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Abstract. We prove that every graph of rank-width k is a pivot-minor of a

graph of tree-width at most 2k. We also prove that graphs of rank-width at
most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of

trees, and graphs of linear rank-width at most 1 are precisely vertex-minors

of paths. In addition, we show that bipartite graphs of rank-width at most 1
are exactly pivot-minors of trees and bipartite graphs of linear rank-width at

most 1 are precisely pivot-minors of paths.

1. Introduction

Rank-width is a width parameter of graphs, introduced by Oum and Seymour [6],
measuring how easy it is to decompose a graph into a tree-like structure where the
“easiness” is measured in terms of the matrix rank function derived from edges
formed by vertex partitions. Rank-width is a generalization of another, more
well-known width parameter called tree-width, introduced by Robertson and Sey-
mour [8]. It is well known that every graph of small tree-width also has small
rank-width; Oum [7] showed that if a graph has tree-width k, then its rank-width
is at most k + 1. The converse does not hold in general, as complete graphs have
rank-width 1 and arbitrary large tree-width.

Pivot-minor and vertex-minor relations are graph containment relations such
that rank-width cannot increase when taking pivot-minors or vertex-minors of a
graph [6]. Our main result is that for every graph G with rank-width at most k
and |V (G)| ≥ 3, there exists a graph H having G as a pivot-minor such that H has
tree-width at most 2k and |V (H)| ≤ (2k + 1)|V (G)| − 6k. Furthermore, we prove
that for every graph G with linear rank-width at most k and |V (G)| ≥ 3, there
exists a graph H having G as a pivot-minor such that H has path-width at most
k + 1 and |V (H)| ≤ (2k + 1)|V (G)| − 6k.

As a corollary, we give new characterizations of two graph classes: graphs with
rank-width at most 1 and graphs with linear rank-width at most 1. We show that a
graph has rank-width at most 1 if and only if it is a vertex-minor of a tree. We also
prove that a graph has linear rank-width at most 1 if and only if it is a vertex-minor
of a path. Moreover, if the graph is bipartite, we prove that a vertex-minor relation
can be replaced with a pivot-minor relation in both theorems. Table 1 summarizes
our theorems.
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G has rank-width ≤ k ⇒ G is a pivot-minor of
a graph of tree-width ≤ 2k

G has linear rank-width ≤ k ⇒ G is a pivot-minor of
a graph of path-width ≤ k + 1

G has rank-width ≤ 1 ⇔ G is a vertex-minor of a tree
G has linear rank-width ≤ 1 ⇔ G is a vertex-minor of a path

G is bipartite and has rank-width ≤ 1 ⇔ G is a pivot-minor of a tree
G is bipartite has linear rank-width ≤ 1 ⇔ G is a pivot-minor of a path

Table 1. Summary of theorems

To prove the main theorem, we construct a graph having G as a pivot-minor,
called a rank-expansion. Then we prove that a rank-expansion has small tree-width.

The paper is organized as follows. We present the definition of rank-width and
related operations in the next section. In Section 3, we define a rank-expansion
of a graph and prove the main theorem. In Section 4, using a rank-expansion, we
present new characterizations of graphs with rank-width at most 1 and graphs with
linear rank-width at most 1.

2. Preliminaries

In this paper, all graphs are simple and undirected. Let G = (V,E) be a graph.
For v ∈ V , let N(v) be the set of vertices adjacent to v and deg(v) := |N(v)|. And
let δ(v) be the set of edges incident with v. For S ⊆ V , G[S] denotes the subgraph
of G induced on S. For two sets A and B, A∆B = (A ∪B)\(A ∩B).

A vertex partition of a graph G is a pair (A,B) of subsets of V such that A∪B =
V and A ∩ B = ∅. A vertex v ∈ V is a leaf if deg(v) = 1; Otherwise we call it
an inner vertex. An edge e ∈ E is an inner edge if e does not have a leaf as an
end. Let VI(G) and EI(G) be the set of inner vertices of G and inner edges of G,
respectively.

