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Abstract. As a strengthening of Hadwiger’s conjecture, Gerards and Seymour conjectured
that every graph with no odd Kt minor is (t − 1)-colorable. We prove two weaker variants
of this conjecture. Firstly, we show that for each t ≥ 2, every graph with no odd Kt minor
has a partition of its vertex set into 6t − 9 sets V1, . . . , V6t−9 such that each Vi induces a
subgraph of bounded maximum degree. Secondly, we prove that for each t ≥ 2, every graph
with no odd Kt minor has a partition of its vertex set into 10t− 13 sets V1, . . . , V10t−13 such
that each Vi induces a subgraph with no large component. The second theorem improves a
result of Kawarabayashi (2008), which states that the vertex set can be partitioned into 496t
such sets.

1. Introduction

Every graph in this paper is finite and simple. For a nonnegative integer k, a graph G is

k-colorable if there are k sets V1, . . . , Vk with V (G) =
⋃k
i=1 Vi such that every Vi induces a

subgraph of maximum degree 0 for 1 ≤ i ≤ k.

1.1. Proper coloring of graphs with no clique minors. In 1943, Hadwiger [8] proposed
the following question, which is called “Hadwiger’s conjecture”, one of the most deepest
conjectures in graph theory. For more on this conjecture and its variants, the readers are
referred to the recent survey of Seymour [19].

Conjecture 1.1 (Hadwiger [8]). For an integer t ≥ 1, every graph with no Kt minor is
(t− 1)-colorable.

Robertson, Seymour, and Thomas [18] proved that the conjecture is true for t ≤ 6, but
the conjecture remains open for t ≥ 7. Kostochka [14, 15] and Thomason [20, 21] proved
that graphs with no Kt minor is O(t

√
log t)-colorable, by showing that these graphs contain

a vertex of degree O(t
√

log t). It is still open whether every graph with no Kt minor is
ct-colorable for some c > 0 independent of t.

Gerards and Seymour (see [11, Section 6.5]) proposed the following conjecture that strength-
ens Hadwiger’s conjecture, which is called “the odd Hadwiger’s conjecture”.

Conjecture 1.2 (Gerards and Seymour (see [11, Section 6.5])). For an integer t ≥ 1, every
graph with no odd Kt minor is (t− 1)-colorable.

Catlin [1] proved that this conjecture is true for t = 4, and Guenin (see [19]) announced that
this is true for t = 5, but the proof has not been published. Geelen, Gerards, Reed, Seymour,
and Vetta [6] proved that every graph with no odd Kt minor is O(t

√
log t)-colorable.
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1.2. Improper coloring of graphs with no clique minors. Recall a graph G is k-colorable

if there are k sets V1, . . . , Vk with V (G) =
⋃k
i=1 Vi such that every Vi induces a subgraph of

maximum degree 0 for 1 ≤ i ≤ k. A defective coloring (see [2]) is a coloring that relaxes the
degree condition. A graph G is (k, d)-colorable if there are k sets V1, . . . , Vk with V (G) =⋃k
i=1 Vi such that every Vi induces a subgraph of maximum degree at most d. Note that G is

k-colorable if and only if G is (k, 0)-colorable.
One may also investigate a variant of proper coloring that relaxes the condition that

monochromatic subgraphs have the bounded component size. We investigate coloring of
graphs with no odd clique minor in both directions.

Before mentioning the results of the paper, we survey some related results. Edwards, Kang,
Kim, Oum, and Seymour [5] investigated defective coloring of graphs with no Kt minor, and
proved that the number of colors t− 1 is best possible.

Theorem 1.3 (Edwards et al. [5]). For an integer t ≥ 1, there exists an integer s = s(t) such

that for every graph G with no Kt minor, there are t−1 sets V1, . . . , Vt−1 with V (G) =
⋃t−1
i=1 Vi

such that Vi induces a subgraph of the maximum degree at most s for 1 ≤ i ≤ t−1. Moreover,
this is sharp in the sense that we cannot reduce the number t− 1 of sets to t− 2.

Recently, Dvořák and Norin [4] announced that for t ≥ 1, there is an integer s = s(t) such

that every graph G with no Kt minor, there are t− 1 sets V1, . . . , Vt−1 with V (G) =
⋃t−1
i=1 Vi

such that every component of the subgraph induced by Vi has at most s vertices for 1 ≤ i ≤
t− 1. Note that this extends Theorem 1.3, as the maximum degree of a graph with s vertices
is at most s− 1.

Kawarabayashi [13] proved the following result that every graph with no odd Kt minor can
be colored with 496t colors so that the size of monochromatic components is bounded by a
function of t.

Theorem 1.4 (Kawarabayashi [13]). For an integer t ≥ 2, there is an integer s = s(t)
such that for every graph G with no odd Kt minor, there are 496t sets V1, . . . , V496t with
V (G) =

⋃496t
i=1 Vi such that every Vi induces a subgraph with every component having at most

s vertices for 1 ≤ i ≤ 496t.

Let It be a graph on t vertices with no edges, and for graphs G and H, let G + H be a
graph obtained from disjoint union of G and H and joining edges from every vertex of G to
all vertices of H. For positive integers s and t, let K∗s,t be a graph obtained from Ks + It by
subdividing every edge joining vertices of the subgraph Ks once.

Recently, Ossona de Mendez, Oum, and Wood [17] investigated defective coloring for various
graph classes. One of their results implies the following, which extends Theorem 1.3 to a larger
class of graphs.

Theorem 1.5 (Ossona de Mendez et al. [17]). For integers s, t ≥ 1 and real numbers δ1, δ2 >
0, there exists M = M(s, t, δ1, δ2) such that every graph G satisfying the following three
conditions admits s sets V1, . . . , Vs with V (G) =

⋃s
i=1 Vi such that Vi induces a subgraph of

the maximum degree at most M for all 1 ≤ i ≤ s.
(1) G contains no K∗s,t as a subgraph,
(2) every subgraph of G has average degree at most δ1, and
(3) for every graph H whose 1-subdivision is a subgraph of G, the average degree of H is

at most δ2.

Moreover, this is sharp in the sense that we cannot reduce the number s to s− 1.

