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Abstract. Linear rank-width is a graph width parameter, which is a variation

of rank-width by restricting its tree to a caterpillar. As a corollary of known
theorems, for each k, there is a finite obstruction set Ok of graphs such that

a graph G has linear rank-width at most k if and only if no vertex-minor of

G is isomorphic to a graph in Ok. However, no attempts have been made to
bound the number of graphs in Ok for k ≥ 2. We show that for each k, there

are at least 2Ω(3k) pairwise locally non-equivalent graphs in Ok, and therefore
the number of graphs in Ok is at least double exponential.

To prove this theorem, it is necessary to characterize when two graphs

in Ok are locally equivalent. A graph is a block graph if all of its blocks
are complete graphs. We prove that if two block graphs without simplicial

vertices of degree at least 2 are locally equivalent, then they are isomorphic.

This not only is useful for our theorem but also implies a theorem of Bouchet
[Transforming trees by successive local complementations, J. Graph Theory

12 (1988), no. 2, 195–207] stating that if two trees are locally equivalent, then

they are isomorphic.

1. Introduction

Linear rank-width is a width parameter of graphs motivated by rank-width of
graphs introduced by Oum and Seymour [16]. A vertex-minor relation is a graph
containment relation such that rank-width and linear rank-width cannot increase
when taking vertex-minors of a graph. Two graphs G, H are called locally equivalent
if H is a vertex-minor of G and |V (H)| = |V (G)|. The definitions can be found in
Section 2.

Oum [15] proved that for every infinite sequence G1, G2, . . . of graphs of bounded
rank-width, there exist i < j such that Gi is isomorphic to a vertex-minor of Gj .
As a corollary, we immediately obtain the following theorem.

Theorem 1.1 (Oum [15]). For every class C of graphs of bounded rank-width, there
is a finite list of graphs G1, G2, . . . , Gm such that a graph is in C if and only if it
does not have a vertex-minor isomorphic to Gi for some i ∈ {1, 2, . . . ,m}.

Because rank-width is always less than or equal to linear rank-width, we deduce
the following.
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Figure 1. Graphs in O1.

width parameter relation type references
path-width minor L, U [17],[13]
linear-width minor L [18]
tree-width minor L, U [11], [13]
tree-depth minor, induced subgraph L, U [8]
rank-width vertex-minor U [14]

branch-width (graphs, matroids) minor U [10]

Table 1. Known lower or upper bound of the size of the obstruc-
tion set for graphs of bounded width parameters. In the column
of type, L and U mean a lower and upper bound, respectively.

Corollary 1.2. For a fixed k, there exists a finite set Ok of graphs G1, G2, . . . , Gm

such that a graph has linear rank-width at most k if and only if it does not have a
vertex-minor isomorphic to Gi for some i ∈ {1, 2, . . . ,m}.

However, Theorem 1.1 does not produce an explicit upper or lower bound on the
number of graphs in Ok for Corollary 1.2. We aim to prove a lower bound on |Ok|.
Our main result is the following.

Theorem 1.3. Let k ≥ 2 be an integer. There exist at least 2Ω(3k) pairwise locally
non-equivalent graphs that are vertex-minor minimal with the property that they

have linear rank-width larger than k. In other words, |Ok| ≥ 2Ω(3k) in Corollary 1.2.

It is non-trivial to characterize the set of all graphs of linear rank-width at most
k in terms of forbidden vertex-minors. So far only one case is known. For k = 1,
Adler, Farley, and Proskurowski [1] characterized the graphs of linear rank-width at
most 1 by a set O1 of three graphs in Figure 1. Ganian [9] described the structure
of graphs of linear rank-width 1.

There have been similar results on the number of forbidden minors for various
graph width parameters, see Table 1.

One of the main ingredients is a generalization of a theorem of Bouchet. To
show Theorem 1.3, we will construct, for each non-negative integer k, a set ∆k of
vertex-minor minimal graphs with the property that they have linear rank-width
larger than k. To obtain the lower bound on |Ok|, it is necessary to understand
when two graphs in ∆k are locally equivalent. We resolve this problem by showing
the following stronger theorem. A vertex is simplicial if the set of its neighbors is
a clique.

Theorem 1.4. If two block graphs without simplicial vertices of degree at least 2
are locally equivalent, then they are isomorphic.



EXCLUDED VERTEX-MINORS FOR GRAPHS OF LINEAR RANK-WIDTH AT MOST k 3

a b

c

d
e

f

g

b a

c

d
e

f

g

Figure 2. Pivoting an edge ab.

All graphs in ∆k have no simplicial vertices of degree at least 2. Hence, The-
orem 1.4 is useful for proving Theorem 1.3. Since trees are block graphs without
simplicial vertices of degree at least 2, we deduce the following corollary, originally
shown by Bouchet.

Corollary 1.5 (Bouchet [4]). If two trees are locally equivalent, then they are
isomorphic.

The paper is organized as follows. In Section 2, we present necessary definitions.
In Section 3, we construct the set ∆k and prove that the graphs in ∆k are vertex-
minor minimal graphs with the property that they have linear rank-width larger
than k. In Section 4, we prove that no two non-isomorphic graphs in ∆k are locally
equivalent by showing Theorem 1.4. In Section 5, we count graphs in ∆k up to

isomorphism, and we conclude that |Ok| ≥ 2Ω(3k). Final remarks are made in
Section 6.

2. Preliminaries

In this paper, graphs have no loops and parallel edges. Let G = (V (G), E(G))
be a graph with the vertex set V (G) and the edge set E(G). For S ⊆ V (G), G[S]
denotes the subgraph of G induced on S. And for v ∈ V (G), we denote NG(v) as
the set of the neighbors of v in G. A vertex v in G is a leaf if |NG(v)| = 1.

For an X × Y matrix M = (mi,j)i∈X,j∈Y and subsets A ⊆ X and B ⊆ Y ,
M [A,B] denotes the A×B submatrix (mi,j)i∈A,j∈B of M .

Vertex-minors. The local complementation at a vertex v of a graph G = (V,E)
is an operation to obtain a graph G∗v from G by replacing the subgraph G[NG(v)]
with the complementary subgraph of G[NG(v)]. The graph obtained from G by
pivoting an edge uv is defined by G ∧ uv = G ∗ u ∗ v ∗ u.

