A remark on the paper "Properties of intersecting families of ordered sets" by O. Einstein

Sang-il Oum *† and Sounggun Wee[‡]

Department of Mathematical Sciences, KAIST, Daejeon, South Korea.

November 20, 2017

Abstract

O. Einstein (2008) proved Bollobás-type theorems on intersecting families of ordered sets of finite sets and subspaces. Unfortunately, we report that the proof of a theorem on ordered sets of subspaces had a mistake. We prove two weaker variants.

1 Introduction

The following theorem generalizing the theorem of Bollobás [2] is well known and proved by using the wedge product method (see [1]).

Theorem 1 (Lovász [6]; skew version). Let a, b be positive integers. Let $U_1, U_2, \ldots, U_m, V_1, V_2, \ldots, V_m$ be subspaces satisfying the following:

(i) dim $U_i \leq a$ and dim $V_i \leq b$ for all $i = 1, 2, \ldots, m$.

- (*ii*) $U_i \cap V_i = \{0\}$ for all i = 1, 2, ..., m.
- (*iii*) $U_i \cap V_j \neq \{0\}$ for all $1 \le i < j \le m$.

Then $m \leq \binom{a+b}{a}$.

^{*}sangil@kaist.edu

[†]Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4005020).

[‡]tjdrns2704@kaist.ac.kr

Ori Einstein [3] published a paper on a generalization of the above theorem and its consequence on finite sets by Frankl [4]. We will show that his proof of Theorem 2.7 in [3] is incorrect and so we state it as a conjecture.

Conjecture 1 (Theorem 2.7 of [3]). Let $\ell_1, \ell_2, \ldots, \ell_k$ be positive integers. Let U be a linear space over a field \mathbb{F} . Consider the following matrix of subspaces:

If these subspaces satisfy:

- (i) for every $1 \le j \le k$, $1 \le i \le m$, dim $U_{ij} \le \ell_j$;
- (ii) for every fixed i, all subspaces U_{ij} are pairwise disjoint;
- (iii) for each i < i', there exist some j < j' such that $U_{ij} \cap U_{i'j'} \neq \{0\}$;

then

$$m \le \frac{\left(\sum_{r=1}^k \ell_r\right)!}{\prod_{r=1}^k \ell_r!}.$$

Here is the overview of this note. In the next section, we will sketch the reason why the proof of Theorem 2.7 in [3] is incorrect and present a weaker theorem (Theorem 3) obtained by tightening condition (ii). In Section 3, we prove another weaker theorem (Theorem 4), by providing a weaker upper bound for m instead of modifying any assumptions. Section 4 will discuss the threshold versions.

2 The mistake and its first remedy

Let us first point out the mistake in the proof of Conjecture 1 in [3]. As it is typical in the wedge product method, we take $v_i = \bigwedge_{j=1}^{k-1} \wedge T_j(U_{ij})$ and $w_i = \bigwedge_{j=1}^{k-1} \bigwedge_{r=j+1}^k \wedge T_j(U_{ir})$ for some linear transformations $T_1, T_2, \ldots, T_{k-1}$. Then the following claim is made:

Claim (Page 41 in [3]). For every $i \leq i'$, $v_i \wedge w_{i'} \neq 0$ if and only if i = i'.

This claim is false in general. For instance, if $U_{11} \cap (U_{12} + U_{13} + \dots + U_{1,k-1}) \neq \{0\}$, then $\wedge T_1(U_{11}) \wedge \bigwedge_{r=2}^k \wedge T_1(U_{1r}) = 0$ and therefore $v_1 \wedge w'_1 = 0$.

The crucial mistake is that condition (ii) in Conjecture 1 does not imply that $\dim(U_{i1} + U_{i2} + \dots + U_{ik}) = \sum_{j=1}^{k} \dim U_{ij}$. (For instance the spans of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are pairwise disjoint and yet their sum has dimension 2 only.)

If dim $(U_{i1} + U_{i2} + \dots + U_{ik}) = \sum_{j=1}^{k} \dim U_{ij}$, then the claim is true and so we can recover the following weaker theorem by the proof in [3].

