GRAPHS OF SMALL RANK-WIDTH ARE PIVOT-MINORS OF GRAPHS OF SMALL TREE-WIDTH

O-JOUNG KWON AND SANG-IL OUM

ABSTRACT. We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors of trees and bipartite graphs of linear rank-width at most 1 are precisely pivot-minors of paths.

1. INTRODUCTION

Rank-width is a width parameter of graphs, introduced by Oum and Seymour [6], measuring how easy it is to decompose a graph into a tree-like structure where the "easiness" is measured in terms of the matrix rank function derived from edges formed by vertex partitions. Rank-width is a generalization of another, more well-known width parameter called tree-width, introduced by Robertson and Seymour [8]. It is well known that every graph of small tree-width also has small rank-width; Oum [7] showed that if a graph has tree-width k, then its rank-width is at most k + 1. The converse does not hold in general, as complete graphs have rank-width 1 and arbitrary large tree-width.

Pivot-minor and vertex-minor relations are graph containment relations such that rank-width cannot increase when taking pivot-minors or vertex-minors of a graph [6]. Our main result is that for every graph G with rank-width at most k and $|V(G)| \ge 3$, there exists a graph H having G as a pivot-minor such that H has tree-width at most 2k and $|V(H)| \le (2k+1)|V(G)| - 6k$. Furthermore, we prove that for every graph G with linear rank-width at most k and $|V(G)| \ge 3$, there exists a graph H having G as a pivot-minor such that H has tree-width at most 2k and $|V(H)| \le (2k+1)|V(G)| - 6k$.

As a corollary, we give new characterizations of two graph classes: graphs with rank-width at most 1 and graphs with linear rank-width at most 1. We show that a graph has rank-width at most 1 if and only if it is a vertex-minor of a tree. We also prove that a graph has linear rank-width at most 1 if and only if it is a vertex-minor of a path. Moreover, if the graph is bipartite, we prove that a vertex-minor relation can be replaced with a pivot-minor relation in both theorems. Table 1 summarizes our theorems.

Date: March 16, 2012.

Key words and phrases. rank-width, linear rank-width, vertex-minor, pivot-minor, tree-width, path-width, distance-hereditary.

Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011653). S. O. is also supported by TJ Park Junior Faculty Fellowship.

\Rightarrow	G is a pivot-minor of
	a graph of tree-width $\leq 2k$
\Rightarrow	G is a pivot-minor of
	a graph of path-width $\leq k+1$
\Leftrightarrow	G is a vertex-minor of a tree
\Leftrightarrow	${\cal G}$ is a vertex-minor of a path
\Leftrightarrow	G is a pivot-minor of a tree
\Leftrightarrow	G is a pivot-minor of a path
	$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\$

TABLE 1. Summary of theorems

To prove the main theorem, we construct a graph having G as a pivot-minor, called a rank-expansion. Then we prove that a rank-expansion has small tree-width.

The paper is organized as follows. We present the definition of rank-width and related operations in the next section. In Section 3, we define a *rank-expansion* of a graph and prove the main theorem. In Section 4, using a rank-expansion, we present new characterizations of graphs with rank-width at most 1 and graphs with linear rank-width at most 1.

2. Preliminaries

In this paper, all graphs are simple and undirected. Let G = (V, E) be a graph. For $v \in V$, let N(v) be the set of vertices adjacent to v and $\deg(v) := |N(v)|$. And let $\delta(v)$ be the set of edges incident with v. For $S \subseteq V$, G[S] denotes the subgraph of G induced on S. For two sets A and B, $A\Delta B = (A \cup B) \setminus (A \cap B)$.

A vertex partition of a graph G is a pair (A, B) of subsets of V such that $A \cup B = V$ and $A \cap B = \emptyset$. A vertex $v \in V$ is a *leaf* if deg(v) = 1; Otherwise we call it an *inner vertex*. An edge $e \in E$ is an *inner edge* if e does not have a leaf as an end. Let $V_I(G)$ and $E_I(G)$ be the set of inner vertices of G and inner edges of G, respectively.

For an $X \times Y$ matrix M and subsets $A \subseteq X$ and $B \subseteq Y$, M[A, B] denotes the $A \times B$ submatrix $(m_{i,j})_{i \in A, j \in B}$ of M. If A = B, then M[A] = M[A, A] is called a *principal submatrix* of M. The adjacency matrix of a graph G, which is a (0, 1)-matrix over the binary field, will be denoted by A(G).

Pivoting matrices. Let $M = \begin{array}{cc} X & V \setminus X \\ X & \begin{pmatrix} A & B \\ C & D \end{array} \end{array}$ be a symmetric or skew-

symmetric $V \times V$ matrix over a field F. If A = M[X] is nonsingular, then we define

$$M * X = \begin{array}{cc} X & V \setminus X \\ M * X = \begin{array}{c} X & A^{-1} & A^{-1}B \\ -CA^{-1} & D - CA^{-1}B \end{array} \right).$$

This operation is called a *pivot*. Tucker showed the following theorem.

Theorem 2.1 (Tucker [9]). Let M[X] be a nonsingular principal submatrix of a square matrix M. Then M * X[Y] is nonsingular if and only if $M[X\Delta Y]$ is nonsingular.

FIGURE 1. Pivoting an edge uv. Note that $G \wedge uv \wedge uc = G \wedge vc$.

Vertex-minors and pivot-minors. The graph obtained from G = (V, E) by applying *local complementation* at a vertex v is $G * v = (V, E\Delta\{xy : xv, yv \in E, x \neq y\})$. The graph obtained from G by *pivoting* an edge uv is defined by $G \wedge uv = G * u * v * u$.

To see how we obtain the resulting graph by pivoting an edge uv, let $V_1 = N(u) \cap N(v)$, $V_2 = N(u) \setminus N(v) \setminus \{v\}$ and $V_3 = N(v) \setminus N(u) \setminus \{u\}$. One can easily verify that $G \wedge uv$ is identical to the graph obtained from G by complementing adjacency of vertices between distinct sets V_i and V_j and swapping the vertices u and v [6]. See Figure 1 for example.