To see how we obtain the resulting graph by pivoting an edge uv, let V1 =
NG(u) ∩ NG(v), V2 = NG(u)\NG(v)\{v}, and V3 = NG(v)\NG(u)\{u}. One can
easily verify that G∧uv is identical to the graph obtained from G by complementing
adjacency of vertices between distinct sets Vi and Vj , and swapping the vertices u
and v [14]. See Figure 2 for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying
a sequence of vertex deletions and local complementation. A graph H is locally
equivalent to G if H can be obtained from G by applying a sequence of local
complementation.

A vertex-minor H of G is elementary if |V (H)| = |V (G)| − 1. For a set C of
graphs closed under taking vertex-minors, a graph G is an excluded vertex-minor
for C if G /∈ C and H ∈ C for every elementary vertex-minor H of G.
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Figure 3. All non-isomorphic graphs in ∆2.

Linear rank-width. The adjacency matrix of a graph G, which is a (0, 1)-matrix
over the binary field, will be denoted by A(G). The cut-rank function ρG : 2V → Z
of a graph G is defined by ρG(X) = rank(A(G)[X,V \X]). The cut-rank function
satisfies the submodular inequality [16]:

ρG(X) + ρG(Y ) ≥ ρG(X ∩ Y ) + ρG(X ∪ Y ).

This implies that ρG(X ∪ {v}) ≤ ρG(X) + 1 for X ⊆ V (G) and v ∈ V (G).
A linear layout L of G is a sequence (v1, v2, . . . , v|V (G)|) of V (G). For a linear

layout L of G and a, b ∈ V (G), we denote a ≤L b or b ≥L a if a = b or a appears
before b in L. For two sequences L1 = (v1, v2, . . . , vn) and L2 = (w1, w2, . . . , wm),
we define L1 ⊕ L2 = (v1, v2, . . . , vn, w1, w2, . . . , wm).

The width of a linear layout L in G, denoted by lrwL(G), is defined as the
maximum over all ρG({w : w ≤L v}) for v ∈ V (G). We say that the width of L is
0 if |V (G)| ≤ 1. The linear rank-width of G, denoted by lrw(G), is the minimum
width of all linear layouts of G.

If two graphs are locally equivalent, then they have the same linear rank-width
by the following proposition.

Proposition 2.1 (Bouchet [5]; see Oum [14]). Let G be a graph and v ∈ V (G).
Then ρG(X) = ρG∗v(X) for all X ⊆ V (G).

It follows easily that if H is a vertex-minor of G, then lrw(H) ≤ lrw(G).

3. Excluded vertex-minors for graphs of bounded linear rank-width

To prove Theorem 1.3, we construct a set ∆k of graphs that are vertex-minor
minimal with the property that the linear rank-width is larger than k.

A delta composition G of graphs G1, G2, and G3 is a graph obtained from the
disjoint union of G1, G2, and G3 by adding a triangle v1v2v3 where vi ∈ V (Gi) for
i = 1, 2, 3. We call v1v2v3 the main triangle of G. For a non-negative integer k,
we define ∆k as follows:

(1) ∆0 = {({x, y}, {xy})}. (It is isomorphic to K2.)
(2) For i ≥ 1, ∆i is the set of all delta compositions of three graphs in ∆i−1.

All non-isomorphic graphs in ∆2 are depicted in Figure 3. Here is the main
theorem of this section.
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Theorem 3.1. Let k be a non-negative integer. Every graph in ∆k is an excluded
vertex-minor for graphs of linear rank-width at most k.

3.1. Linear rank-width of a graph in ∆k. First, we prove that every graph in
∆k has linear rank-width k + 1.

Lemma 3.2. The linear rank-width of a graph in ∆k is at least k + 1.

Proof. We use induction on k. We may assume that k ≥ 1. Since G ∈ ∆k, G is
a delta composition of G1, G2, G3 ∈ ∆k−1 with the main triangle v1v2v3 such that
vi ∈ V (Gi) for i = 1, 2, 3.

Suppose that G has linear rank-width at most k. By the induction hypothesis,
G1 has linear rank-width at least k and therefore G has linear rank-width exactly
k. Let L be a linear layout of G having width k. For v ∈ V (G), we define Sv = {x ∈
V (G) : x ≤L v} and Tv = V (G) \ Sv. Let a and b be the first and the last vertices
in L such that ρG(Sa) = ρG(Sb) = k. Without loss of generality, we may assume
that {a, b} ⊆ V (G2) ∪ V (G3). Let L1 be the subsequence of L whose elements are
the vertices of G1.

For contradiction, we claim that L1 is a linear layout of G1 having width at most
k − 1. Let v ∈ V (G1). It is sufficient to show that ρG1

(Sv ∩ V (G1)) ≤ k − 1. Note
that v 6= a and v 6= b. If v ≤L a or v ≥L b, then

ρG1
(Sv ∩ V (G1)) ≤ ρG(Sv) ≤ k − 1.

So we may assume that a ≤L v ≤L b. Note that one of Sv∩V (G1) and Tv∩V (G1)
does not have a neighbor in G[V (G) \V (G1)] because v1 is the unique vertex in G1

which has a neighbor in G[V (G)\V (G1)]. And since G[V (G)\V (G1)] is connected
and a ∈ Sv \ V (G1) and b ∈ Tv \ V (G1), there is an edge u1u2 in G[V (G) \ V (G1)]
such that u1 ∈ Sv \ V (G1) and u2 ∈ Tv \ V (G1). So A(G)[Sv \ V (G1), Tv \ V (G1)]
is a non-zero matrix. Depending on whether v1 ∈ Sv ∩ V (G1) or v1 ∈ Tv ∩ V (G1),

ρG(Sv)

= rank

(
A(G)[Sv ∩ V (G1), Tv ∩ V (G1)] 0
A(G)[Sv \ V (G1), Tv ∩ V (G1)] A(G)[Sv \ V (G1), Tv \ V (G1)]

)
≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)])+rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

or

ρG(Sv)

= rank

(
A(G)[Sv ∩ V (G1), Tv ∩ V (G1)] A(G)[Sv ∩ V (G1), Tv \ V (G1)]

0 A(G)[Sv \ V (G1), Tv \ V (G1)]

)
≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)])+rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

respectively. Thus, we have

ρG1(Sv ∩ V (G1)) = rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)])

≤ ρG(Sv)− rank (A(G)[Sv \ V (G1), Tv \ V (G1)])

≤ ρG(Sv)− 1 ≤ k − 1.