Theorem 2. Let $\ell_1, \ell_2, \ldots, \ell_k$ be positive integers. Let U be a linear space over a field \mathbb{F} . Consider the following matrix of subspaces:

If these subspaces satisfy:

- (i) for every $1 \le j \le k$, $1 \le i \le m$, dim $U_{ij} \le \ell_j$;
- (ii) for every fixed i, dim $(\sum_{j=1}^{k} U_{ij}) = \sum_{j=1}^{k} \dim U_{ij}$;
- (iii) for each i < i', there exist some j < j' such that $U_{ij} \cap U_{i'j'} \neq \{0\}$;

then

$$m \le \frac{\left(\sum_{r=1}^k \ell_r\right)!}{\prod_{r=1}^k \ell_r!}$$

Though Theorem 2 is weaker than Conjecture 1, it allows us to recover Theorem 2.8 of [3].

Theorem 3 (Theorem 2.8 of [3]). Let $\ell_1, \ell_2, \ldots, \ell_k$ be positive integers. Consider the following matrix of sets:

If these sets satisfy:

- (i) for every $1 \le j \le k$, $1 \le i \le m$, $|A_{ij}| \le \ell_j$;
- (ii) for every fixed i, all sets A_{ij} are pairwise disjoint;
- (iii) for each i < i', there exist some j < j' such that $A_{ij} \cap A_{i'j'} \neq \emptyset$;

then

$$m \le \frac{\left(\sum_{r=1}^k \ell_r\right)!}{\prod_{r=1}^k \ell_r!}.$$

Note that Theorem 3 implies that Conjecture 1 is true when $\ell_1 = \ell_2 = \cdots = \ell_k = 1$.

3 Second remedy

Naturally we ask whether Conjecture 1 can be proven with some upper bound on m. Here we show that this is possible, while generalizing Theorem 1.

Theorem 4. Under the same assumptions of Conjecture 1, we have

$$m \le \frac{\prod_{1 \le a < b \le k} (\ell_a + \ell_b)!}{(\prod_{r=1}^k \ell_r!)^{k-1}}$$

Proof. We may assume that $\dim U_{ij} = \ell_j$ for all i, j and \mathbb{F} is infinite. Let $V = V_{1,2} \oplus V_{1,3} \oplus \cdots \oplus V_{1,k} \oplus \cdots \oplus V_{2,3} \oplus \cdots \oplus V_{k-1,k} = \bigoplus_{a=1}^{k-1} \bigoplus_{b=a+1}^{k} V_{a,b}$ be a $\sum_{a=1}^{k-1} \sum_{b=a+1}^{k} (\ell_a + \ell_b)$ -dimensional vector space over \mathbb{F} , decomposed into the direct sum of subspaces $V_{a,b}$, each of dimension $\ell_a + \ell_b$. By Corollary 3.14 of [1], for all i < j, there exists a linear transformation $T_{ab} : U \to V_{a,b}$ such that for all $1 \leq i \leq m$, $\dim T_{ab}(U_{ia}) = \ell_a$, $\dim T_{ab}(U_{ib}) = \ell_b$, and $\dim T_{ab}(U_{ia}) \cap T_{ab}(U_{jb}) = \dim U_{ia} \cap U_{jb}$ for all $1 \leq i, j \leq m$. Finally, for each $1 \leq i \leq m$, let $v_i = \bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^{k} \wedge T_{ab}(U_{ia})$ and $w_i = \bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^{k} \wedge T_{ab}(U_{ib})$. We claim that for $i \leq i', v_i \wedge w_{i'} \neq 0$ if and only if i = i'. If i < i', then

We claim that for $i \leq i'$, $v_i \wedge w_{i'} \neq 0$ if and only if i = i'. If i < i', then there exist $1 \leq j < j' \leq k$ such that $U_{ij} \cap U_{i'j'} \neq \{0\}$. By the choice of $T_{jj'}$, $T_{jj'}(U_{ij}) \cap T_{jj'}(U_{i'j'}) \neq \{0\}$ and so $(\wedge T_{jj'}(U_{ij})) \wedge (\wedge T_{jj'}(U_{i'j'})) = 0$, which implies that $v_i \wedge w_{i'} = 0$. If i = i', then $v_i \wedge w_{i'}$ is the wedge product of disjoint subspaces and so $v_i \wedge w_{i'} \neq 0$.