In fact, if $uv \in E$, then $A(G \wedge uv) = A(G) * \{u, v\}$. Since det $(A(G)[\{u, v\}]) = A(G)(u, v)$, Theorem 2.1 is useful for dealing with a sequence of pivoting. In Figure 1, we can easily check that $G \wedge uv \wedge uc = G \wedge vc$. For $X \subseteq V$, if A(G)[X] is nonsingular, then we denote $G \wedge X$ as the graph having the adjacency matrix A(G) * X.

A graph H is a *vertex-minor* of G if H can be obtained from G by applying a sequence of vertex deletions and local complementations. A graph H is a *pivot-minor* of G if H can be obtained from G by applying a sequence of vertex deletions and pivoting edges. From the definition, every pivot-minor of a graph is a vertex-minor of the graph. Note that every pivot-minor of a bipartite graph is bipartite.

Rank-width and linear rank-width. The *cut-rank* function $\operatorname{cutrk}_G : 2^V \to \mathbb{Z}$ of a graph G is defined by

$$\operatorname{cutrk}_G(X) = \operatorname{rank}(A(G)[X, V \setminus X]).$$

A tree is subcubic if it has at least two vertices and every inner vertex has degree 3. A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic tree and L is a bijection from the vertices of G to the leaves of T. For an edge ein T, T\e induces a partition (X_e, Y_e) of the leaves of T. The width of an edge e is defined as $\operatorname{cutrk}_G(L^{-1}(X_e))$. The width of a rank-decomposition (T, L) is the maximum width over all edges of T. The rank-width of G, denoted by $\operatorname{rw}(G)$, is the minimum width of all rank-decompositions of G. If $|V| \leq 1$, then G admits no rank-decomposition and $\operatorname{rw}(G) = 0$.

A subcubic tree is a *caterpillar* if it contains a path P such that every vertex of a tree has distance at most 1 to some vertex of P. A *linear rank-decomposition* of a graph G is a rank-decomposition (T, L) of G, where T is a caterpillar. The *linear* rank-width of G is defined as the minimum width of all linear rank-decompositions of G. If $|V| \leq 1$, then G admits no linear rank-decomposition and $\operatorname{lrw}(G) = 0$. Note that if a graph H is a vertex-minor or a pivot-minor of a graph G, then $\operatorname{rw}(H) \leq \operatorname{rw}(G)$ and $\operatorname{lrw}(H) \leq \operatorname{lrw}(G)$ [6]. Trivially, $\operatorname{rw}(G) \leq \operatorname{lrw}(G)$.

Tree-width and path-width. Let T be a tree, and let $B = \{B_t\}_{t \in V(T)}$ be a family of vertex sets $B_t \subseteq V$ indexed by the vertices $t \in V(T)$, called *bags*. The pair (T, B) is called a *tree-decomposition* of G if it satisfies the following three conditions.

- (T1) $V = \bigcup_{v \in V(T)} B_t$.
- (T2) For every edge $uv \in E$, there exists a vertex t of T such that $u, v \in B_t$.
- (T3) For t_1, t_2 and $t_3 \in V(T), B_{t_1} \cap B_{t_3} \subseteq B_{t_2}$ whenever t_2 is on the path from t_1 to t_3 .

The width of a tree-decomposition (T, B) is $\max\{|B_t| - 1 : t \in V(T)\}$. The treewidth of G, denoted by $\operatorname{tw}(G)$, is the minimum width of all tree-decompositions of G. A path-decomposition of a graph G is a tree-decomposition (T, B) where Tis a path. The path-width of G, denoted by $\operatorname{pw}(G)$, is the minimum width of all path-decompositions of G.

3. RANK-EXPANSIONS AND PIVOT-MINORS OF GRAPHS WITH SMALL TREE-WIDTH

In this section, for a graph G with rank-width k, we construct a graph having tree-width at most 2k such that it has G as a pivot-minor.

Theorem 3.1. Let k be a non-negative integer. Let G be a graph of rank-width at most k and $|V(G)| \ge 3$. Then there exists a graph H having a pivot-minor isomorphic to G such that tree-width of H is at most 2k and $|V(H)| \le (2k + 1)|V(G)| - 6k$.

Theorem 3.2. Let k be a non-negative integer. Let G be a graph of linear rankwidth at most k and $|V(G)| \ge 3$. Then there exists a graph H having a pivotminor isomorphic to G such that path-width of H is at most k + 1 and $|V(H)| \le (2k+1)|V(G)| - 6k$.

We need the following lemma.

Lemma 3.3. Let G be a graph and (A_1, B_1) , (A_2, B_2) be two vertex partitions such that $A_2 \subseteq A_1$. Let $S \subseteq A_1$ be a set corresponding to a basis of row vectors in $A(G)[A_1, B_1]$. Then there exists a subset of A_2 representing a basis of row vectors in $A(G)[A_2, B_2]$ containing $S \cap A_2$.

Proof. Because $A_2 \subseteq A_1$, rows in $A(G)[S \cap A_2, B_2]$ are independent. Therefore we can extend $S \cap A_2$ to a basis of rows in $A(G)[A_2, B_2]$.

To prove Theorems 3.1 and 3.2, we construct a rank-expansion of a graph. Let G be a connected graph and (T, L) be a rank-decomposition of G. We fix a leaf $x \in V(T)$. For $e \in E(T)$, let T_e be the component of $T \setminus e$ which does not contain x, and let $A_e = L^{-1}(V(T_e))$, $B_e = V(G) \setminus A_e$ and $M_e = A(G)[A_e, B_e]$. For each $a \in A_e$, let $R_a^e = M_e[\{a\}, B_e]$ the row vector of M_e .