For an X × Y matrix M and subsets A ⊆ X and B ⊆ Y , M [A,B] denotes
the A × B submatrix (mi,j)i∈A,j∈B of M . If A = B, then M [A] = M [A,A] is
called a principal submatrix of M . The adjacency matrix of a graph G, which is a
(0, 1)-matrix over the binary field, will be denoted by A(G).

Pivoting matrices. Let M =

X V \X( )
X A B

V \X C D
be a symmetric or skew-

symmetric V × V matrix over a field F . If A = M [X] is nonsingular, then we
define

M ∗X =

X V \X( )
X A−1 A−1B

V \X −CA−1 D − CA−1B
.

This operation is called a pivot. Tucker showed the following theorem.

Theorem 2.1 (Tucker [9]). Let M [X] be a nonsingular principal submatrix of
a square matrix M . Then M ∗ X[Y ] is nonsingular if and only if M [X∆Y ] is
nonsingular.
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Figure 1. Pivoting an edge uv. Note that G ∧ uv ∧ uc = G ∧ vc.

Vertex-minors and pivot-minors. The graph obtained from G = (V,E) by
applying local complementation at a vertex v is G ∗ v = (V,E∆{xy : xv, yv ∈
E, x 6= y}). The graph obtained from G by pivoting an edge uv is defined by
G ∧ uv = G ∗ u ∗ v ∗ u.

To see how we obtain the resulting graph by pivoting an edge uv, let V1 =
N(u) ∩ N(v), V2 = N(u)\N(v)\{v} and V3 = N(v)\N(u)\{u}. One can easily
verify that G ∧ uv is identical to the graph obtained from G by complementing
adjacency of vertices between distinct sets Vi and Vj and swapping the vertices u
and v [6]. See Figure 1 for example.

In fact, if uv ∈ E, then A(G ∧ uv) = A(G) ∗ {u, v}. Since det (A(G)[{u, v}]) =
A(G)(u, v), Theorem 2.1 is useful for dealing with a sequence of pivoting. In Fig-
ure 1, we can easily check that G ∧ uv ∧ uc = G ∧ vc. For X ⊆ V , if A(G)[X]
is nonsingular, then we denote G ∧ X as the graph having the adjacency matrix
A(G) ∗X.

A graph H is a vertex-minor of G if H can be obtained from G by applying a
sequence of vertex deletions and local complementations. A graph H is a pivot-
minor of G if H can be obtained from G by applying a sequence of vertex deletions
and pivoting edges. From the definition, every pivot-minor of a graph is a vertex-
minor of the graph. Note that every pivot-minor of a bipartite graph is bipartite.

Rank-width and linear rank-width. The cut-rank function cutrkG : 2V → Z
of a graph G is defined by

cutrkG(X) = rank(A(G)[X,V \X]).

A tree is subcubic if it has at least two vertices and every inner vertex has
degree 3. A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic
tree and L is a bijection from the vertices of G to the leaves of T . For an edge e
in T , T\e induces a partition (Xe, Ye) of the leaves of T . The width of an edge
e is defined as cutrkG(L−1(Xe)). The width of a rank-decomposition (T, L) is the
maximum width over all edges of T . The rank-width of G, denoted by rw(G), is
the minimum width of all rank-decompositions of G. If |V | ≤ 1, then G admits no
rank-decomposition and rw(G) = 0.

A subcubic tree is a caterpillar if it contains a path P such that every vertex of
a tree has distance at most 1 to some vertex of P . A linear rank-decomposition of
a graph G is a rank-decomposition (T, L) of G, where T is a caterpillar. The linear
rank-width of G is defined as the minimum width of all linear rank-decompositions
of G. If |V | ≤ 1, then G admits no linear rank-decomposition and lrw(G) = 0.
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Note that if a graph H is a vertex-minor or a pivot-minor of a graph G, then
rw(H) ≤ rw(G) and lrw(H) ≤ lrw(G) [6]. Trivially, rw(G) ≤ lrw(G).

