
RANK-WIDTH: ALGORITHMIC AND STRUCTURAL RESULTS

SANG-IL OUM

Abstract. Rank-width is a width parameter of graphs describing whether it
is possible to decompose a graph into a tree-like structure by ‘simple’ cuts. This
survey aims to summarize known algorithmic and structural results on rank-width
of graphs.

1. Introduction

Rank-width was introduced by Oum and Seymour [71]. Roughly speaking, the
rank-width of a graph is the minimum integer k such that the graph can be decom-
posed into a tree-like structure by recursively splitting its vertex set so that each
cut induces a matrix of rank at most k. The precise definition will be presented in
the next section.

Tree-width is a better known and well-studied width parameter of graphs intro-
duced by Robertson and Seymour [74]. Tree-width has been very successful for
deep theoretical study of graph minor structures as well as algorithmic applications.
In particular, many NP-hard problems can be solved efficiently if the input graph
belongs to a class of graphs of bounded tree-width. However, graphs of bounded
tree-width have bounded average degree and therefore the application of tree-width
is mostly limited to ‘sparse’ graph classes.

Clique-width [23, 25] aims to extend tree-width by allowing more ‘dense’ graphs to
have small clique-width. There are many efficient algorithms based on dynamic pro-
gramming assuming that a clique-width decomposition is given, see [42]. However,
there is no known polynomial-time algorithm to determine whether the clique-width
of an input graph is at most k for fixed k ≥ 4. (There is a polynomial-time algorithm
to decide clique-width at most 3 by Corneil et al. [19].)

Rank-width solves this dilemma in some way; there is a polynomial-time algorithm
to decide whether the rank-width of an input graph is at most k for each fixed k.
In addition, for each graph of rank-width k and clique-width c, the inequality

k ≤ c ≤ 2k+1 − 1

holds [71] and therefore a class of graphs has bounded clique-width if and only
if it has bounded rank-width. Furthermore a rank-decomposition of width k can
be translated into a clique-width decomposition of width at most 2k+1 − 1 [71] so
that we can use known algorithms for graphs of bounded clique-width. Thus, if
we could extend theorems on tree-width to rank-width, then it becomes useful for
some dense graphs. Moreover there is a correspondence between branch-width of
binary matroids and rank-width of bipartite graphs in terms of vertex-minors and

Date: July 27, 2016.
Supported by Basic Science Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0011653).
1



2 SANG-IL OUM

pivot-minors, discussed in [63]. This correspondence allows us to apply the matroid
theory to prove statements on rank-width, for instance in [26].

In 2008, the author with Hliněný, Seese, and Gottlob wrote a survey [42] on
various width parameters including rank-width. Our (incomplete) survey aims to
supplement that by focusing on algorithmic problems of finding rank-width and
structural aspects related to rank-width.

2. Definitions and equivalent width parameters

All graphs in this survey are assumed to be simple, meaning that they have no
parallel edges and no loops. We focus on finite undirected graphs in this article,
though Kanté and Rao [52] worked on rank-width of directed graphs and edge-
colored graphs and Courcelle [21] extended rank-width and linear rank-width to
countable graphs.

In later sections, we discuss and use relations to matroids and branch-width. For
the definition of matroids, please refer to the book of Oxley [73]. Robertson and
Seymour [77] introduced the notion of branch-width for both graphs and matroids.
Key concepts of binary matroids related to rank-width can be found in [63].

2.1. Rank-width. In order to define rank-width, we first need a measure to de-
scribe the complexity of a cut, which we call the cut-rank function ρG. For a graph
G and a subset X of the vertex set V (G) of G, let us define ρG(X) to be the rank of
a |X| × |V (G) −X| 0-1 matrix AX over the binary field where the entry of AX on
the i-th row and j-th column is 1 if and only if the i-th vertex in X is adjacent to
the j-th vertex in V (G)−X. (If X = ∅ or X = V (G), then ρG(X) = 0.) Note that

this matrix is over the binary field; thus, for instance, the rank of
(

1 1 0
0 1 1
1 0 1

)
is equal

to 2, as 1 + 1 = 0. The cut-rank function satisfies the following inequalities.