First, for each edge $e = uv \in E(T)$, we orient the edge towards v if $v \in V(T_e)$. We choose a vertex set $U_e \subseteq A_e$ such that $\{R_w^e\}_{w \in U_e}$ forms a basis of row vectors in M_e and $(U_e \cap A_f) \subseteq U_f$ if the tail of an edge f is the head of e. Since R_a^e can be uniquely expressed as a linear combination of vectors of $\{R_w^e\}_{w \in U_e}$ for each $a \in A_e$, there exists a unique $A_e \times U_e$ matrix P_e such that $P_eA(G)[U_e, B_e] = A(G)[A_e, B_e]$. If the tail of an edge f is the head of an edge e, then let $C_f = P_e[U_f, U_e]$.

FIGURE 2. A graph G and a rank-decomposition (T, L) of G with a fixed leaf $x \in V(T)$. Note that the edge $e \in E(T)$ has width 3 and e is directed from w to v.

Let H be a rank-expansion $\mathbb{R}(G, T, L, x, \{U_f\}_{f \in E(T)})$ of a graph G such that $V(H) = \bigcup_{v \in V_I(T)} \bigcup_{e \in \delta(v)} (U_e \times \{e\} \times \{v\})$ $E(H) = \{\{(a, e, v), (a, e, w)\} : e = vw \in E_I(T), a \in U_e\}$ $\cup \{\{(a, e, v), (b, f, v)\} : v \in V_I(T), e, f \in E(T), v \text{ is the head of } e \text{ and the tail of } f,$ $a \in U_f, b \in U_e \text{ and } C_f(a, b) \neq 0\}$ $\cup \{\{(a, f_1, v), (b, f_2, v)\} : v \text{ is the tail of both } f_1 \text{ and } f_2 \in E(T),$ $a \in U_{f_1}, b \in U_{f_2} \text{ and } ab \in E(G)\}.$

For $v \in V_I(T)$, let $S_v = \bigcup_{e \in \delta(v)} U_e \times \{e\} \times \{v\} \subseteq V(H)$. For $e = vw \in E_I(T)$, let $\overline{e} = \{(a, e, v), (a, e, w) : a \in U_e\} \subseteq V(H)$ and for $W \subseteq E_I(T)$, let $\overline{W} = \bigcup_{f \in W} \overline{f} \subseteq V(H)$. If $e \in E_I(T)$ is directed from w to v, let $L_e = S_v \cap \overline{e}$ and $R_e = S_w \cap \overline{e}$. For a vertex a in V(G) and $e = \{L(a), v\} \in E(T)$, let \overline{a} be the unique vertex in $U_e \times \{e\} \times \{v\}$ and let $\overline{e} = \overline{a}$.

We discuss the number of vertices in the rank-expansion H. We easily observe that $|E_I(T)| = |V(G)| - 3$. So if $\operatorname{rw}(G) \leq k$, then $|\overline{e}| \leq 2k$ for each $e \in E_I(T)$, and we deduce that $|V(H)| \leq 2k|E_I(T)| + |V(G)| = 2k(|V(G)| - 3) + |V(G)| = (2k+1)|V(G)| - 6k$.

First, we prove that every rank-expansion of a graph has the given graph as a pivot-minor. To obtain G as a pivot-minor of H, we will pivot $\bigcup_{e \in E_I(T)} \overline{e}$ to H.

Lemma 3.4. Let G be a graph and $uv \in E(G)$. If deg(u) = 1, then $G \wedge uv \setminus \{u, v\} = G \setminus \{u, v\}$.

Proof. It is clear from the definition.

For convenience, let $det(A(H)[\emptyset]) = 1$.

Lemma 3.5. Let $W \subseteq E_I(T)$. Then $A(H)[\overline{W}]$ is nonsingular.

Proof. We proceed by induction on |W|. If W is empty, then it is trivial. If $|W| \ge 1$, then W induces a forest in T, and therefore there must be an edge $f \in W$ which has a leaf in T[W]. By induction hypothesis, $A(H)[\overline{W \setminus \{f\}}]$ is nonsingular. Since

FIGURE 3. A rank-expansion of the graph G in Figure 2.

every edge in $H[\overline{f}]$ is incident with a leaf in $H[\overline{W}]$, by Lemma 3.4, pivoting all edges in \overline{f} does not change the graph $H[\overline{W \setminus \{f\}}]$. So, $A(H[\overline{W}] \wedge \overline{f})[\overline{W \setminus \{f\}}] = A(H)[\overline{W \setminus \{f\}}]$ and therefore, by Theorem 2.1, $A(H)[\overline{f}\Delta \overline{W \setminus \{f\}}] = A(H)[\overline{W}]$ is nonsingular.

Lemma 3.6. Let $a, b \in V(G)$ and let P be a path from L(a) to L(b) in T. Then for $E(P) \cap E_I(T) \subseteq W \subseteq E_I(T)$, $A(H)[\overline{W} \cup \{\overline{a}, \overline{b}\}]$ is nonsingular if and only if $A(H)[\overline{E(P)}]$ is nonsingular.

Proof. We use induction on |W|. If $W = E(P) \cap E_I(T)$, then it is trivial, because $\overline{W} \cup \{\overline{a}, \overline{b}\} = \overline{E(P)}$. So we may assume that $|W| > |E(P) \cap E_I(T)|$. Since P is a maximal path in T, the subgraph of T having the edge set $W \cup E(P)$ must have at least 3 leaves. Thus there is an edge f in $W \setminus E(P)$ incident with a leaf in $T[W \cup E(P)]$ other than L(a) and L(b). Since every edge in \overline{f} is incident with a leaf in $H[\overline{W}]$, by Lemma 3.4, $A(H[\overline{W} \cup \{\overline{a}, \overline{b}\}] \wedge \overline{f})[\overline{W} \setminus \{f\} \cup \{\overline{a}, \overline{b}\}] = A(H)[\overline{W} \setminus \{f\} \cup \{\overline{a}, \overline{b}\}]$. By induction hypothesis and Theorem 2.1, we deduce that

$$\begin{split} A(H)[\overline{E(P)}] \text{ is nonsingular} &\Leftrightarrow A(H)[\overline{W \setminus \{f\}} \cup \{\overline{a}, \overline{b}\}] \text{ is nonsingular} \\ &\Leftrightarrow A(H[\overline{W} \cup \{\overline{a}, \overline{b}\}] \wedge \overline{f})[\overline{W \setminus \{f\}} \cup \{\overline{a}, \overline{b}\}] \text{ is nonsingular} \\ &\Leftrightarrow A(H)[\overline{W} \cup \{\overline{a}, \overline{b}\}] \text{ is nonsingular}. \end{split}$$

