of size at
least |V (G)|°. Recently, Chudnovsky and Oum [2] proved that the Erdés-Hajnal
property holds for the class of H-vertex-minor free graphs for all H.

In Section [4] we prove the following theorem. We write P, to denote the
path graph on n vertices and C), to denote the cycle graph on n vertices.

Proposition 1.5. The class of graphs with no vertex-minor isomorphic to P,
1s polynomially x-bounded.

Kwon and Oum [I2] proved the following theorem, stating that a prime
graph with long induced path must contain a long induced cycle as a vertex-
minor. A graph is prime if it is not isomorphic to the 1-join of (G1,v;) and
(Go,vy) for some graphs Gy, Gy with [V(G1)],|V(G2)| = 3.

Theorem 1.6 (Kwon and Oum [12]). If a prime graph has an induced path of
length [6.75n7], then it has a cycle of length n as a vertez-minor.

We deduce the following stronger theorem from Proposition by using
Theorems [[-2] and This answers Question [T.4] for a long cycle.

Theorem 1.7. The class of graphs with no verter-minor isomorphic to C, is
polynomially x-bounded.

Proof. Let G be the class of graphs having no vertex-minor isomorphic to P,
for m = [6.75n7]. By Proposition G is polynomially x-bounded. By Theo-
rem G¥ is polynomially y-bounded.

Let ‘H be the class of graphs having no vertex-minor isomorphic to C,,. Let
G € H. We claim that G € G¥ We may assume that G is connected and
has at least 4 vertices. Every connected prime induced subgraph of G is in G
by Theorem @ Then G can be obtained from copies of Kj 2, copies of K3
and connected prime induced subgraphs of G on at least 4 vertices by taking
1-join repeatedly. (Such a decomposition is called a split decomposition [6, 13].)
Since m > 3, G contains both Kj 2 and K3. Thus, G € G%. This proves that
H c g« O

Because (), contains C,, as a vertex-minor whenever m > n, we may ask
a stronger question on whether or not the class of graphs with no induced
subgraph isomorphic to C,, for some m > n is polynomially x-bounded. It is
not known. The following theorem of Chudnovsky, Scott, and Seymour [5] was
initially a conjecture of Gyérfas [9] in 1985.

Theorem 1.8 (Chudnovsky, Scott, and Seymour [B]). The class of graphs with
no induced subgraph isomorphic to a graph in {Cy, : m = n} is x-bounded.



We remark that as far as we know, it is not known whether the class of
graphs with no Ps induced subgraph is polynomially x-bounded.

This paper is organized as follows. We will review necessary definitions in
Section 2] In Section [3] we will present a proof of Theorem [I.2} In Section []
we will prove Proposition In Section [5] we focus on the special case of
Proposition for n = 5 and find the best possible bound.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G, let V(G)
and E(G) denote the vertex set and the edge set of G, respectively. A clique
of a graph is a set of pairwise adjacent vertices. For a graph G, let w(G) be
the maximum number of vertices in a clique of G and x(G) be the chromatic
number of G.

Let G be a graph. For a vertex subset S of G, we denote by G[S] the
subgraph of G induced by S. For a vertex v of G, we denote by G\v the graph
obtained from G by removing v. For an edge e of G, we write G\e to denote the
subgraph obtained from G by deleting e. For v € V(G), let Ng(v) be the set of
neighbors of v in G. For a set X of vertices, let Ng(X) = (U cx Na(v))\X.

For two graphs G; and Ga, the disjoint union of G; and Gy is a graph
(V(G)) VWV (GY), E(GY)UE(GY)) where G is an isomorphic copy of G1 and G} is
an isomorphic copy of Gg such that V(G})nV(GY) = &. TV (G1)nV(G2) = &,
then we take G| = G1 and G5 = G5 for convenience.

For two graphs G and G5 on disjoint vertex sets and a vertex v € V(Gy),
we say that a graph G is obtained from G; by substituting G5 for v in G, if

o V(G) = (V(G)\{v}) v V(G2),
e E(G) = E(G1\v) U E(G3) u{zy :x € Ng,(v),y € V(Ga)}.

For two sets A, A’ with A € A’, we say that a function f’: A’ — B extends
a function f: A — B if f'(a) = f(a) for all a € A. For a positive integer m, we
denote [m] :={1,2,...,m}.