ρG(X) = ρG(V (G)−X) for all X ⊆ V (G),(1)

ρG(X) + ρG(Y ) ≥ ρG(X ∪ Y ) + ρG(X ∩ Y ) for all X, Y ⊆ V (G).(2)

The inequality (2) is called the submodular inequality.

A tree is subcubic if every node has degree 1 or 3. A rank-decomposition of a graph
G is a pair (T, L) of a subcubic tree T with at least two nodes and a bijection L from
V (G) to the set of all leaves of T . For each edge e of T , T − e induces a partition
(Ae, Be) of the leaves of T and we say that the width of e is ρG(L−1(Ae)). By (1), the
choice of Ae, Be does not change the width of e. The width of a rank-decomposition
(T, L) is the maximum width of edges in T .

The rank-width of a graph G, denoted by rw(G), is the minimum width over all
rank-decompositions of G. (If G has less than two vertices, then G has no rank-
decompositions; in this case we say that G has rank-width 0.)

2.2. Linear rank-width. Let us define a linearized variant of rank-width as follows.
A linear layout of an n-vertex graph G is a permutation v1, v2, . . . , vn of the vertices
of G. The width of a linear layout is minn−1

i=1 ρG({v1, v2, . . . , vi}). The linear rank-
width of a graph G, denoted by lrw(G), is the minimum width over all linear layouts
of G. (If G has less than two vertices, then we say the linear rank-width of G is 0.)

An alternative way to define the linear rank-width is to define a linear rank-
decomposition (T, L) to be a rank-decomposition such that T is a caterpillar and
then define linear rank-width as the minimum width over all linear rank-decompositions.
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(A caterpillar is a tree having a path such that every leaf of the tree is either in
the path or adjacent to a vertex in the path.) This immediately implies that the
rank-width is always less than or equal to the linear rank-width.

2.3. Equivalent width parameters. Let us write cw(G) to denote the clique-
width, introduced in [23, 25]. As we recall in Section 1, a class of graphs has
bounded rank-width if and only if it has bounded clique-width by the following
inequality.

Theorem 2.1 (Oum and Seymour [71]). rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

One can also prove, by the same idea, that linear clique-width of a graph G is at
least lrw(G) and at most 2lrw(G) + 1.

The inequalities in Theorem 2.1 are essentially tight:

• The n×n grid has rank-width n− 1, shown by Jeĺınek [45] and clique-width
n+ 1, shown by Golumbic and Rotics [36].
• For every k, there exists a graph G such that its rank-width is at most k+ 1

and the clique-width is at least 2bk/2c−1. This is due to a theorem by Corneil
and Rotics [20], that constructs a graph of tree-width k whose clique-width
is at least 2bk/2c−1. Oum [66] showed that a graph of tree-width k has rank-
width at most k + 1.

We may say that clique-width and rank-width are equivalent in the sense that
one is bounded if and only if the other is bounded. There are a few other width
parameters of graphs that are equivalent to rank-width. We list them below.

• NLC-width was introduced by Wanke [81] and is convenient to design an
algorithm based on dynamic programming on graphs of bounded clique-
width or rank-width. Let us write nlc(G) to denote the NLC-width of G.
Johansson [48, 49] proved that

cw(G) ≤ nlc(G) ≤ 2 cw(G).

It can be easily shown that

rw(G) ≤ nlc(G) ≤ 2rw(G).

• Boolean-width, denoted by boolw(G), was introduced by Bui-Xuan, Telle,
and Vatshelle [16]. They showed that

log2 cw(G) ≤ boolw(G) ≤ cw(G) and

log2 rw(G) ≤ boolw(G) ≤ rw(G)2

4
+O(rw(G)).

In addition, they showed that for each k, there exist graphs G and H such
that the rw(G) ≥ k and boolw(G) ≤ 2 log2 k + 4 and rw(H) = k and
boolw(H) ≥ (k + 1)/6. It is not yet known [16] whether rw(G)2 can be
reduced to O(rw(G)) in the above inequality in general.