Since K∗s,t contains a bipartite Ks + It subdivision, Theorem 1.5 implies the following.
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Corollary 1.6. For positive integers s and t, there is an integer N = N(s, t) such that for
every graph G with no bipartite Ks + It subdivision, there are s sets V1, . . . , Vs with V (G) =⋃s
i=1 Vi such that Vi induces a subgraph of the maximum degree at most N for 1 ≤ i ≤ s.

Proof. By [3, Lemma 7.2.1], there is c > 0 such that for an integer p ≥ 1, every n-vertex
graph with at least cp2n edges contains Kp as a topological minor. First of all, we prove the
following claim.

Claim. For an integer p ≥ 1, every n-vertex with at least 2cp2n edges contains a bipartite Kp

subdivision.

Proof of Claim. Let H be an n-vertex graph with at least 2cp2n edges. Let H0 be a bipartite
spanning subgraph of H with at least |E(H)|/2 ≥ cp2n edges. Since H0 contains Kp as a
topological minor, it follows that H contains a bipartite Kp subdivision, as desired. �

Since G contains no bipartite Ks+t subdivision, the graph G contains no K∗s,t as a subgraph
since K∗s,t is a bipartite Ks + It subdivision, and every subgraph of G has average degree at

most 2c(s+t)2. If there is a graph H whose 1-subdivision is a subgraph of G, then the average
degree of H is at most c(s+ t)2, because otherwise H contains a bipartite Ks+t subdivision,
and so does an 1-subdivision of H which is a subgraph of G.

By Theorem 1.5, there are s sets V1, . . . , Vs with V (G) =
⋃s
i=1 Vi such that Vi induces a

subgraph of the maximum degree at most M(s, t, 2c(s+ t)2, c(s+ t)2) for 1 ≤ i ≤ s. �

Since Kt + I1 is isomorphic to Kt+1, Theorem 1.3 can be extended to graphs with no
bipartite clique subdivision.

Corollary 1.7. For an integer t ≥ 1, there is an integer N = N(t) such that for every graph

G with no bipartite Kt+1 subdivision, there are t sets V1, . . . , Vt with V (G) =
⋃t
i=1 Vi such

that Vi induces a subgraph of the maximum degree at most N for 1 ≤ i ≤ t.
1.3. Our theorems on improper coloring of graphs with no odd clique minors. We
aim to color graphs with no odd clique minor in a similar theme to those results. For a
graph H, let ∆(H) be the maximum degree of vertices in H. For S ⊆ V (H), let H[S] be the
subgraph of H induced by S. We prove the following.

Theorem 1.8. For an integer t ≥ 2, there exists an integer s = s(t) such that for every graph

G with no odd Kt minor, there are 6t − 9 sets V1, . . . , V6t−9 with V (G) =
⋃6t−9
i=1 Vi such that

∆(G[Vi]) ≤ s for 1 ≤ i ≤ 6t− 9.

In other words, for t ≥ 2 there is an integer s = s(t) such that every graph G with no odd
Kt minor is (6t− 9, s)-colorable. We also improve 496t of Theorem 1.4 to 10t− 13 for t ≥ 2.
This reduces a gap between the lower bound and the upper bound of the number of colors.

Theorem 1.9. For an integer t ≥ 2, there exists an integer s = s(t) such that for every graph

G with no odd Kt minor, there are 10t− 13 sets V1, . . . , V10t−13 with V (G) =
⋃10t−13
i=1 Vi such

that every component of G[Vi] has at most s vertices for 1 ≤ i ≤ 10t− 13.

We remark that both Theorems 1.8 and 1.9 cannot be extended in terms of list-coloring
variant, contrasting Theorems 1.3 and 1.5, which we will discuss in Section 5.

Organization. The paper is organized as follows. We briefly introduce some basic notions
in Section 2, discuss the structure of graphs with no odd Kt minor in Section 3, and prove
Theorems 1.8 and 1.9 in Section 4. In Section 5, we make some further remarks, includ-
ing extension of our main results to a slightly larger class of graphs. An appendix reviews
elementary concepts of signed graphs and minors.
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2. Preliminaries

We follow the definitions in [3] unless stated otherwise. In this section, G and H always
denote graphs.

A subset S ⊆ V (G) is stable if no two vertices in S are adjacent. Let G∪H and G∩H be
graphs (V (G)∪ V (H), E(G)∪E(H)) and (V (G)∩ V (H), E(G)∩E(H)), respectively. A pair
(A,B) of subgraphs of G is a separation of G if G = A∪B. The order of a separation (A,B)
of G is |V (A∩B)|. A bipartition {X,Y } of a bipartite graph H is a set of two disjoint stable
subsets X ∪ Y = V (G).

Coloring. For a subset S of vertices of G and a set T of colors, a function α : S → T is a
coloring on S. A color class of a coloring α : S → T is α−1({i}) for some i ∈ T . A subgraph
H of G is monochromatic if every vertex of H has the same α value.

A coloring α on S is proper if α(u) 6= α(v) for every uv ∈ E(G[S]); equivalently, every color
class of α is stable. For a nonnegative integer k, a graph G is k-colorable if there is a proper
coloring α : V (G)→ {1, . . . , k}. For integers k, d ≥ 0, a graph G is (k, d)-colorable if there is
a coloring such that every color class induces a graph with maximum degree at most d.

Paths. Let P be a path. For v ∈ V (P ), v is an end if it is one of the endvertices of P ,
otherwise v is internal. The path P joins u, v ∈ V (G) if u and v are ends of P . For vertices
v, w ∈ V (P ), P (v, w) denotes the subpath of P with the ends v and w.

A path P joins two sets V1, V2 ⊆ V (G) if it joins a vertex in V1 and a vertex in V2. The
length of a path is its number of edges. The parity of a path P is the parity of its length.

Two paths P and Q in G are vertex-disjoint if V (P ) ∩ V (Q) = ∅. They are internally
disjoint if no internal vertex of one is a vertex of the other.

For S ⊆ V (G), an S-path is a path in G that joins two distinct vertices in S. For a coloring
α : S → {1, 2}, an S-path P in G is parity-breaking with respect to α if

|E(P )| ≡ α(u)− α(v) (mod 2).