So L1 is a linear layout of G1 having width at most k − 1, which is contradiction.
Hence, lrw(G) ≥ k + 1. �
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A vertex w is called a twin of another vertex v in a graph if no vertex other than
v and w is adjacent to exactly one of v and w.

If w is a twin of v in a graph G and G\w has linear rank-width k+1 with a linear
layout of width k + 1 starting with v, then clearly G also admits a linear layout of
width k + 1 starting with v because we can easily put w in the second place. But
the following lemma claims that we can place w at the end if G \ w ∈ ∆k.

Lemma 3.3. Let v be a vertex of a graph G and let w be a twin of v. If G\w ∈ ∆k,
then G has a linear layout L of width k + 1 such that the first vertex of L is v and
the last vertex of L is w.

Before proving the lemma, we first show that Lemma 3.3 implies the following
proposition determining the exact linear rank-width of a graph in ∆k.

Proposition 3.4. Every graph in ∆k has linear rank-width k + 1. Moreover, for
every vertex v of G ∈ ∆k, there exists a linear layout of G having width k+1 whose
first vertex is v.

Proof of Proposition 3.4. By Lemma 3.2, the linear rank-width of a graph G in ∆k

is at least k+ 1. Let v ∈ V (G) and let G′ be a graph obtained by adding a twin w
of v to G. Then Lemma 3.3 implies that G′ has a linear layout L of width k + 1
starting at v and ending at w. We discard w from L to obtain a linear layout of G
starting with v having width k + 1. �

Proof of Lemma 3.3. We prove by induction on k. If k = 0, then G is a connected
graph on three vertices and therefore every linear layout of G has width 1. Thus
we may assume that k ≥ 1. Let G\w be a delta composition of G1, G2, G3 ∈ ∆k−1

with the main triangle v1v2v3 such that vi ∈ V (Gi) for i = 1, 2, 3. We may assume
that v ∈ V (G2).

By the induction hypothesis, G1 has a linear layout L1 of width k whose last
vertex is v1, and G3 has a linear layout L3 of width k whose first vertex is v3.

Let

H =


G \ (V (G1) ∪ V (G3)) if v 6= v2,

G \ (V (G1) ∪ V (G3)) \ vw if v = v2, and v, w are adjacent in G,

G \ (V (G1) ∪ V (G3)) + vw otherwise.

By the induction hypothesis, H has a linear layout (v)⊕ LH ⊕ (w) of width k.

(1) Clearly, ρG(V (G1) ∪ {v}) ≤ 2 ≤ k + 1 and ρG(V (G3) ∪ {w}) ≤ 2 ≤ k + 1.

(2) We claim that for X ⊆ V (G1) \ {v1}, if ρG1
(X) ≤ k, then ρG(X ∪{v}) ≤ k+ 1.

This is because no vertex in X has a neighbor in V (G) \ V (G1) and therefore
ρG1(X) = ρG(X) ≥ ρG(X ∪ {v})− 1 by the submodular inequality.

(3) Similar to (2), we deduce that for X ⊆ V (G3) \ {v3}, if ρG3(X) ≤ k, then
ρG(X ∪ {v}) ≤ k + 1.

(4) We claim that if v 6= v2, X ⊆ V (H), and ρH(X) ≤ k, then ρG(V (G1) ∪X) ≤
k + 1. By symmetry between G1 and G3, we may assume that v2 /∈ X. By the
submodular inequality, ρG(V (G1)∪X) ≤ ρG(X)+ρG(V (G1)) = ρH(X)+1 ≤ k+1.

(5) We claim that if v = v2, v ∈ X ⊆ V (H), w /∈ X, and ρH(X) ≤ k, then
ρG(V (G1) ∪ X) ≤ k + 1. By adding the row of v1 to that of v2 in A(G)[X ∪
V (G1), (V (H) \X) ∪ V (G3)], we see that ρG(X ∪ V (G1)) ≤ ρH(X) + 1 ≤ k + 1.



EXCLUDED VERTEX-MINORS FOR GRAPHS OF LINEAR RANK-WIDTH AT MOST k 7

By combining (1), (2), (3), (4), and (5), we conclude that (v)⊕L1⊕LH⊕L3⊕(w)
is a linear layout of G having width at most k+1. Clearly it has width k+1 because
G \ w has linear rank-width k + 1 by Lemma 3.2. �

3.2. Combining graphs in ∆k. The following two lemmas will help us to prove
that elementary vertex-minors of graphs in ∆k have linear rank-width at most k.

Lemma 3.5. Let k be a positive integer and let G1, G2 ∈ ∆k−1. Let G be a graph
obtained from the disjoint union of G1 and G2 by adding an edge w1w2 for fixed
w1 ∈ V (G1) and w2 ∈ V (G2). Then G has linear rank-width k.

Proof. It is trivial that the linear rank-width of G is at least k because an induced
subgraph G1 of G has linear rank-width k by Proposition 3.4. By Proposition 3.4,
there is a linear layout L1 of G1 having width k such that the last vertex of L1 is
v1, and there is a linear layout L2 of G2 having width k such that the first vertex
of L2 is v2. Then obviously L1 ⊕ L2 is a linear layout of G having width at most
k. �

Lemma 3.6. Let k be a positive integer. Let G1, G2 ∈ ∆k−1, and let G3 be a
graph having linear rank-width at most k− 1. Then every delta composition of G1,
G2 and G3 has linear rank-width k.

Proof. Let G be a delta composition of G1, G2 and G3 with the main triangle v1v2v3

such that vi ∈ V (Gi) for i = 1, 2, 3. Clearly the linear rank-width of G is at least k
because an induced subgraph G1 of G has linear rank-width k by Proposition 3.4.

Since G1, G2 ∈ ∆k−1, by Proposition 3.4, there is a linear layout L1 of G1 having
width k such that the last vertex of L1 is v1, and there is a linear layout L2 of G2

having width k such that the first vertex of L2 is v2. Let L3 be a linear layout of
G3 having width at most k − 1.