Lemma 3.7. Let $P = (e_{n+1}, e_n, \dots, e_1)$ be the directed path from w to v in T. Then $C_{e_1}C_{e_2}\dots C_{e_n}A(G)[U_{e_{n+1}}, B_{e_{n+1}}] = A(G)[U_{e_1}, B_{e_{n+1}}].$

 $\begin{array}{l} Proof. \text{ We proceed by induction on } n. \text{ If } n=1, \text{ then by definition, } C_{e_1}A(G)[U_{e_2},B_{e_2}]=\\ P_{e_2}[U_{e_1},U_{e_2}]A(G)[U_{e_2},B_{e_2}]=A(G)[U_{e_1},B_{e_2}]. \text{ We may assume that } n\geq 2. \text{ By induction hypothesis, } C_{e_2}C_{e_3}\ldots C_{e_n}A(G)[U_{e_{n+1}},B_{e_{n+1}}]=A(G)[U_{e_2},B_{e_{n+1}}]. \text{ Since } C_{e_1}A(G)[U_{e_2},B_{e_2}]=A(G)[U_{e_1},B_{e_2}] \text{ and } B_{e_{n+1}}\subseteq B_{e_2}, \ C_{e_1}A(G)[U_{e_2},B_{e_{n+1}}]=A(G)[U_{e_1},B_{e_{n+1}}]=A(G)[U_{e_1},B_{e_{n+1}}]. \text{ Therefore, we conclude that } C_{e_1}C_{e_2}\ldots C_{e_n}A(G)[U_{e_{n+1}},B_{e_{n+1}}]=C_{e_1}A(G)[U_{e_2},B_{e_{n+1}}]=A(G)[U_{e_1},B_{e_{n+1}}]. \end{array}$

Lemma 3.8.

$$\det \begin{pmatrix} 0 & C_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & I & C_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & I & C_3 & & 0 & 0 \\ 0 & 0 & 0 & I & & 0 & 0 \\ \vdots & & & & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & I & C_n \\ C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I \end{pmatrix} = (-1)^n \det(C_1 C_2 \dots C_{n+1}).$$

Proof. By elementary row operation,

	$\begin{array}{c c} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \gamma_{n+1} \end{array}$	$\begin{array}{c} C_1 \\ I \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ C_2 \\ I \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ C_3 \\ I \\ 0 \\ 0 \end{array}$	···· ··. ···	0 0 0 I 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ \vdots\\ C_n\\ I \end{array} $			
$= \det$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ \vdots\\ 0\\ C_{n+1} \end{pmatrix}$	0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0) —())	$\begin{array}{c} C_1 C_2 \\ \hline C_2 \\ I \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0\\ 0\\ C_3\\ I\\ 0\\ 0\\ \end{array}$	····	0 0 0 0 1 0	$\begin{array}{c} 0\\ \hline 0\\ 0\\ 0\\ \vdots\\ C_n\\ I \end{array}$		
$= \det$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ \vdots\\ 0\\ C_{n+1} \end{pmatrix}$	0 1 0 0 0 0 +1	$\begin{array}{c} 0 & 0 \\ \hline C_2 \\ 0 & I \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	(—	$\frac{1)^2 C}{0} C_{2} C_{2} C_{3} C_{4} C_{$	3	C ₃ 	$\begin{array}{c} \cdot & 0 \\ \hline \cdot & 0 \\ 0 \\ 0 \\ \cdot \\ \cdot & I \\ \cdot & 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ C_n \\ I \end{array}$	
$= \det$		$(a)^n C_1$	$ \begin{array}{c} C_2 \dots \\ 0 \\ 0 \\ \vdots \\ 0 \\ C_{n+1} \end{array} $. C _{n+}	$ \begin{array}{c cccc} -1 & 0 \\ I \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ \hline C_{2} \\ I \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{ccc} 0 \\ 2 & 0 \\ C_3 \\ I \\ 0 \\ 0 \end{array}$	····	0 0 0 <i>I</i> 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ C_n \\ I \end{array}$

 $= (-1)^n \det(C_1 C_2 \dots C_{n+1}).$

Proposition 3.9. Let $k \ge 1$. Let G be a connected graph with rank-width k and $|V(G)| \ge 3$. Then a rank-expansion of G has a pivot-minor isomorphic to G.

Proof. Let (T, L) be a rank decomposition of a graph G and let x be a leaf in T. We orient each edge f away from x. For each $f \in E(T)$, if m is the width of f, we choose a basis $U_f = \{u_1^f, u_2^f, \ldots, u_m^f\} \subseteq A_f$ of rows in the matrix $A(G)[A_f, B_f]$ such that $(U_e \cap A_f) \subseteq U_f$ if the head of an edge e is the tail of f. Since G is connected, $|U_f| \ge 1$. Let H be a rank-expansion $\mathbf{R}(G, T, L, x, \{U_f\}_{f \in E(T)})$ of a graph G. By Lemma 3.4, for every $W \subseteq E_I(T)$, $A(H)[\overline{W}]$ is nonsingular. We will prove that for $a, b \in V(G)$, $\overline{ab} \in E(H \wedge \overline{E_I(T)})$ if and only if $ab \in E(G)$.