Tree-width and path-width. Let T be a tree, and let B = {Bt}t∈V (T ) be a
family of vertex sets Bt ⊆ V indexed by the vertices t ∈ V (T ), called bags. The
pair (T,B) is called a tree-decomposition of G if it satisfies the following three
conditions.

(T1) V =
⋃
v∈V (T )Bt.

(T2) For every edge uv ∈ E, there exists a vertex t of T such that u, v ∈ Bt.
(T3) For t1, t2 and t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from

t1 to t3.

The width of a tree-decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The tree-
width of G, denoted by tw(G), is the minimum width of all tree-decompositions
of G. A path-decomposition of a graph G is a tree-decomposition (T,B) where T
is a path. The path-width of G, denoted by pw(G), is the minimum width of all
path-decompositions of G.

3. Rank-expansions and pivot-minors of graphs with small tree-width

In this section, for a graph G with rank-width k, we construct a graph having
tree-width at most 2k such that it has G as a pivot-minor.

Theorem 3.1. Let k be a non-negative integer. Let G be a graph of rank-width
at most k and |V (G)| ≥ 3. Then there exists a graph H having a pivot-minor
isomorphic to G such that tree-width of H is at most 2k and |V (H)| ≤ (2k +
1)|V (G)| − 6k.

Theorem 3.2. Let k be a non-negative integer. Let G be a graph of linear rank-
width at most k and |V (G)| ≥ 3. Then there exists a graph H having a pivot-
minor isomorphic to G such that path-width of H is at most k + 1 and |V (H)| ≤
(2k + 1)|V (G)| − 6k.

We need the following lemma.

Lemma 3.3. Let G be a graph and (A1, B1), (A2, B2) be two vertex partitions
such that A2 ⊆ A1. Let S ⊆ A1 be a set corresponding to a basis of row vectors in
A(G)[A1, B1]. Then there exists a subset of A2 representing a basis of row vectors
in A(G)[A2, B2] containing S ∩A2.

Proof. Because A2 ⊆ A1, rows in A(G)[S ∩A2, B2] are independent. Therefore we
can extend S ∩A2 to a basis of rows in A(G)[A2, B2]. �

To prove Theorems 3.1 and 3.2, we construct a rank-expansion of a graph. Let
G be a connected graph and (T, L) be a rank-decomposition of G. We fix a leaf
x ∈ V (T ). For e ∈ E(T ), let Te be the component of T \ e which does not contain
x, and let Ae = L−1(V (Te)), Be = V (G) \ Ae and Me = A(G)[Ae, Be]. For each
a ∈ Ae, let Rea = Me[{a}, Be] the row vector of Me.

First, for each edge e = uv ∈ E(T ), we orient the edge towards v if v ∈ V (Te).
We choose a vertex set Ue ⊆ Ae such that {Rew}w∈Ue forms a basis of row vectors
in Me and (Ue ∩Af ) ⊆ Uf if the tail of an edge f is the head of e. Since Rea can be
uniquely expressed as a linear combination of vectors of {Rew}w∈Ue

for each a ∈ Ae,
there exists a unique Ae×Ue matrix Pe such that PeA(G)[Ue, Be] = A(G)[Ae, Be].
If the tail of an edge f is the head of an edge e, then let Cf = Pe[Uf , Ue].
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Figure 2. A graph G and a rank-decomposition (T, L) of G with
a fixed leaf x ∈ V (T ). Note that the edge e ∈ E(T ) has width 3
and e is directed from w to v.

Let H be a rank-expansion R(G,T, L, x, {Uf}f∈E(T )) of a graph G such that

V (H) =
⋃

v∈VI(T )

⋃
e∈δ(v)

(Ue × {e} × {v})

E(H) = {{(a, e, v), (a, e, w)} : e = vw ∈ EI(T ), a ∈ Ue}
∪ {{(a, e, v), (b, f, v)} : v ∈ VI(T ), e, f ∈ E(T ), v is the head of e and the tail of f,

a ∈ Uf , b ∈ Ue and Cf (a, b) 6= 0}
∪ {{(a, f1, v), (b, f2, v)} : v is the tail of both f1 and f2 ∈ E(T ),

a ∈ Uf1 , b ∈ Uf2 and ab ∈ E(G)}.