We claim that L = L1 ⊕ L3 ⊕ L2 is a linear layout of G having width at most
k. Let v ∈ V (G), Sv = {x : x ≤L v}, and Tv = V (G) \ Sv. We need to show that
ρG(Sv) ≤ k for all v ∈ V (G). This is clearly true if v ∈ V (G1) ∪ V (G2). So let us
assume that v ∈ V (G3). By symmetry we may assume v3 /∈ Sv, because we can
swap G1 and G2. Then no vertex of G2 has a neighbor in Sv ∩V (G3) and therefore

ρG(Sv) ≤ rank(A(G)[Sv ∩ V (G1), Tv]) + rank(A(G)[Sv ∩ V (G3), Tv])

= 1 + ρG3
(Sv ∩ V (G3)) ≤ k.

Therefore, G has linear rank-width at most k. �

3.3. Linear rank-width of elementary vertex-minors of a graph in ∆k. We
will prove that every elementary vertex-minor of G in ∆k has linear rank-width at
most k. To prove it, we will use the following lemmas.

Lemma 3.7 (Bouchet [3]). Let G be a graph, v be a vertex of G and w be an
arbitrary neighbor of v. Then every elementary vertex-minor obtained from G by
deleting v is locally equivalent to either G \ v, G ∗ v \ v, or G ∧ vw \ v.

Lemma 3.8 (Bouchet [3, (8.2)]; see Oum [14]). Let G be a graph and vv1, vv2 ∈
E(G). Then v1v2 ∈ E(G ∧ vv1) and G ∧ vv1 ∧ v1v2 = G ∧ vv2.

By Lemma 3.7, it is sufficient to prove that G \ v, G ∗ v \ v, and G ∧ vw \ v has
linear rank-width one less than the linear rank-width of G.
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v2 v3

v = v1

G[V (G1) ∪ {v2, v3}]

v2 v3

v = v1

G′1

v2 v3

G′1 ∗ v2

Figure 4. The case G ∗ v \ v where v = v1 in the proof of Lemma 3.10.

Lemma 3.9. Let k be a non-negative integer and G ∈ ∆k. Then G \ v has linear
rank-width at most k for each vertex v.

Proof. We use induction on k. We may assume k ≥ 1. So G is a delta composition
of three graphs in ∆k−1, say G1, G2 and G3 with the main triangle v1v2v3 such
that vi ∈ V (Gi) for i = 1, 2, 3. We may assume that v ∈ V (G1). By the induction
hypothesis, G1 \ v has linear rank-width at most k − 1.

If v = v1, then G \ v is obtained from the disjoint union of three graphs G1 \ v,
G2, G3 by adding an edge v2v3 and so G\v has linear rank-width k by Lemma 3.5.

If v 6= v1, then G\v is a delta composition of two graphs in ∆k−1 and one graph
having linear rank-width at most k − 1. Thus by Lemma 3.6, lrw(G \ v) = k. �

Lemma 3.10. Let k be a non-negative integer and G ∈ ∆k. Then G ∗ v \ v has
linear rank-width at most k for each vertex v.

Proof. We use induction on k. We may assume k ≥ 1. Let G be a delta composition
of G1, G2, G3 ∈ ∆k−1 with the main triangle v1v2v3 such that vi ∈ V (Gi) for i = 1,
2, 3. We may assume that v ∈ V (G1).

If v 6= v1, then G ∗ v \ v is a delta composition of G1 ∗ v \ v, G2 and G3 where
G1 ∗ v \ v has linear rank-width at most k − 1 by the induction hypothesis. Thus
by Lemma 3.6, G ∗ v \ v has linear rank-width k.

So we may assume v = v1. let G′1 = G ∗ v \ v \ (V (G2)∪V (G3) \ {v2, v3}). Since
v3 is a twin of v2 and v3 is not adjacent to v2 in G′1∗v2 and G′1∗v2\v3 is isomorphic
to G1 (see Figure 4), by Lemma 3.3, G′1 has a linear layout (v2)⊕L1⊕(v3) of width
k.

By Proposition 3.4, G2 has a linear layout L2 of width k whose last vertex is v2,
and G3 has a linear layout L3 of width k whose first vertex is v3.

It follows easily that L = L2⊕L1⊕L3 is a linear layout of G∗v \v having width
k because (G ∗ v \ v)[V (G2)] = G2, (G ∗ v \ v)[V (G3)] = G3, and (G ∗ v \ v)[V (G1)∪
{v2, v3}] = G′1. �

Lemma 3.11. Let k be a non-negative integer and G ∈ ∆k. Then G ∧ vw \ v has
linear rank-width at most k for each edge vw.

Proof. For each vertex v, it is enough to prove it for one neighbor w of v by
Proposition 2.1 and Lemma 3.8.

We use induction on k. We may assume k ≥ 1. Let G be a delta composition of
G1, G2, G3 ∈ ∆k−1 with the main triangle v1v2v3 such that vi ∈ V (Gi) for i = 1,
2, 3. We may assume that v ∈ V (G1).
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v2 v3

v = v1

G[V (G1) ∪ {v2, v3}]

v v3

v2

G[V (G1) ∪ {v2, v3}] ∧ v1v2 \ v1

Figure 5. The case G ∧ v1v2 \ v in the proof of Lemma 3.11.

If v has only one neighbor w, then G ∧ vw \ v is isomorphic to G \ w and by
Lemma 3.9 we know that G\w has linear rank-width at most k. So we may assume
that v has at least two neighbors.

If v 6= v1, then we choose a neighbor w of v such that w 6= v1. It is easy to observe
that G∧ vw \ v is a delta composition of G1 ∧ vw \ v, G2, G3 where G1 ∧ vw \ v has
linear rank-width at most k−1 by the induction hypothesis. Hence, by Lemma 3.6,
G ∧ vw \ v has linear rank-width k.

Thus we may assume v = v1. Since G[V (G1)∪{v2, v3}]∧vv2 \v is isomorphic to
a graph obtained from G1 by adding a twin of v (see Figure 5), by Proposition 3.3,
G[V (G1) ∪ {v2, v3}] ∧ vv2 \ v has a linear layout (v2)⊕ L1 ⊕ (v3) of width k.

Let w be a neighbor of v in G1 and let G′1 = G[V (G1) ∪ {v2, v3}] ∧ vw \ v. By
Lemma 3.8, G′1 ∧ v2w = G[V (G1)∪{v2, v3}]∧ vw∧ v2w \ v = G[V (G1)∪{v2, v3}]∧
vv2 \ v and therefore (v2)⊕ L1 ⊕ (v3) is also a linear layout of G′1 having width k.