Let a, b be distinct vertices in V(G). We consider the path P from L(a) to L(b)in T. By Lemma 3.6, \overline{a} is adjacent to \overline{b} in $H \wedge \overline{E_I(T)}$ if and only if \overline{a} is adjacent to \overline{b} in $H[\overline{E(P)}] \wedge (\overline{E(P)} \cap E_I(T))$. Therefore, by Theorem 2.1,

$$\begin{split} \overline{a}\overline{b} \in E(H \wedge \overline{E_I(T)}) \Leftrightarrow \overline{a}\overline{b} \in E(H[\overline{E(P)}] \wedge (\overline{E(P) \cap E_I(T)})) \\ \Leftrightarrow A\left(H[\overline{E(P)}] \wedge (\overline{E(P) \cap E_I(T)})\right) [\{\overline{a}, \overline{b}\}] \text{ is nonsingular} \\ \Leftrightarrow A\left(H[\overline{E(P)}]\right) [(\overline{E(P) \cap E_I(T)})\Delta\{\overline{a}, \overline{b}\}] \text{ is nonsingular} \\ \Leftrightarrow A(H[\overline{E(P)}]) \text{ is nonsingular.} \end{split}$$

Thus, it is enough to show that $det(A(H[\overline{E(P)}])) = A(G)(a, b)$.

If L(b) = x, then $P = (e_{n+1}, e_n, \dots, e_1, e_0)$ is a directed path from L(b) to L(a). The submatrix of A(H) induced by $\overline{E(P)}$ is

	\overline{b}	L_{e_1}	L_{e_2}		$L_{e_{n-1}}$	L_{e_n}	\overline{a}	R_{e_1}	R_{e_2}		$R_{e_{n-1}}$	R_{e_n}
\overline{a}	0	C_{e_0}	0	• • •	0	0	0	0	0	• • •	0	0
R_{e_1}	0	Ι	C_{e_1}	• • •	0	0	0	0	0	• • •	0	0
R_{e_2}	0	0	Ι		0	0	0	0	0	• • •	0	0
÷	÷			۰.		÷	0			·		÷
$R_{e_{n-1}}$	0	0	0	• • •	Ι	$C_{e_{n-1}}$	0	0	0	• • •	0	0
R_{e_n}	C_{e_n}	0	0	• • •	0	Ι	0	0	0		0	0
\overline{b}	0	0	0	• • •	0	0	0	0	0		0	$C_{e_n}^t$
L_{e_1}	0	0	0	• • •	0	0	$C_{e_0}^t$	Ι	0	• • •	0	0
L_{e_2}	0	0	0		0	0	0	$C_{e_1}^t$	Ι		0	0
÷	:			۰.		÷	0			·		÷
$L_{e_{n-1}}$	0	0	0	• • •	0	0	0	0	0		Ι	0
L_{e_n}	/ 0	0	0		0	0	0	0	0		$C^t_{e_{n-1}}$	I /
									=	$\left(\frac{C}{0}\right)$	$\left(\begin{array}{c} 0\\ \hline C^t\end{array}\right).$	

Note that $\det(A(H)[\overline{E(P)}]) = \det(C) \det(C^t) = \det(C)^2$. By Lemma 3.8, $\det(C) = (-1)^n \det(C_{e_0}C_{e_1}\dots C_{e_n})$. Since $|U_{e_{n+1}}| = |B_{e_{n+1}}| = 1$ and $\operatorname{rank}(A(G)[U_e, B_e]) =$

 $|U_e|$ for all edges $e \in E(T)$, $A(G)[U_{e_{n+1}}, B_{e_{n+1}}] = (1)$. By Lemma 3.7,

$$C_{e_0}C_{e_1}\dots C_{e_n} = C_{e_0}C_{e_1}\dots C_{e_n}A(G)[U_{e_{n+1}}, B_{e_{n+1}}]$$

= $A(G)[U_{e_0}, B_{e_{n+1}}]$
= $A(G)(a, b).$

Therefore det(A(H)[E(P)]) = A(G)(a, b), as required.

Now we assume that $L(a) \neq x$ and $L(b) \neq x$. Then there exists a vertex y in V(P) such that it has a shortest distance to x. Let $P_1 = (e_n, e_{n-1}, \ldots, e_0)$ be the edges of P from y to L(a) and $P_2 = (f_m, f_{m-1}, \ldots, f_0)$ be the edges of P from y to L(b).

Let $M = A(H)[R_{e_n}, R_{f_m}]$. By the construction of a rank-expansion, $M = A(G)[U_{e_n}, U_{f_m}]$. The submatrix of A(H) induced by $\overline{E(P)}$ is

$$\{\overline{a}\} \cup \bigcup_{i=1}^{n} R_{e_i} \cup \bigcup_{i=1}^{m} L_{f_i} \begin{pmatrix} \overline{b}\} \cup \bigcup_{i=1}^{n} L_{e_i} \cup \bigcup_{i=1}^{m} R_{f_i} & \{\overline{a}\} \cup \bigcup_{i=1}^{n} R_{e_i} \cup \bigcup_{i=1}^{m} L_{f_i} \\ \overline{b}\} \cup \bigcup_{i=1}^{n} L_{e_i} \cup \bigcup_{i=1}^{m} R_{f_i} \begin{pmatrix} C & 0 \\ 0 & C^t \end{pmatrix}$$

where C is

	\overline{b}	L_{e_1}	L_{e_2}	•••	$L_{e_{n-1}}$	L_{e_n}	R_{f_m}	$R_{f_{m-1}}$	• • •	R_{f_2}	R_{f_1}
\overline{a}		C_{e_0}	0	• • •	0	0	0	0		0	0
R_{e_1}	0	Ι	C_{e_1}	•••	0	0	0	0	•••	0	0
R_{e_2}	0	0	Ι		0	0	0	0	• • •	0	0
÷	1 :			·					·		÷
$R_{e_{n-1}}$	0	0	0		Ι	$C_{e_{n-1}}$	0	0		0	0
R_{e_n}	0	0	0	• • •	0	Ι	M	0		0	0
L_{f_m}	0	0	0	•••	0	0	Ι	$C_{f_{m-1}}^t$	• • •	0	0
$L_{f_{m-1}}$	0	0	0	•••	0	0	0	I		0	0
÷	:			·		:			·		÷
L_{f_2}	0	0	0	•••	0	0	0	0	•••	Ι	$C_{f_1}^t$
L_{f_1}	$C_{f_0}^t$	0	0	• • •	0	0	0	0	• • •	0	Ĭ'/