The definition of boolean-width is a slight variation of rank-width, only
changing the cut-rank function into an alternative function called the boolean-
dimension. For a graph G and a subset A of vertices of G, let U(A) be the
set of all subsets of V (G) − A that can be represented as N(X) − A for
some X ⊆ A, where N(X) is the set of all vertices in V (G) − X that are
adjacent to a vertex in X. Then the boolean-dimension of A is defined to
be log2|U(A)|. It turns out that |U(A)| = |U(V (G) − A)| (see [54]) and
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therefore the boolean-dimension is symmetric. However, it is not necessarily
integer-valued.
• One may consider defining rank-width over a different field other than the

binary field GF (2) by changing the definition of cut-rank function. For a
field F, let us say that F-rank-width of a graph G, denoted by rwF(G), is
the obtained width parameter from rank-width by changing the cut-rank
function to evaluate the rank of a 0-1 matrix over F instead of the binary
field. The proof of Oum and Seymour [71] can be extended easily to F-rank-
width to prove

rwF(G) ≤ cw(G) ≤ 2rwF(G)+1 − 1.

Thus rank-width and F-rank-width are equivalent.
Furthermore Oum, Sæther, and Vatshelle [70] observed that if F is the

field of all rational numbers (or more generally, F is a field of characteristic
0 or 2), then one can enhance the above inequality by showing

rw(G) ≤ rwF(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

Most of other width parameters mentioned above do not have a direct algorithm
to find a corresponding decomposition and therefore we simply employ algorithms
on finding rank-decompositions and convert them. But F-rank-width is similar to
rank-width in the sense that one can use the theorem of Oum and Seymour [71] to
design its own fixed-parameter approximation algorithm. This was used to design
a faster algorithm for certain vertex partitioning problems [70]. When Kanté and
Rao [52] extended rank-width to directed graphs and edge-colored graphs, they use
the idea of F-rank-width.

3. Discovering Rank-width and linear rank-width

We skip the discussion on algorithms on graphs of small rank-width, except the
important meta theorem of Courcelle, Makowsky, and Rotics [24]. Their meta the-
orem states the following.

Theorem 3.1 (Courcelle, Makowsky, and Rotics [24]). Let k be a fixed constant.
For every closed monadic second-order formula of the first kind on graphs, there is
a O(n3)-time algorithm to determine whether the input graph of rank-width at most
k satisfies the formula.

Here, the monadic second-order formula of the first kind on graphs are logic
formulas which allow ∃, ∀, ¬, ∧, ∨, ∈, (, ), true, and adj with first-order variables
each representing a vertex and set variables each representing a set of vertices, where
adj(x, y) is true if two vertices x and y are adjacent. If such a formula has no free
variable, then it is called closed. We refer the readers to the previous survey [42]. We
would like to mention that Grohe and Schweitzer [37] announced a polynomial-time
algorithm to check whether two graphs are isomorphic when the input graphs have
bounded rank-width.

We often talk about fixed-parameter tractable (FPT) algorithms. This means that
for a parameter k, the running time of the algorithm is at most f(k)nc for some c
where n is the length of the input. For more about parametrized complexity, please
see the following books [30, 27]. For us, the parameter is usually the rank-width
of the input graph. A fixed-parameter tractable algorithm is thought to be better
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than XP algorithms, that is an algorithm whose running time is bounded above by
f(k)ng(k).

3.1. Hardness. Computing rank-width is NP-hard, as mentioned in [64]. This can
be deduced easily from the following three known facts.

(1) Oum [63] showed that the branch-width of a binary matroid is equal to the
rank-width of its fundamental graph plus one. Note that every cycle matroid
is binary.

(2) Hicks and McMurray Jr. [38] and independently Mazoit and Thomassé [60]
showed that if a graph G is not a forest, then the branch-width of the cycle
matroid M(G) is equal to the branch-width of G.

(3) Seymour and Thomas [80] proved that computing branch-width of graphs is
NP-hard.

It is also NP-hard to compute linear rank-width. This is implied by the following
facts.

(1) Kashyap [53] proved that it is NP-hard to compute the path-width of a
binary matroid given by its representation.

(2) By Oum [63], it is straightforward to deduce that the path-width of a binary
matroid is equal to the linear rank-width of its fundamental graph plus one.