By Proposition 3.4, G2 has a linear layout L2 of width k whose last vertex is v2,
and G3 has a linear layout L3 of width k whose first vertex is v3.

It is now easy to see that L = L2⊕L1⊕L3 is a linear layout of G∧vw \v having
width at most k because (G∧ vw \ v)[V (G2)] = G2, (G∧ vw \ v)[V (G3)] = G3, and
(G ∧ vw \ v)[V (G1) ∪ {v2, v3}] = G′1. �

Finally we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Let G ∈ ∆k. By Proposition 3.4, G has linear rank-width
k+ 1. And by lemmas 3.9, 3.10, and 3.11, every elementary vertex-minor of G has
linear rank-width at most k. Therefore, G is an excluded vertex-minor for graphs
of linear rank-width at most k. �

4. Locally equivalent graphs in ∆k are isomorphic

In this section, we will prove that if two graphs in ∆k are locally equivalent, then
they are isomorphic. We will prove the theorem for a more general class of graphs
containing ∆k.

A block in a graph G is a maximal connected subgraph of G having no cut-
vertices. A graph is a block graph if every block of it is a complete graph. It is easy
to see that every induced subgraph of a block graph is a block graph.

A partition (A,B) of V (G) is a split of a graph G if |A| ≥ 2, |B| ≥ 2, and
ρG(A) ≤ 1.
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(=⇒) Replacing a bag with a simple decomposition of it
(⇐=) Recomposing along a marked edge ab

a b c

d

e f

v1 v2 v3

v4

v5

v6

v7

Figure 6. Two operations on a split decomposition.

We first show that every graph in ∆k is a block graph without simplicial vertices
of degree at least 2.

Lemma 4.1. Every graph in ∆k is a block graph without simplicial vertices of
degree at least 2.

Proof. Let G be a graph in ∆k. From the construction of ∆k, every vertex of G
has odd degree and each block of G is isomorphic to K2 or K3. Therefore G is a
block graph and has no simplicial vertex of degree at least 2. �

We will prove that if two block graphs without simplicial vertices of degree at
least 2 are locally equivalent, then they are isomorphic. We will use the canonical
decomposition of a graph, a useful tool introduced by Cunningham [7].

4.1. Canonical decompositions of a connected graph. In this subsection,
we will define the canonical decompositions of a connected graph, following the
presentation by Bouchet [4], and discuss the canonical decompositions of locally
equivalent graphs.

A marked graph is a graph with a set of marked edges, and for a marked graph
D, let M(D) be the set of all marked edges of D. A marked vertex of a marked
graph is a vertex incident with some marked edges.

A graph without splits is called prime. If G has a split (A,B), then a marked
graph G′ is called a simple decomposition of G if G′ is obtained from the disjoint
union of G[A] and G[B] by adding two new vertices a and b, adding a marked edge
ab, making a adjacent to all vertices in A having neighbors in B in G, and making
b adjacent to all vertices in B having neighbors in A in G.

A split decomposition of a connected graph G is recursively defined to be either
G with no marked edges or a marked graph obtained from a split decomposition D
by replacing a component H of D \M(D) with a simple decomposition of H.

Let D be a split decomposition of a connected graph G. Clearly D is connected.
Each component of D \M(D) is called a bag of D. If ab is a marked edge in a
split decomposition D, then D ∧ ab \ a \ b is called a split decomposition obtained
by recomposing ab. See Figure 6 for an example. Given a split decomposition D,
we can recover the graph G by recomposing all marked edges. Note that the set of
vertices of G is exactly the set of all unmarked vertices of D.

Note that every marked vertex in a bag represent at least one vertex in the
original graph. It is easy to observe the following.

Lemma 4.2. Let D be a split decomposition of a connected graph G. If B is a bag
of D, then G has an induced subgraph isomorphic to B.
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Figure 7. From a split decomposition D of a graph G, we obtain
a split decomposition D ∗ v2 of G ∗ v2. Note that v2 is represented
by v2, a, f in D.

A bag is called star if it is isomorphic to K1,n for some n ≥ 2 and it is called
complete if it is isomorphic to Kn for some n ≥ 1. A non-leaf vertex of a star bag is
called the center. Two bags C1 and C2 of D are neighbors if there exist v1 ∈ V (C1),
v2 ∈ V (C2) such that v1v2 ∈M(D). A split decomposition D of a connected graph
is called the canonical decomposition if it satisfies the following:

(i) each bag of D is prime, star, or complete,
(ii) no two complete bags are neighbors,
(iii) if two star bags are neighbors and e is the marked edge connecting them, then

two end vertices of e are both centers or both leaves of the bags.

The conditions (ii) and (iii) can be justified as follows. If there are two complete
bags that are neighbors, then we can recompose them to create a bigger complete
bag. If there are two star bags having a marked edge joining a center of one to a
leaf of another, we can also recompose them to make a bigger star bag. Thus the
conditions (ii) and (iii) ensure that we do not decompose a complete or star bag.
It turns out that each connected graph has a unique canonical decomposition.

Lemma 4.3 (Cunningham [7]). Every connected graph has a unique canonical
decomposition.

In Appendix A. we present the canonical decompositions of graphs in ∆k.
A path in a marked graph is alternating if every second edge is marked and other

edges are unmarked. Let D be a split decomposition of a connected graph G. Two
unmarked vertices x and y are linked in D if D has an alternating path from x to
y. The proof of the following lemma is an easy induction on the number of bags of
the decomposition.

Lemma 4.4. Let D be a split decomposition of a connected graph G and let v, w
be two distinct unmarked vertices of D. Then v and w are linked in D if and only
if vw ∈ E(G).

For v ∈ V (G), we say a vertex w in D represents v if D has an alternating path
from v to w with even length (possibly 0).

For v ∈ V (G), let D ∗ v be a marked graph obtained from D by replacing B
with B ∗ w for each bag B of D having a vertex w representing v. See Figure 7
for an example. It is easy to observe that D ∗ v is a split decomposition of G ∗ v.
Moreover, the following lemma is known.