For a connected bipartite subgraph H of G with a proper coloring β : V (H)→ {1, 2}, a path
P in G is parity-breaking with respect to H if P is parity-breaking with respect to β. This is
well defined since a proper coloring of H is unique up to permuting colors. We will use the
following observation in Section 3.

Observation 2.1. (1) For S ⊆ V (G) and a coloring α : S → {1, 2}, let P , Q be internally
disjoint S-paths sharing precisely one end. Then the S-path P ∪Q is parity-breaking
with respect to α if and only if exactly one of P and Q is parity-breaking with respect
to α.

(2) For a connected bipartite subgraph H of G, no path in H is parity-breaking with respect
to H.

Minors. A graph H is a minor of G if a graph isomorphic to H can be obtained from G
by deleting vertices or edges and contracting edges. If there are edges wu and wv for some
vertex w /∈ {u, v} and we contract an edge uv, then one of these two edges is removed after
contraction to avoid parallel edges. A graph G contains an H-minor (or H as a minor) if H
is a minor of G.

Topological minors. An H-subdivision is a graph obtained from H by subdividing edges,
where edges may be subdivided more than once. A graph G contains an H-subdivision (or
H as a topological minor), if G contains a subgraph isomorphic to an H-subdivision.
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Since every H-subdivision H ′ is built from H by replacing all edges of H with internally
disjoint paths called the linking paths, there are vertices of H ′ that correspond to vertices of
H, which we call branch vertices.

Odd minors. For S ⊆ V (G) and a coloring α : S → {1, 2}, an edge uv ∈ E(G[S]) is
bichromatic if α(u) 6= α(v), monochromatic otherwise.

For graphs G and H, G contains H as an odd minor if there exist vertex-disjoint subgraphs
{Tu}u∈V (H) in G which are trees, and a coloring α :

⋃
u∈V (H) V (Tu) → {1, 2} such that for

every u ∈ V (H), every edge in Tu is bichromatic, and for every edge vw ∈ E(H), there is a
monochromatic edge e ∈ E(G) that joins V (Tv) and V (Tw).

We will use the following alternative definition in Section 3.

Observation 2.2. For graphs G and H, G contains H as an odd minor if and only if
there exist vertex-disjoint subgraphs {Tu}u∈V (H) in G which are trees, and a coloring α :⋃
u∈V (H) V (Tu)→ {1, 2} such that

(1) for every u ∈ V (H), every edge in Tu is bichromatic,
(2) there are internally disjoint paths {Pe}e∈E(H) in G,

(3) for every e = vw ∈ E(H), Pe joins V (Tv) and V (Tw), has no internal vertex in⋃
u∈V (H) V (Tu), and is parity-breaking with respect to α.

We remark that a graph G contains H as an odd minor if and only if a signed graph
(G,E(G)) contains a signed graph (H,E(H)) as a minor, which we will discuss in Appendix A.

3. The structure of graphs with no odd clique minor

The proof of Theorem 1.3 is based on the fact that every graph with no Kt minor has a
vertex of degree at most ct for some ct. In contrast to graphs with no Kt minor, graphs with
no odd Kt minor may have arbitrarily large minimum degree; for example, complete bipartite
graphs have no odd K3 minor.

To prove Theorems 1.8 and 1.9, we use the following strategy similar to the one by Geelen
et al. [6]. If a graph G has no bipartite subdivision of some graph, then we apply Corollary 1.6.
Otherwise, we will show in Theorem 3.5 that G contains a bipartite block after removing few
vertices, which allows us to use precoloring arguments in the following section.

First of all, we describe how to find an odd Kt minor in a graph G if the graph contains
a bipartite K2t−2 + It subdivision with many vertex-disjoint parity-breaking paths between
branch vertices of the subdivision.

Lemma 3.1. For t ≥ 2, let G be a graph that contains a bipartite K2t−2 + It subdivision H,
and C be the set of all branch vertices of K2t−2 + It in H. If there are t − 1 vertex-disjoint
parity-breaking C-paths with respect to H, then G contains an odd Kt minor.

Proof. For convenience, we identify each vertex in C with its corresponding vertex of K2t−2 +
It.

For a collection Q of paths, let `(Q) =
∑

P∈Q |E(P )|. Let P be a collection of t − 1
vertex-disjoint parity-breaking C-paths with respect to H, satisfying the following.

(a)
∑

P∈P |E(P ) \ E(H)| is minimum, and
(b) subject to (a), `(P) is minimum.

Note that every vertex in C is not an internal vertex of a path in P. To see this, if a
vertex in C is an internal vertex of a path Q ∈ P, then Q contains a proper subpath Q′ that
is a parity-breaking C-path with respect to H. For Q := (P \ {Q}) ∪ {Q′} it follows that
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P∈Q |E(P ) \ E(H)| ≤

∑
P∈P |E(P ) \ E(H)| and `(Q) < `(P), contradicting our choice of

P.
For distinct u, v ∈ C, if uv ∈ E(K2t−2 + It), then let Qu,v be the linking path from u to v

in H. If uv /∈ E(K2t−2 + It), then let Qu,v be a graph with two vertices u and v and no edges.
Note that there are 2t − 2 branch vertices that appear in paths in P, and t unused branch
vertices. Let C0 ⊆ C be the set of those unused t branch vertices.

Claim 1. Let u, v be distinct vertices in C.

(1) If u, v ∈ C0, then no path P ∈ P intersects Qu,v.1

(2) If u ∈ C0, then Qu,v intersects at most one path P in P, and if so, then the intersection
is a subpath of both Qu,v and P and contains v.

Proof of Claim 1. We may assume uv ∈ E(K2t−2 + It), otherwise V (Qu,v) ⊆ C and the claim
is trivial. Let u ∈ C0, and suppose Qu,v intersects a path in P. Since no path in P intersects
u, starting from u and following Qu,v we arrive at the first vertex w ∈ V (Qu,v) on some path
P ∈ P.

Write P = A ∪ B, where A and B are two subpaths of P with the only common vertex
w. Since w ∈ V (H), either A or B is parity-breaking with respect to H, and we may assume
A is parity-breaking with respect to H. By Observation 2.1, a path R = A ∪ Qu,v(w, u) is
parity-breaking with respect to H, and it intersects no path in P other than P . Therefore,
we conclude that (P \{P})∪{R} is a set of t−1 vertex-disjoint parity-breaking C-paths with
respect to H. By our assumption on P, P does not have more edges not in H than R. This
implies E(B) ⊆ E(H), and thus B = Qu,v(w, v) since one of the ends of B is in C and no
path in P intersects u. Note that A intersects Qu,v only at w, since B = Qu,v(w, v).