Therefore v_1, v_2, \ldots, v_m are linearly independent in the space $\bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^k \bigwedge_{a=a+1}^{\ell_a} V_{a,b}$, whose dimension is $\prod_{a=1}^{k-1} \prod_{b=a+1}^k \binom{\ell_a + \ell_b}{\ell_a} = \frac{\prod_{1 \le a \le b \le k} (\ell_a + \ell_b)!}{(\prod_{i=1}^k \ell_i!)^{k-1}}$. This proves that $m \le \frac{\prod_{1 \le a \le b \le k} (\ell_a + \ell_b)!}{(\prod_{i=1}^k \ell_i!)^{k-1}}$.

4 Threshold versions

The paper [3] uses Conjecture 1 to deduce the threshold versions (Lemma 2.9 and Theorem 2.10) to generalize a result of Füredi [5]. We do not know

how to prove Lemma 2.9 and Theorem 2.10 of [3] and so we leave them as conjectures. It is not clear how one can relax conditions in Lemma 2.9 and Theorem 2.10 of [3], while avoiding ugly conditions from (ii) of Theorem 3. (A necessary condition $\ell_i \geq t$ was missing in [3].)

Conjecture 2 (Lemma 2.9 of [3]). Let $\ell_1, \ell_2, \ldots, \ell_k$ be positive integers such that $\ell_i \geq t$ for all *i*. Let *U* be a linear space over a field \mathbb{F} . Consider the following matrix of subspaces:

If these subspaces satisfy:

- (i) for every $1 \le j \le k$, $1 \le i \le m$, dim $U_{ij} \le \ell_j$;
- (ii) for every fixed i, $\dim(U_{ij} \cap U_{ij'}) \leq t$;

(iii) for each i < i', there exists some j < j' such that $\dim(U_{ij} \cap U_{i'j'}) > t$; then

$$m \le \frac{[(\sum_{r=1}^{k} \ell_r) - kt]!}{\prod_{r=1}^{k} (\ell_r - t)!}.$$

Conjecture 3 (Theorem 2.10 of [3]). Let $\ell_1, \ell_2, \ldots, \ell_k$ be positive integers such that $\ell_i \geq t$ for all *i*. Consider the following matrix of sets:

If these sets satisfy:

- (i) for every $1 \le j \le k$, $1 \le i \le m$, $|A_{ij}| \le \ell_j$;
- (ii) for every i, j and j', $|A_{ij} \cap A_{ij'}| \le t$;

(iii) for each i < i', there exists some j < j' such that $|A_{ij} \cap A_{i'j'}| > t$;

then

$$m \le \frac{[(\sum_{r=1}^{k} \ell_r) - kt]!}{\prod_{r=1}^{k} (\ell_r - t)!}.$$

By using Theorem 4, we can prove the following weaker variants of Conjectures 2 and 3 by the same reduction in [3].

Theorem 5. Under the same assumptions of Conjecture 2, we have

$$m \le \frac{\prod_{1 \le a < b \le k} (\ell_a + \ell_b - 2t)!}{(\prod_{r=1}^k (\ell_r - t)!)^{k-1}}$$

Theorem 6. Under the same assumptions of Conjecture 3, we have

$$m \le \frac{\prod_{1 \le a < b \le k} (\ell_a + \ell_b - 2t)!}{(\prod_{r=1}^k (\ell_r - t)!)^{k-1}}$$

Acknowledgement

The author would like to thank students attending the graduate course on combinatorics in the spring semester of 2017; they pointed out the difficulty, when they were given Conjecture 1 for k = 3 as a homework problem. We also like to thank the anonymous referees for their helpful comments.

References

- L. Babai and P. Frankl. *Linear algebra methods in combinatorics*. Department of Computer Science, The University of Chicago, September 1992.
- [2] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar, 16:447–452, 1965.
- [3] O. Einstein. Properties of intersecting families of ordered sets. Combinatorica, 28(1):37-44, 2008.
- [4] P. Frankl. An extremal problem for two families of sets. European J. Combin., 3(2):125–127, 1982.
- [5] Z. Füredi. Geometrical solution of an intersection problem for two hypergraphs. *European J. Combin.*, 5(2):133–136, 1984.
- [6] L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45–86. Academic Press, London, 1977.