
A remark on the paper “Properties of intersecting

families of ordered sets” by O. Einstein

Sang-il Oum∗† and Sounggun Wee‡

Department of Mathematical Sciences, KAIST, Daejeon, South
Korea.

November 20, 2017

Abstract

O. Einstein (2008) proved Bollobás-type theorems on intersecting
families of ordered sets of finite sets and subspaces. Unfortunately, we
report that the proof of a theorem on ordered sets of subspaces had a
mistake. We prove two weaker variants.

1 Introduction

The following theorem generalizing the theorem of Bollobás [2] is well known
and proved by using the wedge product method (see [1]).

Theorem 1 (Lovász [6]; skew version). Let a, b be positive integers. Let
U1, U2, . . . , Um, V1, V2, . . . , Vm be subspaces satisfying the following:

(i) dimUi ≤ a and dimVi ≤ b for all i = 1, 2, . . . ,m.

(ii) Ui ∩ Vi = {0} for all i = 1, 2, . . . ,m.

(iii) Ui ∩ Vj 6= {0} for all 1 ≤ i < j ≤ m.

Then m ≤
(
a+b
a

)
.
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Ori Einstein [3] published a paper on a generalization of the above the-
orem and its consequence on finite sets by Frankl [4]. We will show that his
proof of Theorem 2.7 in [3] is incorrect and so we state it as a conjecture.

Conjecture 1 (Theorem 2.7 of [3]). Let `1, `2, . . ., `k be positive integers.
Let U be a linear space over a field F. Consider the following matrix of
subspaces:

U11 U12 · · · U1k

U21 U22 · · · U2k

· · · · · ·
... · · ·

Um1 Um2 · · · Umk

If these subspaces satisfy:

(i) for every 1 ≤ j ≤ k, 1 ≤ i ≤ m, dimUij ≤ `j;

(ii) for every fixed i, all subspaces Uij are pairwise disjoint;

(iii) for each i < i′, there exist some j < j′ such that Uij ∩ Ui′j′ 6= {0};

then

m ≤
(
∑k

r=1 `r)!∏k
r=1 `r!

.

Here is the overview of this note. In the next section, we will sketch the
reason why the proof of Theorem 2.7 in [3] is incorrect and present a weaker
theorem (Theorem 3) obtained by tightening condition (ii). In Section 3, we
prove another weaker theorem (Theorem 4), by providing a weaker upper
bound for m instead of modifying any assumptions. Section 4 will discuss
the threshold versions.

2 The mistake and its first remedy

Let us first point out the mistake in the proof of Conjecture 1 in [3]. As
it is typical in the wedge product method, we take vi =

∧k−1
j=1 ∧Tj(Uij)

and wi =
∧k−1

j=1

∧k
r=j+1 ∧Tj(Uir) for some linear transformations T1, T2, . . .,

Tk−1. Then the following claim is made:

Claim (Page 41 in [3]). For every i ≤ i′, vi ∧ wi′ 6= 0 if and only if i = i′.

This claim is false in general. For instance, if U11 ∩ (U12 + U13 + · · · +
U1,k−1) 6= {0}, then ∧T1(U11)∧

∧k
r=2 ∧T1(U1r) = 0 and therefore v1∧w′1 = 0.

2



The crucial mistake is that condition (ii) in Conjecture 1 does not imply that
dim(Ui1 + Ui2 + · · ·+ Uik) =

∑k
j=1 dimUij . (For instance the spans of ( 1

0 ),
( 0
1 ), and ( 1

1 ) are pairwise disjoint and yet their sum has dimension 2 only.)

If dim(Ui1 +Ui2 + · · ·+Uik) =
∑k

j=1 dimUij , then the claim is true and
so we can recover the following weaker theorem by the proof in [3].

Theorem 2. Let `1, `2, . . ., `k be positive integers. Let U be a linear space
over a field F. Consider the following matrix of subspaces:

U11 U12 · · · U1k

U21 U22 · · · U2k

· · · · · ·
... · · ·

Um1 Um2 · · · Umk

If these subspaces satisfy:

(i) for every 1 ≤ j ≤ k, 1 ≤ i ≤ m, dimUij ≤ `j;

(ii) for every fixed i, dim(
∑k

j=1 Uij) =
∑k

j=1 dimUij;

(iii) for each i < i′, there exist some j < j′ such that Uij ∩ Ui′j′ 6= {0};

then

m ≤
(
∑k

r=1 `r)!∏k
r=1 `r!

.

Though Theorem 2 is weaker than Conjecture 1, it allows us to recover
Theorem 2.8 of [3].

Theorem 3 (Theorem 2.8 of [3]). Let `1, `2, . . ., `k be positive integers.
Consider the following matrix of sets:

A11 A12 · · · A1k

A21 A22 · · · A2k

· · · · · ·
... · · ·

Am1 Am2 · · · Amk

If these sets satisfy:

(i) for every 1 ≤ j ≤ k, 1 ≤ i ≤ m, |Aij | ≤ `j;

(ii) for every fixed i, all sets Aij are pairwise disjoint;

(iii) for each i < i′, there exist some j < j′ such that Aij ∩Ai′j′ 6= ∅;
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then

m ≤
(
∑k

r=1 `r)!∏k
r=1 `r!