For v ∈ VI(T ), let Sv =
⋃
e∈δ(v) Ue×{e}×{v} ⊆ V (H). For e = vw ∈ EI(T ), let

e = {(a, e, v), (a, e, w) : a ∈ Ue} ⊆ V (H) and for W ⊆ EI(T ), let W =
⋃
f∈W f ⊆

V (H). If e ∈ EI(T ) is directed from w to v, let Le = Sv ∩ e and Re = Sw ∩ e.
For a vertex a in V (G) and e = {L(a), v} ∈ E(T ), let a be the unique vertex in
Ue × {e} × {v} and let e = a.

We discuss the number of vertices in the rank-expansion H. We easily observe
that |EI(T )| = |V (G)| − 3. So if rw(G) ≤ k, then |e| ≤ 2k for each e ∈ EI(T ),
and we deduce that |V (H)| ≤ 2k|EI(T )| + |V (G)| = 2k(|V (G)| − 3) + |V (G)| =
(2k + 1)|V (G)| − 6k.

First, we prove that every rank-expansion of a graph has the given graph as a
pivot-minor. To obtain G as a pivot-minor of H, we will pivot

⋃
e∈EI(T ) e to H.

Lemma 3.4. Let G be a graph and uv ∈ E(G). If deg(u) = 1, then G∧uv\{u, v} =
G \ {u, v}.

Proof. It is clear from the definition. �

For convenience, let det(A(H)[∅]) = 1.

Lemma 3.5. Let W ⊆ EI(T ). Then A(H)[W ] is nonsingular.

Proof. We proceed by induction on |W |. If W is empty, then it is trivial. If |W | ≥ 1,
then W induces a forest in T , and therefore there must be an edge f ∈ W which
has a leaf in T [W ]. By induction hypothesis, A(H)[W \ {f}] is nonsingular. Since
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Figure 3. A rank-expansion of the graph G in Figure 2.

every edge in H[f ] is incident with a leaf in H[W ], by Lemma 3.4, pivoting all

edges in f does not change the graph H[W \ {f}]. So, A(H[W ] ∧ f)[W \ {f}] =

A(H)[W \ {f}] and therefore, by Theorem 2.1, A(H)[f∆W \ {f}] = A(H)[W ] is
nonsingular. �

Lemma 3.6. Let a, b ∈ V (G) and let P be a path from L(a) to L(b) in T . Then
for E(P ) ∩ EI(T ) ⊆ W ⊆ EI(T ), A(H)[W ∪ {a, b}] is nonsingular if and only if

A(H)[E(P )] is nonsingular.

Proof. We use induction on |W |. If W = E(P ) ∩ EI(T ), then it is trivial, because

W ∪ {a, b} = E(P ). So we may assume that |W | > |E(P ) ∩ EI(T )|. Since P
is a maximal path in T , the subgraph of T having the edge set W ∪ E(P ) must
have at least 3 leaves. Thus there is an edge f in W \ E(P ) incident with a
leaf in T [W ∪ E(P )] other than L(a) and L(b). Since every edge in f is incident

with a leaf in H[W ], by Lemma 3.4, A(H[W ∪ {a, b}] ∧ f)[W \ {f} ∪ {a, b}] =

A(H)[W \ {f}∪{a, b}]. By induction hypothesis and Theorem 2.1, we deduce that

A(H)[E(P )] is nonsingular⇔ A(H)[W \ {f} ∪ {a, b}] is nonsingular

⇔ A(H[W ∪ {a, b}] ∧ f)[W \ {f} ∪ {a, b}] is nonsingular

⇔ A(H)[W ∪ {a, b}] is nonsingular. �

Lemma 3.7. Let P = (en+1, en, . . . , e1) be the directed path from w to v in T .
Then Ce1Ce2 . . . CenA(G)[Uen+1

, Ben+1
] = A(G)[Ue1 , Ben+1

].