Since P and Qu,v share a common subpath from w to v and w is the only vertex that
belongs to both Qu,v(w, u) and some path in P, P is the only path that intersects Qu,v. In
particular, B = P ∩Qu,v is a path that contains v, and v /∈ C0. �

Let P = {P1, . . . , Pt−1}, and for 1 ≤ i ≤ t − 1, let xi and yi be the ends of Pi. Let
C1 = {x1, . . . , xt−1} and C2 = {y1, . . . , yt−1}.

For v ∈ C, if v corresponds to a vertex in the subgraph K2t−2 of K2t−2 + It, then we call
v Type-A. Otherwise we call v Type-B. Let q be the number of i’s (1 ≤ i ≤ t − 1) such that
both xi and yi are Type-A, and r be the number of i’s such that exactly one of xi and yi is
Type-A, and s = t− 1− q − r. Then there are (2t− 2)− (2q + r) vertices of Type-A in C0.
Since q + r + s = t − 1, it follows that (2t − 2) − (2q + r) ≥ r + s. Therefore, the number
of vertices in C0 of Type-A is at least r + s. Thus, we choose an ordering z1, . . . , zt of the
vertices in C0 such that for 1 ≤ i ≤ t− 1 if xi or yi is Type-B, then zi is a vertex of Type-A.

In summary, zixi, ziyi ∈ E(H) for 1 ≤ i ≤ t− 1. Equivalently, if zi is Type-B, then both xi
and yi are Type-A.

Let β : V (H)→ {1, 2} be a proper coloring of H unique up to permuting colors. In order
to find an odd Kt minor, we now aim to construct vertex-disjoint subgraphs M1, . . . ,Mt in G
which are trees and a coloring α :

⋃t
i=1 V (Mi)→ {1, 2} as in Observation 2.2.

For 1 ≤ i ≤ t− 1, let Mi = Pi ∪Qzi,yi if zi is Type-A, and Mi = Pi ∪Qzi,xi if zi is Type-B.
Let Mt be a graph with the only vertex zt. If i < t, then by Claim 1, Pi ∩Qzi,yi or Pi ∩Qzi,xi
is a subpath of Pi and so Mi is a tree with maximum degree at most 3 and at most one vertex
of degree 3. We choose a coloring α :

⋃t
i=1 V (Mi)→ {1, 2} such that

(1) α on V (Mi) is a proper coloring of Mi and α(xi) = β(xi) for all 1 ≤ i ≤ t− 1, and
(2) α(zt) = β(zt) if and only if zt is Type-B.

1Two subgraphs intersect if they share at least one common vertex.
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Observation 2.1 implies that, for 1 ≤ i ≤ t− 1, α(yi) 6= β(yi) since Pi is parity-breaking with
respect to H and α(zi) = β(zi) if and only if zi is Type-B.

For 1 ≤ i < j ≤ t, we are now ready to construct a path Pi,j joining V (Mi) and V (Mj)
that is parity-breaking with respect to α and satisfies Observation 2.2. This will show that G
contains an odd Kt minor. The structure of Pi,j depends on the types of zi and zj .

Case 1. Both zi and zj are Type-A.
Following Qzj ,xi from zj to xi, we arrive at the first vertex ai,j in V (Pi) ∩ V (Qzj ,xi). By

Claim 1, Qzj ,xi and Pi share the subpath from ai,j to xi. Since Pi(xi, ai,j) is in H and α(xi) =
β(xi), it follows that α(ai,j) = β(ai,j) by Observation 2.1. Let us define Pi,j = Qzj ,xi(zj , ai,j).
Since α(zj) 6= β(zj), α(ai,j) = β(ai,j) and Pi,j is a subpath of Qzj ,xi , we conclude that Pi,j is
parity-breaking with respect to α by Observation 2.1.

Case 2. zi and zj are of different types.
Let us define Pi,j := Qzi,zj . By Claim 1, Pi,j intersects no path in P. Since α(zi) = β(zi),

α(zj) 6= β(zj), and Qzi,zj is in H, Pi,j is parity-breaking with respect to α by Observation 2.1.

Case 3. Both zi and zj are Type-B.
Since zi is Type-B, yi is Type-A. Following Qzj ,yi from zj to yi, we arrive at the first vertex

ai,j in V (Pi) ∩ V (Qzj ,yi). Claim 1 implies that Qzj ,yi and Pi share the subpath from ai,j
to yi. Since Pi(yi, ai,j) is in H and α(yi) 6= β(yi), it follows that α(ai,j) 6= β(ai,j). Let us
define Pi,j := Qzj ,yi(zj , ai,j). Since α(zj) = β(zj), α(ai,j) 6= β(ai,j) and Pi,j is in H, Pi,j is
parity-breaking with respect to α by Observation 2.1. �

We use the following lemma, which asserts that the family of S-paths of odd length satisfies
Erdős-Pósa property.

Lemma 3.2 (Geelen et al. [6, Lemma 11]). Let G be a graph and S ⊆ V (G). For every
integer ` ≥ 1, either G contains ` vertex-disjoint S-paths of odd length, or there is X ⊆ V (G)
with |X| ≤ 2`− 2 such that G \X contains no S-path of odd length.

Observation 3.3. Let G and H be graphs and X ⊆ V (G). If G contains an H-subdivision
K, then G \X contains an H ′-subdivision K ′ such that H ′ = H \Y for some Y ⊆ V (H) with
|Y | ≤ |X| and K ′ is a subgraph of K.

Proof. It is easy to see that if G has an H-subdivision K and v is a vertex of K, then there
is a vertex w of H such that G \ v has a (H \ w)-subdivision. �

The following lemma is a variation of the lemma by Geelen et al. [6, Lemma 15].

Lemma 3.4. Let ` be a positive integer and G be a graph. Let H be a bipartite Ks + It
subdivision in G for integers s ≥ 2` and t ≥ 1, and C be the set of all branch vertices in H.
At least one of the following holds.