Lemma 2.1. If G is a hereditary class of graphs, then so is G¥.

Proof. We show that for every G € G¥ and v € V(G), G\v € G¥. We proceed
by induction on |V(G)|. If G € G, then we are done since G is hereditary.

So, we may assume that G ¢ G. Then, G is the disjoint union of G; and G2
for some G, Go € G¥ or the 1-join of (G, v1) and (Ga, vy) for some Gy, Gy € G¥
and v; € V(G;) for i = 1,2 where |V(G1)|, |V (G2)| = 3.

In the first case, we may assume that v € Gy. Then, by the induction
hypothesis, G;\v € G¥, and since G'\v is the disjoint union of G1\v and Gs, it
follows that G'\v is contained in G¥.

In the second case, by symmetry, we may assume that v € V(G1)\{v1}. By
the induction hypothesis, G1\v € G¥. If |[V(G1)| > 3, then G\v is in G¥ since it
is the 1-join of (G1\v,v1) and (G2, v2). If [V(G1)| = 3, then G\v is isomorphic to



either G5 or the disjoint union of K7 and Ga\vq. In either case G\v is contained
in G¥. O

3 Polynomially y-boundedness for 1-join

For a class G of graphs, let G* be the closure of G under taking the disjoint union
and the substitution. We will use the following result due to Chudnovsky, Penev,
Scott, and Trotignon [3].

Theorem 3.1 (Chudnovsky, Penev, Scott, and Trotignon [3]). If G is a poly-
nomially x-bounded class of graphs, then G* is polynomially x-bounded.

The following observation relates two graph classes G¥ and G*.

Lemma 3.2. Let G be a hereditary class of graphs. If G € G¥ and v e V(G),
then G[Ng(v)] € G*.

Proof. We prove by induction on |V(G)].

If G € G, then we are done, since G is closed under induced subgraphs and
G < G*. If G is the disjoint union of two graphs Gy, Go from G¥ and v € V(G}),
then by the induction hypothesis on the graph G1, the claim follows.

Suppose that G is the 1-join of two graphs (Gi,v1) and (Ga,v2) where
G1,G2 € G¥ and |V(Gy)], [V (G2)| = 3. Without loss of generality, we may as-
sume that v € V(G1\v1). Let G1[Ng, (v)] = Gy, and G2[Ng, (v2)] = G5. Then,
by the induction hypothesis, G, € G*, and G4 € G* because |V (G1)|, |V (G2)| <
V(G-

We may assume that G5 has at least one vertex because otherwise G[Ng(v)] =
G,\v1 € G*. We may also assume that v is adjacent to vy in Gy because oth-
erwise G[Ng(v)] = G, € G*. Then G[Ng(v)] can be obtained from G, by
substituting G% for v; and therefore G[Ng(v)] belongs to G*. This completes
the proof. O

Let us now define a structure to describe how a connected graph in G¥ is
composed from graphs in G. A composition tree is a triple (T, ¢,v) of a tree T,
a map ¢ defined on V(T') and a map ¢ defined on E(T) such that

o for t € V(T), ¢(t) is a connected graph, say G¢, on at least 3 vertices
where graphs in {G; : t € V(T)} are vertex-disjoint,

o for st e E(T), ¢(st) = {u,v} for some u € V(G,) and v € V(G¢), and
e for distinct e; # eg € E(T), ¥(e1) and 1(ez) are disjoint.

If a composition tree (T, ¢, 1) is given, then one can construct a connected graph
G from (T, ¢, ) by taking 1-joins repeatedly as follows:

o if |[V(T)| =1, say V(T) = {t}, then G = ¢(t).



o if |[V(T)| > 1, let e = t1t5 € E(T) and T; be the subtree of T'\e containing
t; for each ¢ = 1,2. Let ¢; be the restriction of ¢ on V(T;) and 1; be the
restriction of ¢ on E(T;) for each i = 1,2. Let G; be a graph constructed
from (T3, ¢;,%;) for i = 1,2. Then, G is the 1-join of (G1,v1) and (Ga,v2)
where v; € V(G;) np(e). It is straightforward to see that the choice of e
does not make any difference to the obtained graph G.