3.2. Computing rank-width. Oum and Seymour [72] presented a generic XP
algorithm for symmetric submodular integer-valued functions. Their algorithm im-
plies that in time O(n8k+12 log n) we can find a rank-decomposition of width at most
k, if it exists, for an input n-vertex graph.

But we definitely prefer to remove k in the exponent of n. Courcelle and Oum [26]
constructed a fixed-parameter tractable algorithm to decide, for fixed k, whether
the rank-width is at most k, in time O(g(k)n3). However their algorithm does not
provide a rank-decomposition of width at most k directly, because their algorithm
uses forbidden vertex-minors, which we discuss in the next section.

This problem was solved later. Hliněný and Oum [41] devised an algorithm to
find a rank-decomposition of width at most k if it exists, for an input n-vertex graph
in time O(g(k)n3). Here g(k) is a huge function. The proof uses the correspondence
between branch-width of binary matroids and rank-width of graphs and still uses a
huge list of forbidden minors in matroids.

For bipartite circle graphs, one can compute rank-width in polynomial time. This
is due to the following results.

• Seymour and Thomas [80] proved that branch-width of planar graphs can
be computed in polynomial time.
• Hicks and McMurray Jr. [38] and independently Mazoit and Thomassé [60]

showed that if a graph G is not a forest, then the branch-width of the cycle
matroid M(G) is equal to the branch-width of G.
• Oum [63] showed that the branch-width of a binary matroid is equal to the

rank-width of its fundamental graph plus one. Note that every cycle matroid
is binary.
• De Fraysseix [28] proved that a graph is a bipartite circle graph if and only

if it is a fundamental graph of the cycle matroid of a planar graph.

It would be interesting to extend the class of graphs on which rank-width can be
computed exactly.
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Question 1. Can we compute rank-width of circle graphs in polynomial time?

3.3. Fixed-parameter approximations. For many algorithmic applications, we
restrict our input graph to have bounded rank-width. Most of such algorithms
assume that the input graph is given with a rank-decomposition of small width and
for such algorithms, it is usually enough to have an efficient algorithm that outputs
a rank-decomposition of width at most f(k) for some function f or confirms that
the rank-width of the input graph is larger than k.

The first such algorithm was devised by Oum and Seymour [71] with f(k) = 3k+1
and the running time O(8kn9 log n), where n is the number of the vertices in the
input graph. It was later improved by Oum [64] with f(k) = 3k+1 and the running
time O(8kn4). This allows us to compute rank-width within a constant factor in
polynomial time when the input graph is known to have rank-width at most c log n
for some constant c.

In the same paper, Oum [64] presented another algorithm with f(k) = 3k − 1
whose running time is O(g(k)n3) for some huge function g(k).

Question 2. Does there exist an algorithm with a function f(k) and a constant c
that finds a rank-decomposition of width at most f(k) or confirms that the rank-width
of the n-vertex input graph is larger than k, in time O(ckn3)?

One may hope to find a faster approximation algorithm for rank-width. For
tree-width, Bodlaender, Drange, Dregi, Fomin, Lokshtanov, and Pilipczuk [7] pre-
sented an algorithm that, for an n-vertex input graph and an integer k, finds a
tree-decomposition of width at most 5k+ 4 or confirms that the tree-width is larger
than k in time 2O(k)n. However, for rank-width, it seems quite non-trivial to reduce
n3 into nc for some c < 3. This may be justified by the observation that one needs
to compute the rank of matrices and computing a rank of a low-rank matrix may
be one of the bottlenecks. There are some algorithms computing rank faster [17]
but it is not clear whether those algorithms can be applied to answer the following
question.

Question 3. Does there exist an algorithm with functions f(k), g(k) and a constant
c < 3 that finds a rank-decomposition of width at most f(k) or confirms that the
rank-width of the n-vertex input graph is larger than k, in time O(g(k)nc)?