It is enough to show that $C_{e_0}C_{e_1}\ldots C_{e_{n-1}}MC^t_{f_{m-1}}C^t_{f_{m-2}}\ldots C^t_{f_0} = A(G)(a,b).$ Since $M = A(G)[U_{e_n}, U_{f_m}] \subseteq A(G)[U_{e_n}, B_{e_n}]$, by Lemma 3.7, we have

$$C_{e_0}C_{e_1}\dots C_{e_{n-1}}MC_{f_{m-1}}^tC_{f_{m-2}}^t\dots C_{f_0}^t$$

= $C_{e_0}C_{e_1}\dots C_{e_{n-1}}A(G)[U_{e_n}, U_{f_m}]C_{f_{m-1}}^tC_{f_{m-2}}^t\dots C_{f_0}^t$
= $A(G)[U_{e_0}, U_{f_m}]C_{f_{m-1}}^tC_{f_{m-2}}^t\dots C_{f_0}^t$
= $(C_{f_0}C_{f_1}\dots C_{f_{m-1}}A(G)[U_{f_m}, U_{e_0}])^t$
= $A(G)[U_{f_0}, U_{e_0}]^t = A(G)(a, b).$

So, det $(A(H)[\overline{E(P)}]) = A(G)(a, b)$, as claimed. Therfore, $\overline{ab} \in E(H \land \overline{E_I(T)})$ if and only if $ab \in E(G)$. We conclude that a rank-expansion of G has a pivot-minor isomorphic to G.

In the next proposition, we show that a rank-expansion has tree-width at most 2k when $rw(G) \leq k$.

FIGURE 4. A rank-expansion of the graph G in Figure 2. By the construction of a rank-expansion, every vertex in L_e has exactly one neighbor in $R_{f_1} \cup R_{f_2} \setminus \{(a_6, f_2, v)\}$ in the subgraph $H[S_v]$.

Proposition 3.10. Let $k \ge 1$. Let G be a connected graph with $|V(G)| \ge 3$. If G has rank-width k, Then G has a rank-expansion of tree-width at most 2k. Moreover, if G has linear rank-width k, then G has a rank-expansion of path-width at most k + 1.

Proof. Let (T, L) be a rank-decomposition of G of width k. We fix a leaf $x \in V(T)$ and orient each edge f away from x. For each $f \in E(T)$, if m is the width of f, we choose a basis $U_f = \{u_1^f, u_2^f, \ldots, u_m^f\} \subseteq A_f$ of rows in the matrix $A(G)[A_f, B_f]$ such that $(U_e \cap A_f) \subseteq U_f$ if the head of an edge e is the tail of f. Since G is connected, $|U_f| \ge 1$. Let H be a rank-expansion $\mathbf{R}(G, T, L, x, \{U_f\}_{f \in E(T)})$ of a graph G.

Let T' be a tree obtained from $T[V_I(T)]$ by replacing each edge from w to vwith a path $wz_1^v z_2^v \ldots z_{|U_e|}^v p_1^v p_2^v \ldots p_{|U_e|}^v v$. Let y be the neighbor of x in T and let $B(y) = S_y$. For $v \in V_I(T) \setminus \{y\}$, let e = vw be the edge incoming to v and f_1, f_2 be edges outgoing from v. Let $R^v = \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a \notin U_e\}$. Since $(U_e \cap A_{f_i}) \subseteq U_{f_i}$ for each $i \in \{1, 2\}$, each vertex in L_e has exactly one neighbor in $R_{f_1} \cup R_{f_2} \setminus R^v$. Let $B(v) = R_{f_1} \cup R_{f_2}$ and $B(z_1^v) = R_e \cup \{(u_1^e, e, v)\}$, $B(p_1^v) = R^v \cup L_e \cup \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a = u_1^e\}$. And for each $2 \leq i \leq |U_e|$, we define

$$B(z_i^v) = B(z_{i-1}^v) \setminus \{(u_{i-1}^e, e, w)\} \cup \{(u_i^e, e, v)\}$$

$$B(p_i^v) = B(p_{i-1}^v) \setminus \{(u_{i-1}^e, e, v)\} \cup \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a = u_i^e\}.$$

Now we show that the pair $(T', \{B(v)\}_{v \in V(T')})$ is a tree-decomposition of H. Note that for each $v \in V_I(T) \setminus \{y\}$ with the incoming edge $e, \bigcup_i E(H[B(z_i^v)]) = E(H[\overline{e}])$ and $\bigcup_i E(H[B(p_i^v)]) = E(H[S_v])$. Therefore all vertices and all edges in H are covered by B(v) for some $v \in V(T')$. So the first and second axioms of a tree-decomposition are satisfied.

For the third axiom, it suffices to show that for every $t \in V(H)$, $T'[\{z : B(z) \ni t\}]$ is a subtree of T'. Let $t = (u_j^e, e, v) \in V(H)$ for some $e = vw \in E(T)$ and $1 \le j \le |U_e|$. If v is the head of $e, T'[\{z : B(z) \ni t\}] = T'[\{z_j^v, \ldots, z_{|U_e|}^v, p_1^v, \ldots, p_j^v\}]$, and it forms a path. Suppose v is the tail of e. Let f be the edge incoming to v, and if $a \in U_f$, then let h be the integer such that $a = u_h^f$, if otherwise, let h = 1. Then $T'[\{z : B(z) \ni t\}] = T'[\{p_h^v, \ldots, p_{|U_e|}^v, v, z_1^w, \ldots, z_j^w\}]$. It also forms a path, thus $(T', \{B(v)\}_{v \in V(T')})$ is a tree-decomposition of H.