If a vertex v of ¢(t) for some node ¢t of T is in ¥(e) for some edge e of T,
then v is called a marker vertex. After applying all 1-joins, marker vertices will
disappear.

Lemma 3.3. Let G be a class of graphs. Let G be a connected graph in G&
with at least three vertices. Then there exists a composition tree (T, ¢,) that
constructs G such that ¢(t) € G for every node t of T.

Proof. We proceed by induction on [V(G)|. We may assume that G ¢ G. Since
G is connected, G is the 1-join of (G1,v1) and (Gz,vs) for some graphs Gy,
Gy in g& and v € V(Gl), Vg € V(GQ) where |V(G1)|,|V(G2)| > 3. Since G
is connected, both G; and G4 are connected. By the induction hypothesis, we
obtain two composition trees. We can combine them to obtain a composition
tree (T, ¢, 1)) constructing G. O

Lemma 3.4. Let c1, co be positive integers. Let G be a connected graph con-
structed by a composition tree (T, ¢,1)) such that ¢(t) is c1-colorable for each
node t of T and G[Ng(w)] is ca-colorable for each vertex w of G. Let v be
a vertex of G. Then for every proper ca-coloring 8 of G[Ng(v)], there exist
functions o’ : V(G)\{v} — {0,1,2,...,c1} and 8’ : V(G)\{v} — {1,2,...,¢ca2}
extending B such that

(1) o/ (w) =0 for every neighbor w of v and
(2) c=a' x [ is a proper (c1 + 1)ca-coloring of G\v.

Proof. We proceed by induction on |V (G)|.

If |V(T)| = 1, then G = ¢(t) for the unique node ¢ of T" and so G has a
proper c¢i-coloring h : V(G\v) — {1,2,...,¢1}. We define o/ and " on V(G\v)
as follows:

a,(w)_{o ifwe Ne(v), ﬁ,(w)_{ﬂ(w) if w e Ng(v),

h(w) otherwise, 1 otherwise.

Clearly, o x 3 is a proper (¢; + 1)ca-coloring of G\v.

Thus we may assume |V(T)| > 1. Let ¢y be the unique node of T such that
v e V(od(tg)). Let Gog := ¢(tg). Let ty, ta, ..., t;y be the neighbors of tg in T
For each i € {1,2,...,m}, let v; € V(Go) and u; € V(é(t;)) be vertices such that
¥ (tot;) = {vi,u;} and let T; be the connected component of T\ty containing ¢;.
For each i € {1,2,...,m}, let ¢; be the restriction of ¢ on V(T;) and ; be the
restriction of ¥ on F(T;) and G; be the graph constructed from a composition

tree (15, ¢i, 1i).



Let h: V(Go) — {1,2,...,c1} be a proper c¢j-coloring of Gy. Let af, 8 be
maps defined on V(Go)\{v,v1,...,vm} such that for w € V(Go)\{v,v1,...,0m},

B(w) if we Ng(v),

! () = 0 if we Ng,(v),
1 otherwise.

/
h(w) otherwise, and - fo(w) = {

Now we are going to define, for each i € {1,2,...,m}, a proper cs-coloring f3;
of Gi[Ng, (u;)]. If v; is adjacent to v in Go, then Ng,(u;) is a subset of Ng(v)
and so let us define f3; to be a proper cs-coloring of G[Ng, (u;)] induced by 3.

If v; is non-adjacent to v in Gy, then we claim that there exists a vertex
y of G such that Ng,(u;) € N¢(y). Since Gy is connected, v; has a neighbor
x in Gy. If x is not a marker vertex, then G;[Ng,(u;)] € G[Ng(z)]. If z is
a marker vertex, say x = v; for some j # ¢, then there exists a neighbor y
of u; in Gj because G, is connected and |V(G,)| # 1. Now we observe that
Gi[Ng,(u;)] € G[N¢(y)]. This proves the claim. By the claim, we can define
B; as a proper cg-coloring of G;[Ng, (u;)] induced by a proper ca-coloring of
CNe ()]

Observe that |V(G;)| < |V(G)] for all i € {1,2,...,m} because Gy has at
least three vertices. Now, by the induction hypothesis, for each i € {1,2,...,m},
there exist maps o : V(G\u;) — {0,1,...,c1} and 5} : V(Gi\w;) — {1,2,..., ¢}
extending f; satisfying (1) and (2). If v; is non-adjacent to v in Gg, then we
assume o, (w) = h(v;) for all w € Ng, (u;) by swapping colors 0 and h(v;) in of.