Lemma 4.5 (Bouchet [4]). If D is the canonical decomposition of a connected
graph G and v ∈ V (G), then D ∗ v is the canonical decomposition of G ∗ v.
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A graph G is distance-hereditary [2] if for each connected induced subgraph H
of G and two distinct vertices x, y in H, their distance in H is the same as in G. It
is known that connected distance-hereditary graphs are exactly the graphs having
the canonical decomposition whose bags are either star or complete [4]. It is easy
to see that every block graph is distance-hereditary [2].

4.2. Canonical decompositions of block graphs. A diamond graph is the
graph obtained from K4 by removing one edge. By definition, neither a diamond
graph nor Ck for k ≥ 4 is a block graph. Actually Bandelt and Murder [2] showed
that a graph is a block graph if and only if it has no induced subgraph isomorphic
to a diamond graph or Ck for k ≥ 4.

In the following proposition, we will characterize block graphs from their canon-
ical decompositions.

Proposition 4.6. Let D be the canonical decomposition of a connected graph G.
Then G is a block graph if and only if every bag of D is either star or complete,
and the center of each star bag of D is unmarked.

Proof. We may assume that G is distance-hereditary because otherwise D has a
bag that is neither star nor complete, and G is not a block graph.

We first suppose that D has a star bag B having a marked center w. There
exists a marked edge ww′ joining B with a bag B′. Since D is a canonical decom-
position, B′ is either complete or star with the center w′. If B′ is complete, then by
recomposing ww′ we obtain a bag which has an induced subgraph isomorphic to a
diamond graph. Thus G has an induced subgraph isomorphic to a diamond graph
by Lemma 4.2. Since a diamond graph is not a block graph, we deduce that G is
not a block graph. If B′ is a star bag with the center w′, then by recomposing ww′,
we obtain a bag which has an induced subgraph isomorphic to C4. By Lemma 4.2,
G should have an induced subgraph isomorphic to C4, and therefore G is not a
block graph.

To prove the converse, we claim a stronger statement: if D is a split decomposi-
tion of a connected graph G whose bags are star or complete and no center of a star
bag in D is marked, then G is a block graph. We proceed by induction on |V (D)|.
We may assume that D has a star bag B because otherwise G is a complete graph.
Let v be the center of B. If B has another unmarked vertex w, then let G′ be
a graph obtained by recomposing all marked edges in D \ w. Here G is obtained
from G′ by adding a pendant vertex w to v. By the induction hypothesis, G′ is a
block graph and so is G. We may now assume that every vertex in B other than v
is marked. Let B = {v, v1, v2, . . . , vn} and let v1w1, v2w2, . . . , vnwn be the marked
edges incident with B. Let Di be the component of D \ V (B) containing wi. By
the induction hypothesis, the graph Gi obtained by recomposing all marked edges
in Di is a block graph. The graph G is obtained from G1, G2, . . . , Gn by identifying
w1, w2, . . . , wn with a new vertex v. Since each block of G is a block of Gi for some
i, we deduce that G is a block graph. �

We now characterize block graphs without simplicial vertices of degree at least
2 in terms of their canonical decompositions.

Proposition 4.7. Let D be the canonical decomposition of a connected block graph
G. Then G has a simplicial vertex of degree at least 2 if and only if D has a
complete bag B having more than 2 vertices containing an unmarked vertex.
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Proof. Suppose that v ∈ V (G) is a simplicial vertex of degree at least 2 in G.
Clearly v is not a center of a star bag of D by Lemma 4.2. Because the center of
a star bag is unmarked by Proposition 4.6 and v has degree at least 2, v cannot
belong to a star bag. So v is in a complete bag of D.

Conversely suppose that D has a complete bag B having more than 2 vertices
containing an unmarked vertex v. By Lemma 4.2, the degree of v is at least
2. Since all neighboring bags of B are star bags whose centers are unmarked by
Proposition 4.6, v is a simplicial vertex of G. �

4.3. Generalizing a theorem of Bouchet. Now we are ready to prove Theo-
rem 1.4. This theorem is best possible for block graphs, because if v is a simplicial
vertex of a block graph G, then G ∗ v is also a block graph.

Theorem 1.4. If two block graphs without simplicial vertices of degree at least 2
are locally equivalent, then they are isomorphic.

Proof. Suppose that two block graphs G and H without simplicial vertices of degree
at least 2 are locally equivalent. Let DG and DH be the canonical decompositions
of G and H, respectively. We may assume that |V (G)| = |V (H)| ≥ 3 and therefore
each bag of DG or DH has at least 3 vertices.

Since G and H are locally equivalent, by Lemma 4.5 we assume that DH is
obtained from DG by a sequence of local complementation. Note that applying
local complementation in a split decomposition does not change the number of
marked vertices and unmarked vertices in each bag.

Suppose that a bag B of DG corresponds to a bag B′ = DH [V (B)] of DH . If
B is a complete bag in DG, then by Proposition 4.7, B has no unmarked vertex in
DG and therefore B′ has no unmarked vertex in DH . Since every star bag of DH

should have at least one unmarked vertex by Proposition 4.6, B′ is a complete bag
in DH . Similarly, if B′ is a complete bag in DH , then B is a complete bag in DG.

Thus B is a star bag of DG if and only if B′ is a star bag of DH . By Propo-
sition 4.6, the center of a star bag in DG or DH is an unmarked vertex. Since a
bag B in DG and B′ in DH have the same number of neighbor bags and unmarked
vertices in each canonical decomposition, the unmarked vertices of B in DG must
be mapped to the unmarked vertices of B′ in DH . Therefore, DG is isomorphic to
DH and so G is isomorphic to H. �

5. The number of non-isomorphic graphs in ∆k

In this section, we will prove that ∆k has at least 2Ω(3k) pairwise non-isomorphic
graphs. A rooted graph is a pair of a graph and a specified vertex called a root. Two
rooted graphs (G, v) and (G′, v′) are isomorphic if there exists a graph isomorphism
φ from G to G′ that maps v to v′. Let us write Aut(G) to denote the automorphism
group of a graph G. For a rooted graph (G, v), we write Aut(G, v) to denote the
automorphism group of (G, v). In other words, Aut(G, v) = {φ ∈ Aut(G) : φ(v) =
v}.

First we show that each graph in ∆k has a unique main triangle.