.

Note that Theorem 3 implies that Conjecture 1 is true when `1 = `2 =
· · · = `k = 1.

3 Second remedy

Naturally we ask whether Conjecture 1 can be proven with some upper
bound on m. Here we show that this is possible, while generalizing Theo-
rem 1.

Theorem 4. Under the same assumptions of Conjecture 1, we have

m ≤
∏

1≤a<b≤k(`a + `b)!

(
∏k

r=1 `r!)
k−1

.

Proof. We may assume that dimUij = `j for all i, j and F is infinite. Let

V = V1,2⊕V1,3⊕· · ·⊕V1,k⊕· · ·⊕V2,3⊕· · ·⊕Vk−1,k =
⊕k−1

a=1

⊕k
b=a+1 Va,b be a∑k−1

a=1

∑k
b=a+1(`a+`b)-dimensional vector space over F, decomposed into the

direct sum of subspaces Va,b, each of dimension `a + `b. By Corollary 3.14 of
[1], for all i < j, there exists a linear transformation Tab : U → Va,b such that
for all 1 ≤ i ≤ m, dimTab(Uia) = `a, dimTab(Uib) = `b, and dimTab(Uia) ∩
Tab(Ujb) = dimUia ∩ Ujb for all 1 ≤ i, j ≤ m. Finally, for each 1 ≤ i ≤ m,

let vi =
∧k−1

a=1

∧k
b=a+1 ∧Tab(Uia) and wi =

∧k−1
a=1

∧k
b=a+1 ∧Tab(Uib).

We claim that for i ≤ i′, vi ∧ wi′ 6= 0 if and only if i = i′. If i < i′, then
there exist 1 ≤ j < j′ ≤ k such that Uij ∩Ui′j′ 6= {0}. By the choice of Tjj′ ,
Tjj′(Uij) ∩ Tjj′(Ui′j′) 6= {0} and so (∧Tjj′(Uij)) ∧ (∧Tjj′(Ui′j′)) = 0, which
implies that vi ∧ wi′ = 0. If i = i′, then vi ∧ wi′ is the wedge product of
disjoint subspaces and so vi ∧ wi′ 6= 0.

Therefore v1, v2, . . . , vm are linearly independent in the space
∧k−1

a=1

∧k
b=a+1

∧`a Va,b,

whose dimension is
∏k−1

a=1

∏k
b=a+1

(
`a+`b
`a

)
=

∏
1≤a<b≤k(`a+`b)!

(
∏k

i=1 `i!)
k−1

. This proves

that m ≤
∏

1≤a<b≤k(`a+`b)!

(
∏k

i=1 `i!)
k−1

.

4 Threshold versions

The paper [3] uses Conjecture 1 to deduce the threshold versions (Lemma
2.9 and Theorem 2.10) to generalize a result of Füredi [5]. We do not know
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how to prove Lemma 2.9 and Theorem 2.10 of [3] and so we leave them as
conjectures. It is not clear how one can relax conditions in Lemma 2.9 and
Theorem 2.10 of [3], while avoiding ugly conditions from (ii) of Theorem 3.
(A necessary condition `i ≥ t was missing in [3].)

Conjecture 2 (Lemma 2.9 of [3]). Let `1, `2, . . ., `k be positive integers
such that `i ≥ t for all i. Let U be a linear space over a field F. Consider
the following matrix of subspaces:

U11 U12 · · · U1k

U21 U22 · · · U2k

· · · · · ·
... · · ·

Um1 Um2 · · · Umk

If these subspaces satisfy:

(i) for every 1 ≤ j ≤ k, 1 ≤ i ≤ m, dimUij ≤ `j;

(ii) for every fixed i, dim(Uij ∩ Uij′) ≤ t;

(iii) for each i < i′, there exists some j < j′ such that dim(Uij ∩ Ui′j′) > t;

then

m ≤
[(
∑k

r=1 `r)− kt]!∏k
r=1(`r − t)!

.

Conjecture 3 (Theorem 2.10 of [3]). Let `1, `2, . . ., `k be positive integers
such that `i ≥ t for all i. Consider the following matrix of sets:

A11 A12 · · · A1k

A21 A22 · · · A2k

· · · · · ·
... · · ·

Am1 Am2 · · · Amk

If these sets satisfy:

(i) for every 1 ≤ j ≤ k, 1 ≤ i ≤ m, |Aij | ≤ `j;

(ii) for every i, j and j′, |Aij ∩Aij′ | ≤ t;

(iii) for each i < i′, there exists some j < j′ such that |Aij ∩Ai′j′ | > t;

then

m ≤
[(
∑k

r=1 `r)− kt]!∏k
r=1(`r − t)!

.
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By using Theorem 4, we can prove the following weaker variants of Con-
jectures 2 and 3 by the same reduction in [3].

Theorem 5. Under the same assumptions of Conjecture 2, we have

m ≤
∏

1≤a<b≤k(`a + `b − 2t)!

(
∏k

r=1(`r − t)!)k−1
.

Theorem 6. Under the same assumptions of Conjecture 3, we have

m ≤
∏

1≤a<b≤k(`a + `b − 2t)!

(
∏k

r=1(`r − t)!)k−1
.
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