Now we define maps o’ and 8 on V(G)\{v} such that for w e V(G)\{v},

o (w) = a;(w) and B'(w) = Bi(w) if w e V(G;) for some i € {0,1,2,...,m}.

Clearly, 3’ extends §. In addition, o/(w) = 0 for all neighbors w of v in G.

We claim that ¢ = o x ' is a proper coloring of G\v. Let z,y € V(G\v)
be adjacent vertices in G\v. If both z and y are neighbors of v, then f'(z) =
B(x) # B(y) = B'(y). So we may assume that y is not a neighbor of v.

o If 2,y € V(Gy), then o/ (x) # o'(y) because o/ (z) € {0, h(x)} and o/(y) =
h(y) # 0.

o Ifx,ye V(G;) forsomei € {1,2,...,m}, then (¢/(z), 8'(z)) # (¢/(y), 5 (y))
because o x B} is a proper coloring of G;\u;.

o If z € V(Gy) and y € V(G;) for some i € {1,2,...,m}, then z is adjacent
to v; in Gy and y is adjacent to u; in G;. Since y is not adjacent to v, v; is
not adjacent to v in Gp and so &/ (y) = o4 (y) = h(v;). As o/ (z) € {0, h(x)},
we deduce that o/ (z) # o/ (y).

o If x € V(G;) and y € V(G,) for distinct ¢,j € {1,2,...,m}, then z is
adjacent to u; in Gy, v; is adjacent to v; in Go, and u; is adjacent to y
in G;. Since y is not adjacent to v, v; is not adjacent to v in Go and
so a'(y) = j(y) = h(v;). Note that o'(z) € {0,h(v;)} and therefore
a(z) # a(y) because h is a proper coloring of Gy.



Therefore, ¢ is a proper coloring of G\v. This completes the proof. O

Proof of Theorem[1.3 We may assume that G is hereditary, by replacing G with
the closure of G under isomorphism and taking induced subgraphs, if necessary.
Let f be a x-bounding function for G that is a polynomial. We may assume
that 1 < f(0) < f(1) < f(2) <---, by replacing f(z) = Y, a;2" with Y, |a;|2" if
needed. By Theorem G* is x-bounded by a polynomial f*. We may assume
that 1 < f*(0) < f*(1) < f*(2) < ---.
We claim that

X(G) < (f(w(@) + Df*(w(@) = 1)

for all G € G¥. This claim implies the theorem because G¥ is hereditary by
Lemma 211

Let k = w(G). We may assume that k£ > 1. We may assume that G is con-
nected because G¥ is hereditary and both f and f* are non-decreasing. We may
assume that G has at least three vertices. By Lemma [3:3] G has a composition
tree (T, ¢, ) with ¢(z) € G for every node = of T. Note that w(¢(z)) < k be-
cause ¢(x) is isomorphic to an induced subgraph of G and therefore x(¢(z)) <
fw(p(z))) < f(k). For each vertex w € V(G), w(G[Ng(w)]) < k —1 and
G[Ng(w)] belongs to G* by Lemma and so G[Ng(w)] is f*(k—1)-colorable.
Let v be a vertex of G. By Lemma there exist a proper (f(k)+1)f*(k—1)-
coloring ¢ = o’ x 8" of G\v such that o/ (w) = 0 for every neighbor w of v. Then
we can easily extend this to a proper (f(k)+1)f*(k—1)-coloring of G by taking
o (v) # 0. O

4 Graphs with no P, vertex-minors

For a vertex v in a graph G, the local complementation at v results in the
graph obtained from G by replacing the subgraph of G induced on Ng(v) by its
complement. We write G # v to denote the graph obtained from G by applying
local complementation at v. In other words, G = v is a graph on V(G) such that
two distinct vertices x, y are adjacent in G * v if and only if exactly one of the
following holds.

(i) Both = and y are neighbors of v in G.
(ii) z is adjacent to y in G.