• There exists X ⊆ V (G) with |X| ≤ 2` − 2 such that G − X has a bipartite block U
that contains at least s+ t− |X| vertices in C \X and all linking paths in H between
them.
• G has ` vertex-disjoint parity-breaking C-paths with respect to H.

Proof. (1) We claim that either there are ` vertex-disjoint parity-breaking C-paths in G with
respect to H, or there is X ⊆ V (G) with |X| ≤ 2` − 2 such that G \ X contains no parity-
breaking C-path with respect to H.

Let {L,R} be the unique bipartition of H. Without loss of generality, we may assume
that every linking path corresponding to an edge in Ks + It has the even length, because
otherwise, for every branch vertex v ∈ C ∩L, we subdivide each edge e ∈ E(G) incident with
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v once. This gives an H-subdivision H ′ and a G-subdivision G′ such that H ′ is a bipartite
subgraph of G′. We may assume V (H) ⊆ V (H ′) and V (G) ⊆ V (G′), and then every vertex in
V (G′) \V (G) has degree 2. Note that all vertices in C are in the same part of the bipartition
of H ′, and thus every path in H ′ between vertices in C has the even length. It is easy to
check the following.

• A C-path of odd length in G′ corresponds to a parity-breaking C-path in G with
respect to H.
• If there is X ′ ⊆ V (G′) with |X ′| ≤ 2` − 2 such that G′ \ X ′ contains no C-path of

odd length, then we may assume X ′ ⊆ V (G) since every vertex in V (G′) \ V (G) has
degree 2.

Lemma 3.2 claims that either G′ contains ` vertex-disjoint C-paths of odd length, or there
is X ′ ⊆ V (G′) with |X ′| ≤ 2` − 2 such that G′ \X ′ contains no C-path of odd length. This
proves (1).

Suppose G contains no ` vertex-disjoint parity-breaking C-paths with respect to H. By (1),
there is X ⊆ V (G) with |X| ≤ 2`−2 such that G\X contains no parity-breaking C-path with
respect to H. For convenience, we identify each vertex in C with its corresponding vertex of
Ks + It. For distinct u, v ∈ C, if uv ∈ E(Ks + It) then let Qu,v be the linking path from u to
v in H. If uv /∈ E(Ks + It), then let Qu,v be a graph with two vertices u and v and no edges.

(2) We claim that there is a block U in G \ X containing at least s + t − |X| vertices in
C \X and all linking paths in H between them.

By Observation 3.3, G\X contains a (Ka+Ib)-subdivisionK such thatKa+Ib = (Ks+It)\Y
for some Y ⊆ V (Ks + It) with |Y | ≤ |X| and K is a subgraph of H. Let T be the set of all
branch vertices in K, where |T | ≥ a+ b = s+ t− |Y | ≥ s+ t− |X|.

Since a ≥ s− |Y | ≥ 2 and a+ b = s+ t− |Y | ≥ 3, Ka + Ib is 2-connected. Therefore, K is
2-connected and all vertices in T are in the same block of G \X.

(3) We claim that U is bipartite.
Suppose U contains an odd-length cycle D. For two distinct vertices u, v ∈ C∩V (U), there

are two vertex-disjoint paths in U joining {u, v} and V (D) by Menger’s theorem. Using these
paths, we obtain both an odd-length path and an even-length path from u to v in U . One of
those paths is a parity-breaking C-path with respect to H, contradicting that G \X has no
parity-breaking C-path with respect to H. �

Now we are ready to prove the main theorem of this section.

Theorem 3.5. Let t ≥ 2 be an integer, and G be a graph. If G contains no odd Kt minor
and contains a bipartite K2t−2 + It subdivision, then there is X ⊆ V (G) with |X| ≤ 2t − 4
such that G \X contains a bipartite block U having at least t+ 3 vertices.

Proof. Let H be a bipartite K2t−2 + It subdivision of G, and C = {v1, . . . , v3t−2} be the set of
all branch vertices in H. For convenience, we identify each vertex in C with its corresponding
vertex in V (K2t−2 + It). Let C1 ⊆ C be the set of branch vertices corresponding to vertices
in K2t−2, and C2 = C \ C1 be the set of branch vertices corresponding to vertices in It.

By Lemmas 3.1 and 3.4, there exists X ⊆ V (G) with |X| ≤ 2t − 4 such that G \X has a
bipartite block U containing (3t − 2) − |X| vertices in C \ X and all linking paths between
them. Let C ′ ⊆ C be those (3t− 2)− |X| ≥ t+ 2 branch vertices in U , and H ′ be the union
of all linking paths between vertices in C ′, which is a subgraph of U .

Recall that we identified C ⊆ V (H) with V (K2t−2 + It). Since vertices in C1 form a clique
of K2t−2 + It and |C ′ ∩C1| ≥ |C ′| − |C2| ≥ 2, the subgraph of K2t−2 + It induced by C ′ is not
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bipartite. To obtain H ′ from the induced subgraph of K2t−2 + It, we should subdivide edges
at least once, because H ′ is bipartite. Thus H ′ contains a vertex other than vertices in C ′,
implying |V (U)| ≥ |V (H ′)| ≥ |C ′|+ 1 ≥ t+ 3. �

4. Proofs of Theorems 1.8 and 1.9

For an integer N ≥ 0, let [N ] be the set {1, . . . , N}. If N = 0, then [N ] is an empty set.
For a class F of graphs and an integer d ≥ 0, a graph G has a (d,F)-coloring if there is
f : V (G) → [d] such that G[f−1({i})] is in F for all i ∈ [d]. A class F of graphs is closed
under isomorphisms if for all G ∈ F , every graph isomorphic to G is in F . A class F of
graphs is closed under taking disjoint unions if for all G,H ∈ F , the disjoint union of G and
H is in F .

Lemma 4.1. Let t ≥ 2 and d ≥ 3 be integers and F be a class of graphs closed under
isomorphisms and taking disjoint unions, which satisfies the following.

(i) F contains every graph with at most 4t− 7 vertices.
(ii) If a graph H contains no odd Kt minor and no bipartite K2t−2 + It subdivision, then

H has a (d,F)-coloring.