3.4. Computing linear rank-width. Let us turn our attention to linear rank-
width. Nagamochi [61] presented a simple generic XP algorithm analogous to Oum
and Seymour [72] for path-width. His algorithm implies that we can find a linear
rank-decomposition of width at most k by calling the algorithm to minimize sub-
modular functions [62, 43, 44, 79] at most O(n2k+4) times, where n is the number of
vertices of the input graph. In fact, for the linear rank-width, one can use a direct
combinatorial algorithm in [64] to avoid using the generic algorithm to minimize
submodular functions and improve its running time.

Until recently there was no known algorithm that, in time O(g(k)nc), finds a
linear rank-decomposition of width at most k or confirms that a graph has linear
rank-width larger than k for an input n-vertex graph. By the well-quasi-ordering
property to be discussed in Subsection 4.6, there exists an algorithm that decides
in time O(g(k)nc) whether the input n-vertex graph has linear rank-width at most
k, but such an algorithm would not easily produce a linear rank-decomposition of
small width. Hliněný [39] claimed that one can use the self-reduction technique [32]
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to convert a decision algorithm for linear rank-width at most k into a construction
algorithm.

Recently, Jeong, Kim, and Oum [46] devised a direct algorithm for graphs of rank-
width at most k that runs in time O(g(k)`n3) to output a linear rank-decomposition
of width at most ` or confirm that the linear rank-width is larger than `. Now
observe the following inequality shown by Kwon [55] (also in Adler, Kanté, and
Kwon [4]).

Theorem 3.2 (Kwon [55]; Adler, Kanté, and Kwon [4]). Let G be an n-vertex graph.
Then lrw(G) ≤ rw(G)blog2 nc.

Thus ` ≤ kblog2 nc and so we can conclude the following.

Theorem 3.3 (Jeong, Kim, and Oum [46]). For each fixed integer k, there is a
polynomial-time (XP) algorithm to compute the linear rank-width of an input graph
of rank-width at most k.

However, it is not known whether there is a fixed-parameter tractable algorithm
to compute linear rank-width of a graph of rank-width k.

Theorem 3.3 generalizes the polynomial-time algorithm of Adler, Kanté, and
Kwon [4] that computes the linear rank-width of graphs of rank-width at most 1.

3.5. Exact algorithms. Though the number of rank-decompositions of an n-vertex
graph is a superexponential function, we can still determine the rank-width of an
n-vertex graph in time O(2n poly(n)) where poly(n) is some polynomial in n, shown
by Oum [67]. This algorithm can find an optimal rank-decomposition as well.

Question 4. Is it possible to compute rank-width of an n-vertex graph in time O(cn)
for some c < 2?

It is easy to compute the linear rank-width of an n-vertex graph in timeO(2n poly(n))
by dynamic programming [8]. All algorithms mentioned so far in this subsection use
exponential space.

3.6. Software. Krause implemented a simple dynamic programming algorithm to
compute the rank-width of a graph.1 This software is now included in the open
source mathematics software package called SAGE; see the manual.2

Friedmanský wrote the Master thesis [35] about implementing the exact exponential-
time algorithm of Oum [67].

Bui-Xuan, Raymond, and Trébuchet [15] implemented, in SAGE, the algorithm
of Oum [64] that either outputs a rank-decomposition of width at most 3k + 1 or
confirms that rank-width is larger than k in time O(n4) for an input n-vertex graph.

3.7. Other results. Lee, Lee, and Oum [57] showed that asymptotically almost
surely the Erdős-Rényi random graph G(n, p) has rank-width dn/3e − O(1) if p is
a constant between 0 and 1. Furthermore, if 1

n
� p ≤ 1

2
, then the rank-width is

dn
3
e − o(n), and if p = c/n and c > 1, then rank-width is at least rn for some

r = r(c).

1http://pholia.tdi.informatik.uni-frankfurt.de/~philipp/software/rw.shtml
2http://www.sagemath.org/doc/reference/graphs/sage/graphs/graph_decompositions/

rankwidth.html

http://pholia.tdi.informatik.uni-frankfurt.de/~philipp/software/rw.shtml
http://www.sagemath.org/doc/reference/graphs/sage/graphs/graph_decompositions/rankwidth.html
http://www.sagemath.org/doc/reference/graphs/sage/graphs/graph_decompositions/rankwidth.html
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4. Structural aspects

As tree-width is closely related to graph minors, rank-width is related to vertex-
minors and pivot-minors, observed in [63]. We first review the definition of pivot-
minors and vertex-minors and then discuss various theorems, mostly motivated by
the theory of tree-width and graph minors.