A graph H is locally equivalent to G if H can be obtained from G by a sequence
of local complementations. See Figure[2|for an illustration. We say that a graph
H is a vertex-minor of a graph G if H is an induced subgraph of a graph locally
equivalent to G.

Let K,,[1K,, be the graph on 2n vertices {a1,az,...,an,b1,ba,...,b,} such
that {a1,as,...,a,} is a clique, {b1,ba,...,b,} is a stable set, and for all 1 <
i,j < n, a; is adjacent to b; if and only if i > j. See Figuremfor an illustration of



Figure 1: K¢ K.

KsMKg. The proof will use this graph K,,[1K,, because it is locally equivalent
to Pay, shown by Kwon and Oum [12] Lemma 2.8].

Now we are ready to prove Proposition [I.5] which states that the class of
graphs with no vertex-minor isomorphic to P, is polynomially y-bounded. Es-
sentially we show that the class of graphs with no induced subgraph isomorphic
to P, or K, 1 K,, is polynomially y-bounded.

Lemma 4.1. Let k, d be positive integers. Let G be a graph. If w(G) < k and
X(G) > kd, then there exist two vertices v and w of G and a component C of
G\N¢(v) such that v and w are adjacent, w has a neighbor in C, and x(C) > d.

Proof. We may assume that G is connected. Let K be a maximum clique of G.
By assumption, |K| < k. For each vertex z of K, let H, = G\Ng(z). Since K
is a maximum clique, for every vertex y, there is € K such that y € V(H,)
and therefore x(G) < >, X(Hz). So there exists v € K such that x(H,) > d.
Let C be a component of H, such that x(C) = x(H,). Since x(C) > 1 and v
is an isolated vertex in H,, v ¢ V(C). Since G is connected, G has a vertex w
adjacent to both v and some vertex of C. O

For an induced path P from v to w in G, we write Q(G, P) to denote
G\(V(P) u Ng(V(P\w))). A component of Q(G, P) is attached to P if it con-
tains a neighbor of w. A component C of Q(G, P) is d-good if the neighbors of
w in C induces a graph of chromatic number larger than d. We say C' is d-bad
if it is not d-good. We say P is d-good in G if (G, P) has a d-good component.

Lemma 4.2. If a graph G has an induced path P of length at least 1 and
Q(G, P) has a d-bad component C attached to P with x(C) > d, then there
exist an induced path P’ extending P by exactly 1 edge and a component C' of
Q(G, P) attached to P' such that

X(C") = x(C) —d.

Proof. Let w be the last vertex of P. Let C,, be the subgraph of C induced by
the neighbors of w. Since C' is d-bad, x(Cy) < d and therefore x(C\Ng(w)) =
X(C) = x(Cy) = x(C) —d > 0. So C\N¢(w) has a component C" with x(C") =
x(C) —d. Since C is connected, there is a vertex w’ € V(C,,) adjacent to some
vertex in C’. We obtain P’ by adding w’ as a last vertex to P. Then C’ is a
component of Q(G, P') attached to P’. O



Lemma 4.3. Let n > 4. Let G be a graph having no induced subgraph isomor-
phic to P,. Let P be a path of length 1. If Q(G, P) has a component C attached
to P with x(C) > d(n — 3), then G has a d-good induced path P’ extending P.

Proof. Suppose that G has no d-good induced path extending P. By applying
Lemma (n — 3) times, we can find an induced path P’ of length n — 2
extending P and a component C’ of Q(G, P’) attached to P’ such that x(C’") =
x(C) — d(n —3) > 0. We obtain an induced path of length n — 1 by taking
P’ and one vertex in C’ adjacent to the last vertex of P’. This contradicts the
assumption that G has no induced path on n vertices. O

Proposition 4.4. Let n > 4 and k be integers. Let G be a graph. If
w(@) <k and x(G) > (n — 3)I"/21=1gn/21=1
then G has an induced subgraph isomorphic to Py, or Ky a Zm.

Proof. Suppose that G has no induced subgraph isomorphic to P,. We may
assume that G is connected. Let Go = G. Let d; = (n — 3)["/21=i=1n/2l=i—1,
Note that x(Go) > do.