FIGURE 5. Tree-decomposition of a rank-expansion in Figure 4. The vertex sets $B(z_i^v)$ and $B(p_i^v)$, defined in Proposition 3.9, are bags which decompose $H[\overline{e}]$ and $H[S_v]$, respectively.

Since $|B(y)| \leq 2k + 1$ and for each $v \in V_I(T) \setminus \{y\}$ with the incoming edge $e, |B(z_i^v)| = |B(z_1^v)| = |R_e| + 1 \leq k + 1, |B(p_i^v)| = |B(p_1^v)| = |R^v| + |L_e| + 1 \leq (2k - |U_e|) + |U_e| + 1 = 2k + 1$ and $|B(v)| \leq 2k$, the resulting tree-decomposition has width at most 2k.

Suppose that G has linear rank-width at most k. Here, we choose $x \in V(T)$ such that x is an end of a longest path in T, and let y be the neighbor of x. For $v \in V_I(T)$ with outgoing edges f_1 and f_2 , $|U_{f_1}| = 1$ or $|U_{f_2}| = 1$ because every inner vertex of T is incident with a leaf. Therefore, for each $v \in V_I(T) \setminus \{y\}$ and $1 \le i \le |U_e|$, $|B(p_i^v)| \le (k+1-|U_e|)+|U_e|+1=k+2$ and $|B(v)| \le k+1$, and $|B(y)| \le k+2$. Moreover, since $T[V_I(T)]$ is a path, T' is also a path. Therefore $(T', \{B(v)\}_{v \in V(T')})$ is a path-decomposition of H with path-width at most k+1.

Proof of Theorem 3.1. If k = 0, then it is trivial. We assume that $k \ge 1$. We proceed by induction on the number of vertices.

Suppose G is connected. Since G has rank-width at most k and $|V(G)| \ge 3$, by Proposition 3.10, there is a rank-expansion H of G such that $\operatorname{tw}(H) \le 2k$, and $|V(H)| \le (2k+1)|V(G)| - 6k$. By Proposition 3.9, H has a pivot-minor isomorphic to G.

If G is disconnected, then we choose a largest component Y of G. Since $k \ge 1$, the component Y has at least 2 vertices. If |V(Y)| = 2, then G has rank-width 1 and tree-width 1, and $|V(G)| \le (2+1)|V(G)| - 6$ since $|V(G)| \ge 3$. We assume that $|V(Y)| \ge 3$. Then by induction hypothesis, there is a graph H_1 such that Y is isomorphic to a pivot-minor of H_1 and $\operatorname{tw}(H_1) \le 2k$ and $|V(H_1)| \le (2k + 1)|V(Y)| - 6k$.

If $G \setminus V(Y)$ has tree-width at most 1, then G is isomorphic to a pivot-minor of the disjoint union of two graphs H_1 and $G \setminus V(Y)$, and the tree-width of it is equal to the tree-width of H_1 . Since $|V(H_1)| + |V(G) \setminus V(Y)| \le (2k+1)|V(Y)| - 6k + |V(G) \setminus V(Y)| \le (2k+1)|V(G)| - 6k$, we obtain the result. If tree-width of $G \setminus V(Y)$ is at least 2, then $|V(G) \setminus V(Y)| \ge 3$. Therefore, by induction hypothesis, there is a graph H_2 such that $G \setminus V(Y)$ is isomorphic to a pivot-minor of H_2 and $tw(H_2) \le 2k$ and $|V(H_2)| \le (2k+1)|V(G) \setminus V(Y)| - 6k$. So G is isomorphic to a pivot-minor of the disjoint union of two graphs H_1 and H_2 , and the tree-width of it is at most 2k, and $|V(H_1)| + |V(H_2)| \le (2k+1)|V(G)| - 6k$. Thus, we conclude the theorem.

Proof of Theorem 3.2. We can easily obtain the proof of Theorem 3.2 from the proof of Theorem 3.1. \Box

Distance-hereditary graphs are introduced by Bandelt and Mulder [2]. A graph G is *distance-hereditary* if for every connected induced subgraph H of G and vertices a, b in H, the distance between a and b in H is the same as in G. Oum [6] showed that distance-hereditary graphs are exactly graphs of rank-width at most 1. Recently, Ganian [5] obtain a similar characterization of graphs of linear rank-width 1. In this section, we obtain another characterization for these classes in terms of vertex-minor relation.

Note that every tree has rank-width at most 1 and every path has linear rank-width at most 1.

Theorem 4.1. Let G be a graph. The following are equivalent:

- (1) G has rank-width at most 1.
- (2) G is distance-hereditary.
- (3) G has no vertex-minor isomorphic to C_5 .
- (4) G is a vertex-minor of a tree.

Proof. $((1) \Leftrightarrow (2))$ is proved by Oum [6], and $((2) \Leftrightarrow (3))$ follows from the Bouchet's theorem [3, 4]. Since every tree has rank-width at most 1, $((4) \Rightarrow (1))$ is trivial. We want to prove that (1) implies (4).

Let G be a graph of rank-width at most 1. We may assume that G is connected. If $|V(G)| \leq 2$, then G itself is a tree. So we may assume that $|V(G)| \geq 3$. Let (T, L) be a rank-decomposition of G of width 1. From Proposition 3.9, a rank-expansion H with the rank-decomposition (T, L) has G as a pivot-minor.

The width of each edge in T is 1. Thus for $v \in V_I(T)$, the subgraph $H[S_v]$ is a path of length 2 or a triangle because G is connected. Also for $e \in E_I(T)$, $H[\overline{e}]$ consists of an edge. Therefore H is connected and does not have cycles of length at least 4.