4.1. Vertex-minors and pivot-minors. For a graph G and its vertex v, G ∗ v is
the graph such that V (G ∗ v) = V (G) and two vertices x, y are adjacent in G ∗ v if
and only if

(i) both x and y are neighbors of v in G and x is non-adjacent to y, or
(ii) x is adjacent to y and v is non-adjacent to at least one of x and y.

Such an operation is called the local complementation at v. Clearly G ∗ v ∗ v = G.
Two graphs are locally equivalent if one is obtained from another by a sequence of
local complementations. We say that a graph H is a vertex-minor of a graph G if
H is an induced subgraph of a graph locally equivalent to G.

Local complementation is a useful tool to study rank-width of graphs, because
local complementation preserves the cut-rank function, thus preserving rank-width
and linear rank-width [63]. This implies that if H is a vertex-minor of G, then
the rank-width of H is less than or equal to the rank-width of G and the linear
rank-width of H is less than or equal to the linear rank-width of G.

Pivot-minors are restricted version of vertex-minors. For an edge uv, we define
G ∧ uv = G ∗ u ∗ v ∗ u. This operation is called a pivot. Two graphs are pivot
equivalent if one is obtained from another by a sequence of pivots. A graph H is a
pivot-minor of a graph G if H is an induced subgraph of a graph pivot equivalent
to G. There is a close relation between the pivot operation and the operation of
switching a base in a binary matroid, which motivates the study of pivot-minors.
Every pivot-minor of a graph G is also a vertex-minor of G but not vice versa.

Vertex-minors of graphs can be seen as minors of isotropic systems, a concept
introduced by Bouchet [11, 14, 10]. Similarly pivot-minors of graphs can be seen as
minors of binary delta-matroids, also introduced by Bouchet [9, 12].

4.2. Relation to tree-width and branch-width. Let G be a graph whose tree-
width is k. Kanté [50] showed that rank-width of G is at most 4k + 2 by showing
how to convert a tree-decomposition into a rank-decomposition constructively. This
inequality was improved by Oum [66], who showed that rank-width is at most k+1.

In fact, the following are shown. The incidence graph I(G) of a graph G is the
graph obtained from G by subdividing each edge exactly once.

Theorem 4.1 (Oum [66]). Let G be a graph of branch-width k. Then the incidence
graph I(G) of G has rank-width k or k − 1, unless k = 0.

The converse does not hold; the complete graph Kn has tree-width n − 1 and
rank-width 1 if n ≥ 2. We remark that Courcelle [22] proved that if G is a graph of
tree-width k, then its incidence graph I(G) has clique-width at most 2k + 4.

Since G is a vertex-minor of I(G), we deduce that the rank-width of G is less than
or equal to the branch-width of G, unless G has branch-width 0. This inequality
can be generalized to an arbitrary field.

Theorem 4.2 (Oum, Sæther, Vatshelle [70]). For every field F and a graph G,
rwF(G) is less than or equal to branch-width of G, unless G has branch-width 0.
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The line graph L(G) of a simple graph G is a vertex-minor of the incidence graph
I(G), obtained by applying local complementations at vertices of G in I(G). This
implies that the rank-width of L(G) is less than or equal to the rank-width of I(G).
The following theorem proves that they are very close to each other.

Theorem 4.3 (Oum [68]). Let G be a simple graph of branch-width k. Then the
line graph of G has rank-width k, k − 1, or k − 2.

Surprisingly, Adler and Kanté [2] showed that for trees, linear rank-width is equal
to path-width.

Another relation to tree-width was discovered by Kwon and Oum [56]. They have
shown that graphs of small rank-width are precisely pivot-minors of graphs of small
tree-width.

Theorem 4.4 (Kwon and Oum [56]). (1) Every graph of rank-width k is a pivot-
minor of a graph of tree-width at most 2k.

(2) Every graph of linear rank-width k is a pivot-minor of a graph of path-width
at most k + 1.