Inductively we will find, in G;_; of x(G;—1) > d;—1, an induced path Q;
and connected induced subgraphs C;, G; of x(G;) > d; as follows. For i =
1,...,[n/2] — 1, by Lemmas and Gi_1 has a d;-good induced path Q;
of length at least 1, because d;,—1 = d;k(n — 3). Let C; be a d;-good component
of Q(G;-1,Q;) attached to @;. Among all components of the subgraph of C;
induced by the neighbors of the last vertex of @);, we choose a component G;
of the maximum chromatic number. By definition of a d;-good component,
X(Gi) > d;. This constructs Gl, Gz, cy G[n/2]71~

As X(Glnj21=1) > dipja1-1 = 1, Gyj21—1 contains at least one edge xy. By
collecting the last two vertices of Q1, Q2, ..., Q[n/21—1 and x, y, we obtain an

induced subgraph isomorphic to K, 21 [ Ky, /21 O

Lemma 4.5 (Kwon and Oum [12, Lemma 2.8]). The graph K,, [N K, is locally
equivalent to Ps,,.

By Lemma [£.5] we deduce the following corollary, proving Proposition [I.5

Corollary 4.6. Letn > 4. If a graph G has no vertex-minor isomorphic to Py,
then
X(G) < (n=3)"2 (@)A1,

5 Graphs with no P; vertex-minors
Corollary provides some upper bound of the chromatic number for a graph
G with no vertex-minor isomorphic to P, in terms of w(G). That bound is tight

if n = 4, because a graph is perfect if it has no induced subgraphs isomorphic
to P;. We will present the best possible bound for n = 5.
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2 4 — 4 — 4 — 4
3 5 5 5

bull kite banner dart
Figure 2: Some graphs locally equivalent to Ps.

Theorem 5.1. If a graph G has no vertez-minor isomorphic to Ps, then
X(G) <w(G) + 1.

The following proposition trivially implies Theorem We denote by W,
the wheel graph on n + 1 vertices.

Proposition 5.2. Every graph with no vertex-minor isomorphic to Ps is perfect,
unless it has a component isomorphic to Cs or Wi.

In order to prove Proposition [5.2] we need to define the following graph
classes. See Figure [2] for an illustration.

e W;: the graph obtained from W, by deleting a spoke.
e Banner: the graph obtained from C; by adding a pendant edge.

e Bull: the graph obtained from C3 by adding two pendant edges to distinct
vertices of Cj.

e Dart: the graph obtained from K,\e for some edge e of K4 by adding a
pendant edge to a vertex of degree 3.

e HVN: the graph obtained from K, by adding a vertex of degree 2.

e Kite: the graph obtained from Kj\e for some edge e of K, by adding a
pendant edge to a divalent vertex.

We say that G is H-free if G has no induced subgraph isomorphic to H. We
write G to denote the complement of a graph G.

11



Proof of Proposition[5.4 From Figure it is easy to check that Wy, W, a
banner, a bull, a dart, an HVN and a kite are locally equivalent to Ps. Therefore,
G has no induced subgraph isomorphic to any of those graphs.

We may assume that G is connected. If G is Cs-free, then G does not contain
an odd hole because G is Ps-free. Since C5 is isomorphic to Cy, G is Cs-free.
In addition, since Wi is the disjoint union of P, and P3, G is Cj-free for every
odd k = 7. Therefore G is perfect by the strong perfect graph theorem [4].

Now we may assume that G contains Cs as an induced subgraph. Let L; be
the set of vertices of G having the distance ¢ to C5. We may assume that G is
not (5, that is, Ly is not empty.

We claim that L is complete to Lg. Suppose v € L1 is not complete to L.
Then v has exactly 1, 2, 3 or 4 neighbors in Ly. In each case it is easy to check
that we can find an induced subgraph isomorphic to Ps, a bull, a banner or a
kite, a contradiction.

Now we claim that Ly = ¢§. Suppose v € Lo. Let u € Ly such that uv is an
edge. Now we see that G contains a dart, a contradiction.

If two vertices u, v in Ly are adjacent, then G contains a HVN as an induced
subgraph, a contradiction. Thus, L; is stable.

If Iy contains more than one vertex, then G contains Wy, a contradiction.
So |L1] =1, and so G = W. O
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