Let Q be a tree obtained from H by replacing each triangle abc with $K_{1,3}$ by adding a new vertex d, making d adjacent to a, b, c and deleting ab, bc, ca. Clearly H is a vertex-minor of the tree Q because we can obtain the graph H from Q by applying local complementation on those new vertices and deleting them. Therefore G is a vertex-minor of a tree, as required.

We also obtain a characterization of graphs with linear rank-width at most 1. Obstructions sets for graphs of linear rank-width 1 are C_5 , N and Q [1], depicted in Figure 6.

Lemma 4.2. Every subcubic caterpillar is a pivot-minor of a path.

Proof. Let H be a subcubic caterpillar. By the definition of a caterpillar, there is a path P in H such that every vertex in $V(H) \setminus V(P)$ is a leaf. We choose such path $P = p_1 p_2 \dots p_m$ in H with maximum length. We construct a path Q from Pby replacing each edge $p_i p_{i+1}$ with a path $p_i a_i b_i p_{i+1}$. We can obtain a pivot-minor of P isomorphic to Q by pivoting each edge $a_i b_i$ and deleting all a_i and deleting b_i if p_i is not adjacent to a leaf in H.

FIGURE 6. The graphs C_5 , N and Q.

FIGURE 7. A rank-expansion H of a graph with linear rank-width 1. The graph H can be obtained from a path P by applying local complementation on u and pivoting xv and deleting x.

Theorem 4.3. Let G be a graph. The following are equivalent:

- (1) G has linear rank-width at most 1.
- (2) G has no vertex-minor isomorphic to C_5 , N or Q.
- (3) G is a vertex-minor of a path.

Proof. $((1) \Leftrightarrow (2))$ is proved by Adler, Farley and Proskurowski [1]. Since every path has linear rank-width at most 1, $((3) \Rightarrow (1))$ is trivial. Let us prove that (1) implies (3).

Let G be a graph of linear rank-width at most 1. We may assume that G is connected and $|V(G)| \geq 3$. Let H be a rank-expansion of G with a linear rank-decomposition (T, L) of width 1. Note that T is a caterpillar.

Since (T, L) is a linear rank-decomposition of width 1, for each triangle in H, one of those vertices is of degree 2 in H. Let P be a caterpillar obtained from H by replacing each triangle with a path of length 2 whose internal vertex has degree 2 in H. We can obtain H from P by applying local complementation on the inner vertex of those paths of length 2, H is a vertex-minor of P. And by Lemma 4.2, P is a pivot-minor of a path. \Box

In Theorems 4.1 and 4.2, if a given graph is bipartite, we do not need to apply local complementation at some vertices. To prove it, we need the following lemma.

Lemma 4.4. Let G be a connected bipartite graph with rank-width 1 and $|V(G)| \ge$ 3. Let (T, L) be a rank-decomposition of width 1. Then a rank-expansion of G with respect to (T, L) is a tree.

Proof. Let $x \in V(T)$ be a leaf and H be a rank-expansion $\mathbf{R}(G, T, L, x, \{U_f\}_{f \in E(T)})$ of G.

Suppose that H has a triangle. Then there exists a vertex $v \in V_I(T)$ such that $H[S_v]$ is the triangle. Let e_1, e_2 and e_3 be edges incident with v and assume that e_1

is the incoming edge. Let $U_{e_1} = \{a\}$, $U_{e_2} = \{b\}$ and $U_{e_3} = \{c\}$. By the construction of a rank-expansion, $bc \in E(G)$ and $R_a^{e_1} = R_b^{e_1} = R_c^{e_1}$. Since $R_a^{e_1}$ is a non-zero vector, there is a vertex $x \in V(G)$ such that x is adjacent to all of a, b and c. Therefore xbc is a triangle in G, contradiction.

Theorem 4.5. Let G be a graph. Then G is bipartite and has rank-width at most 1 if and only if G is a pivot-minor of a tree.

Proof. We may assume that G is connected. Since every tree has rank-width at most 1, backward direction is trivial. If G is bipartite and has rank-width at most 1, then by Lemma 4.4, we have a rank-expansion of G which is a tree. Hence, G is a pivot-minor of a tree.

Theorem 4.6. Let G be a graph. Then G is bipartite and has linear rank-width 1 if and only if G is a pivot-minor of a path.

Proof. We may assume that G is connected. Similarly, backward direction is trivial. Suppose G is bipartite and has linear rank-width 1. Let H be a rank-expansion of G with a linear rank-decomposition (T, L) of width 1. By Lemma 4.4, the graph H is a tree, and since T is a caterpillar, H is also a caterpillar. By Lemma 4.2, H is a pivot-minor of a path, and so is G.

References

- I. Adler, A. M. Farley, and A. Proskurowski. Obstructions for linear rankwidth at most 1. CoRR, abs/1106.2533, 2011.
- [2] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. J. Combin. Theory Ser. B, 41(2):182–208, 1986.
- [3] A. Bouchet. Isotropic systems. European J. Combin., 8(3):231-244, 1987.
- [4] A. Bouchet. Transforming trees by successive local complementations. J. Graph Theory, 12(2):195-207, 1988.
- [5] R. Ganian. Thread graphs, linear rank-width and their algorithmic applications. In *Combi*natorial Algorithms, volume 6460 of *Lecture Notes in Comput. Sci.*, pages 38–42. Springer, 2011.
- [6] S. Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79–100, 2005.
- [7] S. Oum. Rank-width is less than or equal to branch-width. J. Graph Theory, 57(3):239-244, 2008.
- [8] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309–322, 1986.
- [9] A. W. Tucker. A combinatorial equivalence of matrices. In R. Bellman and M. Hall, Jr., editors, *Combinatorial Analysis*, pages 129–140. American Mathematical Society, Providence, R.I., 1960.

DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST, 291 DAEHAK-RO YUSEONG-GU DAEJEON, 305-701 SOUTH KOREA

E-mail address: ilkof@kaist.ac.kr

E-mail address: sangil@kaist.edu

14