Lemma 5.1. Let k ≥ 1 and G ∈ ∆k. Then G has a unique cycle v1v2v3 of length
3 such that G \ v1v2 \ v2v3 \ v3v1 has exactly three components G1, G2, G3, each of
which is in ∆k−1.
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Proof. Clearly there is at least one such cycle because of the construction. Suppose
there are two such cycles T = v1v2v3 and T ′ = v′1v

′
2v
′
3. Let H be a component of

G \ v1v2 \ v2v3 \ v3v1 having no vertex of T ′. By the condition, H ∈ ∆k−1 and so
H has exactly 2 · 3k−1 vertices. We may assume v1 ∈ V (H). The component J
of G \ v′1v′2 \ v′2v′3 \ v′3v′1 intersecting V (H) should be equal to H because T ′ does
not intersect H and |V (J)| = |V (H)|. Thus v2, v3 ∈ T ′ and so v2 and v3 have a
common neighbor other than v1. However, this contradicts our assumption that
G \ v1v2 \ v2v3 \ v3v1 has exactly three components. �

Let k ≥ 2 and let G be a graph in ∆k. By the construction, G is a delta
composition of three graphs G1, G2, G3 ∈ ∆k−1 with the main triangle v1v2v3 such
that vi ∈ V (Gi) for i = 1, 2, 3. We call G ∈ ∆k

• Type-A if (G1, v1), (G2, v2), and (G3, v3) are pairwise isomorphic,
• Type-B if exactly two of (G1, v1), (G2, v2), (G3, v3) are isomorphic,
• Type-C otherwise.

Lemma 5.2. Let k ≥ 1 and G be a delta composition of three graphs G1, G2, G3 ∈
∆k−1 with the main triangle v1v2v3 such that vi ∈ V (Gi) for all i = 1, 2, 3. Then,

(1) Aut(G) ' S3 ×Aut(G1, v1)×Aut(G2, v2)×Aut(G3, v3) if G is Type-A.
(2) Aut(G) ' S2 ×Aut(G1, v1)×Aut(G2, v2)×Aut(G3, v3) if G is Type-B.
(3) Aut(G) ' Aut(G1, v1)×Aut(G2, v2)×Aut(G3, v3) if G is Type-C.

Proof. Let g ∈ Aut(G). By Lemma 5.1, g({v1, v2, v3}) = {v1, v2, v3} and therefore
g(V (G1)), g(V (G2)), g(V (G3)) ∈ {V (G1), V (G2), V (G3)}. So Aut(G) induces a
subgroup Γ of S3 on {v1, v2, v3} based on the type of G. It is clear that Aut(G)/Γ
is a composition of automorphism groups of three rooted graphs (G1, v1), (G2, v2)
and (G3, v3). �

For a graph G and x ∈ V (G), we define the orbit of x in G as the set

{w ∈ V (G) : w = f(x) for some automorphism f of G},

and we denote #Orb(G) as the number of all distinct orbits of G. For a rooted
graph (G, v) and x ∈ V (G), we define the orbit of x in (G, v) as the set

{w ∈ V (G) : w = f(x) for some automorphism f of (G, v)},

and we denote #Orb(G, v) as the number of all distinct orbits of (G, v).

Lemma 5.3. Let k ≥ 1 and G be a delta composition of three graphs G1, G2, G3 ∈
∆k−1 with the main triangle v1v2v3 such that vi ∈ V (Gi) for all i = 1, 2, 3. If
v ∈ V (G1), then

#Orb(G, v) ≥ #Orb(G1, v1) + #Orb(G2, v2).

Proof. By Lemma 5.1, no vertex in G1 can be mapped to a vertex in G2 or G3 by
an automorphism of G fixing v. Thus orbits of (G, v) intersecting V (G1) cannot
contain a vertex in G2 or G3. The number of orbits of (G, v) intersecting V (G1) is
equal to the number of automorphisms of G1 fixing both v and v1 and this number
is at least #Orb(G1, v1). The number of orbits of (G, v) not intersecting V (G1) is
at least #Orb(G2, v2) by Lemma 5.2. Thus, we obtain the desired inequality. �

Lemma 5.4. Let k be a non-negative integer and G ∈ ∆k and v ∈ V (G). Then
(G, v) has at least 2k+1 orbits.
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Proof. Trivial if k = 0. It follows easily by induction from Lemma 5.3. �

Lemma 5.5. Let k be a positive integer and G ∈ ∆k.

(1) If G is Type-A, then G has at least 2k orbits.
(2) If G is Type-B, then G has at least 2 · 2k orbits.
(3) If G is Type-C, then G has at least 3 · 2k orbits.

Proof. Let G be a delta composition of G1, G2, G3 ∈ ∆k−1 with the main triangle
v1v2v3 such that vi ∈ V (Gi) for all i = 1, 2, 3. By Lemma 5.2,

(1) #Orb(G) = #Orb(G1, v1) if G is Type-A,
(2) #Orb(G) = #Orb(G1, v1) + #Orb(G2, v2) if G is Type-B and (G1, v1) is

isomorphic to (G3, v3),
(3) #Orb(G) = #Orb(G1, v1) + #Orb(G2, v2) + #Orb(G3, v3) if G is Type-C.

By Lemma 5.4, we deduce the lemma. �

Let pk be the number of non-isomorphic rooted graphs (G, v) with G ∈ ∆k.
Then p0 = 1, p1 = 2, and p2 = 24 (see Figure 3). We can easily verify that ∆k has

• exactly pk−1 non-isomorphic Type-A graphs,
• exactly pk−1(pk−1 − 1) non-isomorphic Type-B graphs,
• exactly

(
pk−1

3

)
non-isomorphic Type-C graphs.

We are now ready to provide a lower bound on the number of non-isomorphic
graphs in ∆k.

Proposition 5.6. Let k ≥ 2 be an integer. Then ∆k has at least 2Ω(3k) non-
isomorphic graphs.

Proof. Let ak, bk, ck be the number of non-isomorphic graphs in ∆k that is Type-A,
Type-B, and Type-C respectively. By Lemma 5.5,

pk ≥ 2kak + 2 · 2kbk + 3 · 2kck.
Since ak = pk−1, bk = pk−1(pk−1 − 1) and ck =

(
pk−1

3

)
, we obtain the following

recurrence relation;

ak+1 = pk ≥ 2kak + 2 · 2kbk + 3 · 2kck = 2k−1a2
k(ak + 1) ≥ 2k−1a3

k

and a2 = 2. We deduce that ak ≥ 2(1−2k)/4+7·3k/36 = 2Ω(3k). �

Now we can combine all to prove our main theorem.