Then every graph with no odd Kt minor has a (d+ 4t− 7,F)-coloring.

Proof. We prove the following stronger claim.

Claim. Let G be a graph with no odd Kt minor, Z ⊆ V (G) with |Z| ≤ 4t − 7, and f : Z →
[d+ 4t− 7] be a coloring. Then G has a (d+ 4t− 7,F)-coloring g that satisfies the following.

(a) For every z ∈ Z, f(z) = g(z).
(b) For every v ∈ Z and its neighbor w /∈ Z, g(v) 6= g(w).

Let G be a counterexample with the minimum |V (G)| + |E(G)|. As the claim is true
for graphs with at most 4t − 7 vertices by giving distinct colors to each vertex not in Z,
|V (G)| ≥ 4t− 6.

(1) Z is stable.
Suppose there are adjacent z1, z2 ∈ Z. Applying the claim on G′ = G \ z1z2 with the

same Z and f , G′ has a (d + 4t − 7,F)-coloring g that satisfies the claim. We claim that
every component of G[g−1({i})] for some i ∈ [d + 4t − 7] is in F . Let C be a component
of G[g−1({i})] for some i ∈ [d + 4t − 7]. If V (C) ∩ Z 6= ∅ then V (C) ⊆ Z by (b), implying
C ∈ F as |V (C)| ≤ |Z| ≤ 4t − 7. If V (C) ∩ Z = ∅ then C is a component of G′[g−1({i})],
which implies C ∈ F . Therefore, g is a (d + 4t − 7,F)-coloring of G satisfying (a) and (b),
contradicting our assumption.

(2) For every separation (A,B) of order at most 2t − 3, either V (A) \ V (B) ⊆ Z or
V (B) \ V (A) ⊆ Z.

Suppose G has a separation (A,B) of order at most 2t− 3 such that both V (A) \V (B) \Z
and V (B) \ V (A) \ Z are nonempty. Since |Z| = |V (A) ∩ Z|+ |(V (B) \ V (A)) ∩ Z|, we may

assume |(V (B) \ V (A)) ∩ Z| ≤ b |Z|2 c ≤ 2t − 4. Note that V (B) \ V (A) \ Z 6= ∅ implies that
|V (A) ∪ Z| < |V (G)| and we can apply the claim on A ∪ G[Z] with Z and f . Let g1 be a
(d+ 4t− 7,F)-coloring of A ∪G[Z] satisfying (a) and (b). Let Z ′ = V (A ∩B) ∪ (V (B) ∩Z).
Since |Z ′| = |V (A∩B)|+ |(V (B) \ V (A))∩Z| ≤ 4t− 7, we can apply the claim on B with Z ′

and g1|Z′ . Let g2 be a (d+ 4t− 7,F)-coloring of B satisfying (a) and (b).



10 DONG YEAP KANG AND SANG-IL OUM

Let g be a coloring on V (G) such that for each vertex v of G,

g(v) =

{
g1(v) for v ∈ V (A), and

g2(v) for v ∈ V (B).

This is well defined since g1 is identical to g2 on Z ′. We claim that g is a (d+4t−7,F)-coloring
of G satisfying (a) and (b), which contradicts our assumption.

By the definition of g1, it follows that g(z) = g1(z) = f(z) for every z ∈ Z. For every
vw ∈ E(G) with v ∈ Z and w /∈ Z, g(v) 6= g(w) since g1(v) = g(v) 6= g(w) = g2(w) if
w ∈ V (A) and g2(v) = g(v) 6= g(w) = g2(w) if w ∈ V (B). This verifies (a) and (b).

Let C be a component of G[g−1({i})] for some i ∈ [d + 4t − 7]. If V (C) ∩ Z 6= ∅ then
V (C)∩ (V (A) \Z) = ∅ by the definition of g1 and (b), and V (C)∩ (V (B) \ V (A) \Z) = ∅ by
the definition of g2 and (b). This implies V (C) ⊆ Z and thus C ∈ F as |V (C)| ≤ |Z| ≤ 4t−7.
If V (C) ∩ Z = ∅ and V (A) ∩ V (B) ∩ V (C) 6= ∅ then V (C) ⊆ Z ′ \ Z ⊆ V (A) ∩ V (B) by the
definition of g2 and (b). Thus C is a component of G[g−11 ({i})], implying C ∈ F . Finally,
if V (C) ∩ Z = ∅ and V (A) ∩ V (B) ∩ V (C) = ∅, then either V (C) ⊆ V (A) \ V (B) \ Z or
V (C) ⊆ V (B)\V (A)\Z, which implies that C ∈ F as C is a component of either G[g−11 ({i})]
or G[g−12 ({i})].

(3) G \ Z contains a bipartite K2t−2 + It subdivision.
Since |Z| ≤ 4t − 7, we may assume f(Z) ⊆ {d+ 1, . . . , d+ 4t− 7} by permuting colors.

Suppose G\Z does not contain a bipartite K2t−2 + It subdivision. Let g0 be a (d,F)-coloring
of G \ Z. Let g : V (G)→ [d+ 4t− 7] be a coloring such that for each vertex v of G,

g(v) =

{
g1(v) for every v ∈ V (G) \ Z and,

f(z) for every z ∈ Z.

We claim that g is a (d+ 4t−7,F)-coloring of G satisfying (a) and (b), which contradicts our
assumption. Let C be a component of G[g−1({i})] for some i ∈ [d+4t−7]. Since g is identical
to g1 on V (G) \ Z and g(u) 6= g(v) for every u ∈ V (G) \ Z and v ∈ Z, C is a component of
either G[g−11 ({i})] or G[f−1({i})]. This implies C ∈ F . This proves (3).

Since G contains a bipartite K2t−2 + It subdivision, Theorem 3.5 implies that there exists
X ⊆ V (G) with |X| ≤ 2t− 4 such that G \X admits a block decomposition with a bipartite
block U having at least t+ 3 vertices.