Proof. We proceed by induction on n. If n = 1, then by definition, Ce1A(G)[Ue2 , Be2 ] =
Pe2 [Ue1 , Ue2 ]A(G)[Ue2 , Be2 ] = A(G)[Ue1 , Be2 ]. We may assume that n ≥ 2. By in-
duction hypothesis, Ce2Ce3 . . . CenA(G)[Uen+1 , Ben+1 ] = A(G)[Ue2 , Ben+1 ]. Since
Ce1A(G)[Ue2 , Be2 ] = A(G)[Ue1 , Be2 ] and Ben+1

⊆ Be2 , Ce1A(G)[Ue2 , Ben+1
] =

A(G)[Ue1 , Ben+1
]. Therefore, we conclude that Ce1Ce2 . . . CenA(G)[Uen+1

, Ben+1
] =

Ce1A(G)[Ue2 , Ben+1
] = A(G)[Ue1 , Ben+1

]. �
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Lemma 3.8.

det





0 C1 0 0 · · · 0 0
0 I C2 0 · · · 0 0
0 0 I C3 0 0
0 0 0 I 0 0
...

. . .
...

0 0 0 0 · · · I Cn
Cn+1 0 0 0 · · · 0 I

= (−1)n det(C1C2 . . . Cn+1).

Proof. By elementary row operation,

det





0 C1 0 0 · · · 0 0
0 I C2 0 · · · 0 0
0 0 I C3 0 0
0 0 0 I 0 0
...

. . .
...

0 0 0 0 · · · I Cn
Cn+1 0 0 0 · · · 0 I

= det





0 0 −C1C2 0 · · · 0 0
0 I C2 0 · · · 0 0
0 0 I C3 0 0
0 0 0 I 0 0
...

. . .
...

0 0 0 0 · · · I Cn
Cn+1 0 0 0 · · · 0 I

= det





0 0 0 (−1)2C1C2C3 · · · 0 0
0 I C2 0 · · · 0 0
0 0 I C3 0 0
0 0 0 I 0 0
...

. . .
...

0 0 0 0 · · · I Cn
Cn+1 0 0 0 · · · 0 I

= det





(−1)nC1C2 . . . Cn+1 0 0 0 · · · 0 0
0 I C2 0 · · · 0 0
0 0 I C3 0 0
0 0 0 I 0 0
...

. . .
...

0 0 0 0 · · · I Cn
Cn+1 0 0 0 · · · 0 I

= (−1)n det(C1C2 . . . Cn+1). �
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Proposition 3.9. Let k ≥ 1. Let G be a connected graph with rank-width k and
|V (G)| ≥ 3. Then a rank-expansion of G has a pivot-minor isomorphic to G.

Proof. Let (T, L) be a rank decompostion of a graph G and let x be a leaf in T .
We orient each edge f away from x. For each f ∈ E(T ), if m is the width of f ,

we choose a basis Uf = {uf1 , u
f
2 , . . . , u

f
m} ⊆ Af of rows in the matrix A(G)[Af , Bf ]

such that (Ue ∩ Af ) ⊆ Uf if the head of an edge e is the tail of f . Since G is
connected, |Uf | ≥ 1. Let H be a rank-expansion R(G,T, L, x, {Uf}f∈E(T )) of a

graph G. By Lemma 3.4, for every W ⊆ EI(T ), A(H)[W ] is nonsingular. We will

prove that for a, b ∈ V (G), ab ∈ E(H ∧ EI(T )) if and only if ab ∈ E(G).
Let a, b be distinct vertices in V (G). We consider the path P from L(a) to L(b)

in T . By Lemma 3.6, a is adjacent to b in H ∧EI(T ) if and only if a is adjacent to

b in H[E(P )] ∧ (E(P ) ∩ EI(T )). Therefore, by Theorem 2.1,

ab ∈ E(H ∧ EI(T ))⇔ ab ∈ E(H[E(P )] ∧ (E(P ) ∩ EI(T )))

⇔ A
(
H[E(P )] ∧ (E(P ) ∩ EI(T ))

)
[{a, b}] is nonsingular

⇔ A
(
H[E(P )]

)
[(E(P ) ∩ EI(T ))∆{a, b}] is nonsingular

⇔ A(H[E(P )]) is nonsingular.