Proof of Theorem 1.3. By Theorems 3.1, Ok must contain a graph locally equiva-

lent to each graph in ∆k. Proposition 5.6 states that ∆k has at least 2Ω(3k) non-
isomorphic graphs. Lemma 4.1 and Theorem 1.4 show that two non-isomorphic

graphs in ∆k cannot be locally equivalent. Therefore, |Ok| ≥ 2Ω(3k). �

6. Concluding remarks

We present 2Ω(3k) lower bound of the number of pairwise locally non-equivalent
vertex-minor minimal graphs with the property that they have linear rank-width
larger than k.

A question naturally arises in the context.

Question 1. Find an explicit upper bound on the number of vertices in a graph
that is vertex-minor minimal with the property having linear rank-width larger
than k.
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So far, we do not know any explicit upper bound; its existence is given by
Corollary 1.2. The only known fixed-parameter algorithm to decide linear rank-
width at most k is based on this list; it uses the modulo-2 counting monadic second-
order logic formula to decide whether a given graph has linear rank-width at most
k by using the existence of forbidden vertex-minors. However, no explicit methods
are known to construct such a list of forbidden vertex-minors and so perhaps we
can say “we know such an algorithm exists but we do not know what it is.”

A similar trouble appears in the problem of deciding rank-width at most k in
Courcelle and Oum [6]. But for rank-width, there is an explicit upper bound on the
number of vertices of forbidden vertex-minors [14] and therefore in theory, one can
enumerate all graphs up to that bound and construct the list of forbidden vertex-
minors. If we resolve the above question, then we will be able to construct a fixed
parameter algorithm to decide linear rank-width at most k.
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Appendix A. Canonical decompositions of graphs in ∆k

We now aim to describe the canonical decomposition DG of each graph G in ∆k

for k ≥ 1 explicitly. Let us call the edges of the graph in ∆0 thick. In graphs in
∆k, the edges originated from ∆0 are thick and all other edges introduced by a
delta composition are thin. Observe the set of thick edges of G ∈ ∆k is a perfect
matching and therefore we deduce the following.

Lemma A.1. For graphs in ∆k, each leaf is incident only with a thick edge and
no two leaves have a common neighbor.

For G ∈ ∆k, let C(G) be the set of triangles in G. First let us describe the set
Θ(G) of marked vertices of DG. For each thick edge uv joining two non-leaf vertices,
we have two new vertices m(u, v) and m(v, u) in Θ(G) and for each pair of a vertex
v and a triangle C containing v, we have two new vertices m(C, v) and m(v, C).
We will construct DG so that V (DG) is the disjoint union of V (G) and Θ(G). For
convenience, if w is a leaf incident with an (thick) edge vw, then m(v, w) := w.

Now we describe all bags of DG. For each vertex v in G of degree n > 1, if
w is the unique neighbor of v joined by a thick edge, then let B(v) be the graph
isomorphic to K1,(n−1)/2+1 on the vertex set

{v,m(v, w)} ∪ {m(v, C) : C ∈ C(G), v ∈ V (C)}

with the center v. For each triangle C of G, let B(C) be the graph isomorphic to
K3 on the vertex set {m(C, v) : v ∈ V (C)}.

Let DG be the marked graph on the vertex set Θ(G) ∪ V (G) such that all bags
of DG are

{B(v) : v is a non-leaf vertex in G} ∪ {B(C) : C ∈ C(G)}

and the set M(DG) of all marked edges is exactly

{m(v, C)m(C, v) : C ∈ C(G), v ∈ V (C)}
∪ {m(v, w)m(w, v) : vw is the thick edge joining two non-leaf vertices}

For a graph G in ∆2, the marked graph DG is depicted in Figure 8.
We now show that if G ∈ ∆k, then DG is the canonical decomposition of G.

Proposition A.2. For each graph G ∈ ∆k with k ≥ 1, the marked graph DG is
the canonical decomposition of G.

Proof. We first prove that DG is a split decomposition of G. We use induction on
k. We may assume that k ≥ 2 and let C be the main triangle v1v2v3 of G. For each
1 ≤ i ≤ 3, let Gi be the component of G \ v1v2 \ v2v3 \ v3v1 such that vi ∈ V (Gi),
and let Di be the component of DG[V (DG) \ {m(C, v1),m(C, v2),m(C, v3)}] such
that vi ∈ V (Di). Let wi be the neighbor of vi such that viwi is thick.

If vi is not a leaf in Gi, then by construction, Di\m(vi, C) = DGi
. If vi is a leaf of

Gi, then DGi is obtained from Di \m(vi, C) by recomposing a marked edge joining
m(vi, wi) and m(wi, vi). By the induction hypothesis, DGi is a split decomposition
ofGi and therefore in both cases, Di\m(vi, C) is a split decomposition ofGi because
we obtain Gi from Di \m(vi, C) by recomposing all marked edges of Di \m(vi, C).
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C1 C3

v1

v2 v5

v6

v3

v4

v8
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C2

m(C1, v2) m(C1, v5)

m(C1, v3)

m(v2, C1)

v2

v1

m(v5, C1)

v5

m(v5, v6)

m(v6, v5)

v6 m(v6, C2)

m(v3, C1)
v3

v4

m(v7, C3)

v7

v8

m(v7, C2)

m(C3, v7)
m(C2, v6)

m(C2, v7)

m(C2, v9)

m(v9, C2)

Figure 8. A graph G ∈ ∆2 with thick edges, and a part of DG.

Let G′i be the graph obtained from Di by recomposing all marked edges of Di.
Then m(vi, C) is a leaf of G′i and G′i \m(vi, C) = Gi.

If we recompose all marked edges of DG except three marked edges associated
with C, then we obtain a marked graph obtained from the disjoint union of G′1,
G′2, G′3, and B(C) by adding three marked edges in {m(vi, C),m(C, vi)}1≤i≤3. It
is then clear that G is obtained from this graph by recomposing three marked
edges in {m(vi, C),m(C, vi)}1≤i≤3 from this graph. This proves that DG is a split
decomposition of G.

It remains to check thatDG is a canonical decomposition. From the construction,
every bag of DG is a complete bag or a star bag, and every star bag has marked
vertices only on its leaves and no two complete bags are neighbors. This proves the
lemma. �
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