Hliněný, Kwon, Obdržálek, and Ordyniak [40] found an analogue of Theorem 4.4
to relate tree-depth and shrub-depth of graphs by vertex-minors.

Fomin, Oum, and Thilikos [33] showed that when graphs are planar, or H-minor-
free, then having bounded tree-width is equivalent to having bounded rank-width.
This is already proven in Courcelle and Olariu [25] without explicit bounds because
they use logical tools. For instance, in [33], it is shown that the tree-width of a
planar graph G is at most 72 rw(G) − 2, and if a graph G has no Kr minor with
r > 2, then its tree-width is at most 2O(r log log r) rw(G). The last bound on tree-width
can be improved to 2O(r) rw(G) by using a recent result of Lee and Oum [58].

4.3. Chromatic number. A class I of graphs is χ-bounded if there exists a func-
tion f such that χ(G) ≤ f(ω(G)) for all graphs G ∈ I. Here, ω(G) is the maximum
size of a clique in G and χ(G) is the chromatic number of G. Dvořák and Král’ [31]
proved that the class of graphs of rank-width at most k is χ-bounded as follows.

Theorem 4.5 (Dvořák and Král’ [31]). There exists a function f : Z×Z→ Z such
that for every graph G of rank-width at most k, χ(G) ≤ f(ω(G), k).

More generally, Geelen (see [31, 18]) conjectured that for each fixed graph H, the
class of graphs with no H vertex-minor is χ-bounded. This conjecture has been
verified when H is the wheel graph on 6 vertices [31] and a fan graph [18].

4.4. Duality. As rank-width is an instance of branch-width of some symmetric
submodular function, we can use a theory developed for symmetric submodular
functions by [77, 72, 5, 59, 29]. In particular, one can use the concept called a
tangle to verify that a graph has large rank-width.

For a graph G, a ρG-tangle of order k is a set T of subsets of V (G) satisfying the
following three axioms.

(T1) For A ⊆ V (G), if ρG(A) < k, then either A ∈ T or V (G)− A ∈ T .
(T2) If A,B,C ∈ T , then A ∪B ∪ C 6= V (G).
(T3) For all v ∈ V (G), V (G)− {v} /∈ T .

A theorem of Robertson and Seymour [77] implies the following.
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Theorem 4.6 (Robertson and Seymour [77]). For an integer k, a graph G has a
ρG-tangle of order k if and only if its rank-width is at least k.

A similar concept can be defined for linear rank-width. A ρG-obstacle of order k
is a set O of subsets of V (G) satisfying the following three axioms.

(B1) For all A ∈ O, ρG(A) < k.
(B2) If X ⊆ Y ∈ O and ρG(X) < k, then X ∈ O.
(B3) If A ∪ B ∪ C = V (G), A ∩ B = ∅, ρG(A) < k, ρG(B) < k and |C| ≤ 1, then

exactly one of A and B is in O.

The following theorem is implied by Fomin and Thilikos [34, Theorem 3].

Theorem 4.7 (Fomin and Thilikos [34]). For an integer k, a graph G has a ρG-
obstacle of order k if and only if its linear rank-width is at least k.

4.5. Large rank-width. Robertson and Seymour [75] proved that every graph with
sufficiently large tree-width contains a large grid graph as a minor. An analogous
conjecture was made in [68] as follows.

Question 5. Is it true that for each fixed bipartite circle graph H, every graph G
with sufficiently large rank-width contains a pivot-minor isomorphic to H?

This has been confirmed when G is a line graph, a bipartite graph, or a circle
graph, see [68].

Adler, Kanté and Kwon [3] proved that for each tree T , every distance-hereditary
graph with sufficiently large linear rank-width contains a vertex-minor isomorphic
to T . It would be interesting to determine whether every graph of sufficiently large
linear rank-width contains a vertex-minor isomorphic to a fixed tree T .

4.6. Well-quasi-ordering. A pair (Q,�) of a set Q and a relation � on Q is a
quasi-order if

(1) x � x for all x ∈ Q and
(2) x � z if x � y and y � z.