(4) Every component of G \X \ V (U) is a subgraph of G[Z].
Let C be a component of G \ X \ V (U). Let VC be the set of vertices in U adjacent

to a vertex in C. As U is a block and C is a component of G \ X \ V (U), it follows that
|VC | ≤ 1. If |VC | = 1 then let vC be the unique vertex in VC . Let AC = G[V (C) ∪X ∪ VC ]
and BC = G \ V (C). Note that V (AC) ∩ V (BC) = X ∪ VC and (AC , BC) is a separation
of G of order at most 2t − 3, since |X| + |VC | ≤ 2t − 3. By (2), either V (AC) \ V (BC) or
V (BC) \V (AC) is in Z. Since Z is stable, V (U) \VC ⊆ V (BC) \V (AC) and U is 2-connected
as |V (U)| ≥ t+ 3, V (BC) \ V (AC) is not a subset Z. Therefore, V (AC) \ V (BC) = V (C) is a
subset of Z. This proves (4).

Since U \ Z is a bipartite subgraph of G, let {X1, X2} be its bipartition. By (4), it follows
that V (G) = Z ∪ (X \ Z) ∪X1 ∪X2. Let us choose three colors {c1, c2, c3} ⊆ [4t− 4] \ f(Z).
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Let g : V (G)→ [4t− 4] ⊆ [d+ 4t− 7] be a coloring defined as follows:

g(x) =


f(x) for x ∈ Z,
c1 for x ∈ X \ Z,
c2 if x ∈ X1,

c3 if x ∈ X2.

We claim that g is a (d + 4t − 7,F)-coloring of G satisfying (a) and (b), which contradicts
our assumption.

Let C be a component of G[g−1({i})] for some i ∈ [d+ 4t− 7]. One of the following cases
hold: either V (C) ⊆ Z or V (C) ⊆ X \Z or V (C) ⊆ X1 or V (C) ⊆ X2. Since |Z| and |X| are
at most 4t− 7 and both X1 and X2 are stable in G, C is in F . �

Now we prove Theorem 1.8.

Proof of Theorem 1.8. Let F be the set of graphs of maximum degree at most max(N(2t −
2, t), 4t − 8) where N is in Corollary 1.6. Corollary 1.6 implies that every graph with no
bipartite K2t−2 +It subdivision has a (2t−2,F)-coloring. By Lemma 4.1, G has a (6t−9,F)-
coloring. �

Liu and Oum [16] proved that if a graph G contains no odd Kt minor, then we can color
G with only three colors so that every monochromatic component has the size bounded by a
function of t and the maximum degree of G, as follows.

Theorem 4.2 (Liu and Oum [16]). Let t ≥ 1 and ∆ ≥ 0 be integers. There is C = C(t,∆)
such that for every graph G with the maximum degree at most ∆ and no odd Kt minor, there
are subsets V1, V2, V3 of V (G) such that V1 ∪ V2 ∪ V3 = V (G) and every component of G[Vi]
has at most C vertices for i = 1, 2, 3.

Now we prove Theorem 1.9.

Proof of Theorem 1.9. Let u(t) := C(t,N(2t − 2, t)) where C is in Theorem 4.2 and N is in
Corollary 1.6. Let F be the set of graphs that every component has at most max(u(t), 4t− 7)
vertices. By Corollary 1.6 and Theorem 4.2, every graph with no odd Kt minor and no
bipartite K2t−2 + It subdivision has a (3(2t− 2),F)-coloring. By Lemma 4.1, G has a (10t−
13,F)-coloring. �

5. Concluding Remarks

5.1. List-coloring variant. We may consider a list-coloring variant of defective coloring.
For integers s,N ≥ 0, a graph G is (s,N)-choosable if for every set of lists {Lv}v∈V (G) with

|Lv| ≥ s for every v ∈ V (G), there is a map f : V (G)→
⋃
v∈V (G) Lv with f(v) ∈ Lv for each

v ∈ V (G) such that ∆(G[f−1({i})]) ≤ N for every i ∈
⋃
v∈V (G) Lv.

As we remarked in Section 1, Theorems 1.3 and 1.5 can be extended in terms of list-
coloring variant. For instance, the theorem of Ossona de Mendez et al. [17] combined with
the argument in Section 1 implies that for integers s, t ≥ 1 and every graph G with no bipartite
Ks + It subdivision, there is N = N(s, t) such that G is (s,N)-choosable. It follows that for
t ≥ 1, graphs with no Kt+1 minor are (t, s)-choosable for some s = s(t).

Note that every n-vertex graph with noKt minor containsO(t
√

log t n) edges [14, 15, 20, 21].
In contrast to graphs with no clique minor, an n-vertex graph with no odd K3 minor may
contain O(n2) edges. For example, complete bipartite graphs have no odd K3 minor.
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Theorem 5.1 (Kang [12]). For each fixed integer N ≥ 0, there is a function

s(d) = (1/2 + o(1)) log2 d

as d→∞ such that every graph of minimum degree at least d is not (s(d), N)-choosable.

By Theorem 5.1, it follows that for integers t ≥ 3 and s,N ≥ 0, there are graphs with no
odd Kt minor not (s,N)-choosable; for instance, large complete bipartite graphs.

5.2. Extending Theorems 1.8 and 1.9. We extend our main results to a slightly larger
class of graphs. As we mentioned in Section 2, G contains H as an odd minor if and only
if a signed graph (G,E(G)) contains a signed graph (H,E(H)) as a minor. We review the
concepts of signed graphs and their minors in Appendix A.

Given Σ ⊆ E(H), we provide an alternative characterization for signed graphs (G,E(G))
containing (H,Σ) as a minor. A signed graph (G,E(G)) contains a signed graph (H,Σ) as a
minor if and only if

(1) there exist vertex-disjoint subgraphs {Tu}u∈V (H) in G which are trees, and

(2) a coloring α :
⋃
u∈V (H) V (Tu)→ {1, 2} such that for every u ∈ V (H), every edge in Tu

is bichromatic, and for every edge vw ∈ E(H), there is an edge e ∈ E(G) that joins
V (Tv) and V (Tw) where e is monochromatic if and only if vw ∈ Σ.