A quasi-order (Q,�) is a well-quasi-order if every infinite sequence q1, q2, . . . of Q
has a pair qi, qj (i < j) such that qi � qj. We say that Q is well-quasi-ordered by
the relation �.

Motivated by the celebrated graph minor theorem by Robertson and Seymour [78]
and its special case on tree-width [76], Oum [65] proved that graphs of bounded
rank-width are well-quasi-ordered under taking pivot-minors as follows.

Theorem 4.8 (Oum [65]). For all positive integers k, every infinite sequence G1, G2, . . .
of graphs of rank-width at most k admits a pair Gi, Gj (i < j) such that Gi is iso-
morphic to a pivot-minor of Gj.

Theorem 4.8 has been generalized to skew-symmetric or symmetric matrices over
a fixed finite field (Oum [69]) and σ-symmetric matrices over a fixed finite field
(Kanté [51]).

Courcelle and Oum [26] constructed a modulo-2 counting monadic second-order
logic formula to decide whether a fixed graph H is isomorphic to a vertex-minor of an
input graph. This can be combined with the meta-theorem of Courcelle, Makowsky,
and Rotics [24] to deduce the following.
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Theorem 4.9 (Courcelle and Oum [26]). Let I be a set of graphs closed under
taking vertex-minors. If I has bounded rank-width, then there exists an algorithm
that decides whether an input n-vertex graph is in I in time O(n3).

We remark that a positive answer to the following question would imply the graph
minor theorem of Robertson and Seymour.

Question 6. Are graphs well-quasi-ordered under taking pivot-minors? In other
words, does every infinite sequence G1, G2, . . . of graphs admit a pair Gi, Gj (i < j)
such that Gi is isomorphic to a pivot-minor of Gj?

We would also like to have an algorithm to detect pivot-minors and vertex-minors
of a graph.

Question 7. For a fixed graph H, can we decide in polynomial time whether an
input graph has a pivot-minor (or a vertex-minor) isomorphic to H?

4.7. Forbidden vertex-minors. By Theorem 4.8, we can easily deduce that there
exists a finite set Fk of graphs such that a graph G has rank-width at most k if and
only if Fk contains no vertex-minor of G, because otherwise there will be an infinite
anti-chain of vertex-minor-minimal graphs having rank-width k + 1. However, the
well-quasi-ordering theorem does not provide an upper bound on |Fk|.

Oum [63] showed that pivot-minor-minimal graphs of rank-width k + 1 have at
most (6k+1 − 1)/5 vertices. This gives an explicit upper bound on |Fk| as well as a
constructive enumeration algorithm for graphs in Fk.

For k = 1, F1 is known. Oum [63] showed that graphs of rank-width at most 1
are precisely distance-hereditary graphs; a graph G is distance-hereditary if in every
connected induced subgraph, a shortest path between two vertices is also a shortest
path in G [6]. (This also proves that distance-hereditary graphs have clique-width
at most 3 as an easy consequence of Theorem 2.1, which was initially proved by
Golumbic and Rotics [36].) A theorem of Bouchet [10, 13] implies that a graph
G has rank-width at most 1 if and only if C5 (the cycle graph of length 5) is not
isomorphic to a vertex-minor of G. A similar argument can be used to show that a
graph G has rank-width at most 1 if and only if neither C5 nor C6 is isomorphic to
a pivot-minor of G.

For the linear rank-width, we can still use Theorem 4.8 to deduce that there
exists a finite set Lk of graphs such that a graph G has linear rank-width at most k
if and only if Lk contains no vertex-minor of G. Unlike the situation in rank-width,
so far no upper bound on the size of graphs in Lk is known. Adler, Farley, and
Proskurowski [1] determined L1 as a set of three particular graphs. Jeong, Kwon,

and Oum [47] proved that |Lk| ≥ 3Ω(3k). Adler, Kanté and Kwon [3] presented an
algorithm to construct, for each k, a finite set L′k of distance-hereditary graphs of

linear rank-width k+1 such that |L′k| ≤ 3O(3k), every proper vertex-minor of a graph
in L′k has linear rank-width at most k, and every distance-hereditary graph of linear
rank-width k + 1 contains at least one graph in L′k.
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