Note that for every Σ ⊆ E(Kt), (K2t, E(K2t)) contains (Kt,Σ) as a minor. Replacing t by
2t, Theorem 1.8 implies that for every t ≥ 2 and every Σ ⊆ E(Kt), if (G,E(G)) contains no
(Kt,Σ) as a minor, then V (G) admits a partition V1, . . . , V12t−9 such that ∆(G[Vi]) ≤ s(2t)
for 1 ≤ i ≤ 12t − 9. Theorem 1.9 also implies that for every t ≥ 2 and every Σ ⊆ E(Kt), if
(G,E(G)) contains no (Kt,Σ) as a minor, then V (G) admits a partition V1, . . . , V20t−13 such
that every component of G[Vi] has at most s(2t) vertices for 1 ≤ i ≤ 20t− 13.

By modifying the proofs in Section 3, we can improve these bounds further. In the proof
of Lemma 3.1, we join V (Mi) and V (Mj) with a parity-breaking path with respect to α for
1 ≤ i < j ≤ t. Because α(xi) = β(xi) and α(yi) 6= β(yi), we can also join V (Mi) and V (Mj)
with a path that is not parity-breaking with respect to α. In particular, Lemma 3.1 forces not
only an odd Kt minor, but also a signed (Kt,Σ) minor for every Σ ⊆ E(Kt). This extends
Theorems 1.8 and 1.9 as follows.

Corollary 5.2. For an integer t ≥ 2, there exists an integer s = s(t) such that for every
Σ ⊆ E(Kt) and (G,E(G)) with no (Kt,Σ) minor, there are 6t − 9 sets V1, . . . , V6t−9 with

V (G) =
⋃6t−9
i=1 Vi such that ∆(G[Vi]) ≤ s for 1 ≤ i ≤ 6t− 9.

Corollary 5.3. For an integer t ≥ 2, there exists an integer s = s(t) such that for every
Σ ⊆ E(Kt) and (G,E(G)) with no (Kt,Σ) minor, there are 10t− 13 sets V1, . . . , V10t−13 with

V (G) =
⋃10t−13
i=1 Vi such that every component of G[Vi] has at most s vertices for 1 ≤ i ≤

10t− 13.

5.3. Upper bound of the maximum degree. In Theorem 1.5, the function M(s, t, δ1, δ2)
is defined as follows.

M(s, t, δ1, δ2) =


t− 1 if s = 1
δ2t(δ1−2)

2 + δ1 if s = 2

(δ1 − s)
((bδ2c

s−1
)
(t− 1) + δ2

2

)
+ δ1 if s > 2

Therefore, it follows that N(2t − 2, t) = M(2t − 2, t, O(t2), O(t2)) = exp(O(t log t)) in
Corollary 1.6. Hence we have the upper bound of s(t) = exp(O(t log t)) in Theorem 1.8.
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If one replaces a bipartite K2t−2 + It subdivision of Lemma 3.1 with a bipartite K3t−2
subdivision, one may set s(t) = O(t4) since N(3t− 3, 1) = O(t4). However, this will increase
the number of colors from 6t− 9 to 7t− 10 of Theorem 1.8, as graphs with no bipartite K3t−2
subdivision are defectively colored with 3t − 3 colors, which is more than 2t − 2 colors in
defective coloring of graphs with no bipartite K2t−2 + It subdivision.
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Appendix A. signed graphs

We review elementary concepts of signed graphs, following definitions in [9] and [10] unless
stated otherwise.

A signed graph (G,Σ) is a graph G = (V,E) equipped with a signature Σ ⊆ E. To avoid
confusion, graphs always denote unsigned graphs. Every signed graph is assumed to be simple;
parallel edges and loops are not allowed. If an edge e ∈ E(G) is in Σ, e is negative. Otherwise,
e is positive.
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For two sets A and B, A∆B denotes the set (A\B)∪(B\A). For a graph G and X ⊆ V (G),
let δG(X) be the set of edges joining X and V (G) \X. For a signature Σ, a re-signing on X
is an operation that replaces Σ with another signature Σ∆δG(X) for some X ⊆ V (G). Note
that for X,Y ⊆ V (G), applying re-signing on X and Y is identical to applying re-signing on
X∆Y . In particular, re-signing at v is the operation that replaces Σ with Σ∆δG({v}). Note
that applying a re-signing operation on X is identical to applying re-signing operations at all
vertices in X.

Two signatures Σ and Σ′ are equivalent if Σ′ can be obtained from Σ by re-signing oper-
ations; Σ and Σ′ are equivalent if and only if there is X ⊆ V (G) such that Σ′ = Σ∆δG(X).
Two signed graphs (G,Σ) and (G,Σ′) are equivalent if Σ is equivalent to Σ′.

A cycle C is called balanced if it contains an even number of negative edges. Two signed
graphs (G,Σ) and (G,Σ′) have the same set of balanced cycles if and only if Σ and Σ′ are
equivalent (see [9]).

A map f : V (G)→ V (H) is an isomorphism from (G,Σ) and (H,Σ′) if f is an isomorphism
from G to H, and uv ∈ Σ if and only if f(u)f(v) ∈ Σ′. If there is an isomorphism from (G,Σ)
to (H,Σ′), (G,Σ) is isomorphic to (H,Σ′).

For two signed graphs (G,Σ) and (H,Σ′), (H,Σ′) is a minor of (G,Σ) if a signed graph
isomorphic to (H,Σ′) can be obtained from (G,Σ) by deleting vertices, deleting edges, ap-
plying re-signing operations, and contracting positive edges. To avoid parallel edges, if G has
edges wu,wv ∈ E(G) of different signs, then when we contract a positive edge uv, we should
remove either wu or wv before contracting uv.

When applying a series of operations to find minors, we may assume that deleting vertices
and edges always precede re-signing operations; contracting a positive edge uv into a new
vertex t and re-signing at t is identical to re-signing on {u, v} and contracting a positive edge
uv into a vertex t. This implies the following, which can be found in [7].

Lemma A.1. For graphs G, H and a signature Σ ⊆ E(H), a signed graph (G,E(G)) contains
a signed graph (H,Σ) as a minor if and only if

(1) there are vertex-disjoint subgraphs {Tu}u∈V (H) of G assigned to vertices in V (H),

(2) for every u ∈ V (H), Tu is a tree and has a proper 2-coloring cu : V (Tu)→ {1, 2}, and
(3) for every edge uv ∈ E(H), there is an edge e = ab ∈ E(G) that joins Tu and Tv such

that cu(a) = cv(b) if and only if uv ∈ Σ.
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