Thus, it is enough to show that det(A(H[E(P )])) = A(G)(a, b).
If L(b) = x, then P = (en+1, en, . . . , e1, e0) is a directed path from L(b) to L(a).

The submatrix of A(H) induced by E(P ) is

b Le1 Le2 · · · Len−1
Len a Re1 Re2 · · · Ren−1

Ren



a 0 Ce0 0 · · · 0 0 0 0 0 · · · 0 0
Re1 0 I Ce1 · · · 0 0 0 0 0 · · · 0 0
Re2 0 0 I 0 0 0 0 0 · · · 0 0

...
...

. . .
... 0

. . .
...

Ren−1
0 0 0 · · · I Cen−1

0 0 0 · · · 0 0
Ren Cen 0 0 · · · 0 I 0 0 0 · · · 0 0

b 0 0 0 · · · 0 0 0 0 0 · · · 0 Cten
Le1 0 0 0 · · · 0 0 Cte0 I 0 · · · 0 0
Le2 0 0 0 · · · 0 0 0 Cte1 I 0 0

...
...

. . .
... 0

. . .
...

Len−1
0 0 0 · · · 0 0 0 0 0 · · · I 0

Len 0 0 0 · · · 0 0 0 0 0 · · · Cten−1
I

=

(
C 0
0 Ct

)
.

Note that det(A(H)[E(P )]) = det(C) det(Ct) = det(C)2. By Lemma 3.8,
det(C) = (−1)n det(Ce0Ce1 . . . Cen). Since |Uen+1

| = |Ben+1
| = 1 and rank(A(G)[Ue, Be]) =
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|Ue| for all edges e ∈ E(T ), A(G)[Uen+1
, Ben+1

] = (1). By Lemma 3.7,

Ce0Ce1 . . . Cen = Ce0Ce1 . . . CenA(G)[Uen+1
, Ben+1

]

= A(G)[Ue0 , Ben+1
]

= A(G)(a, b).

Therefore det(A(H)[E(P )]) = A(G)(a, b), as required.
Now we assume that L(a) 6= x and L(b) 6= x. Then there exists a vertex y in

V (P ) such that it has a shortest distance to x. Let P1 = (en, en−1, . . . , e0) be the
edges of P from y to L(a) and P2 = (fm, fm−1, . . . , f0) be the edges of P from y to
L(b).

Let M = A(H)[Ren , Rfm ]. By the construction of a rank-expansion, M =

A(G)[Uen , Ufm ]. The submatrix of A(H) induced by E(P ) is

{b} ∪
⋃n
i=1 Lei ∪

⋃m
i=1Rfi {a} ∪

⋃n
i=1Rei ∪

⋃m
i=1 Lfi( )

{a} ∪
⋃n
i=1Rei ∪

⋃m
i=1 Lfi C 0

{b} ∪
⋃n
i=1 Lei ∪

⋃m
i=1Rfi 0 Ct

where C is

b Le1 Le2 · · · Len−1
Len Rfm Rfm−1

· · · Rf2 Rf1



a 0 Ce0 0 · · · 0 0 0 0 · · · 0 0
Re1 0 I Ce1 · · · 0 0 0 0 · · · 0 0
Re2 0 0 I 0 0 0 0 · · · 0 0

...
...

. . .
...

. . .
...

Ren−1
0 0 0 · · · I Cen−1

0 0 · · · 0 0
Ren 0 0 0 · · · 0 I M 0 · · · 0 0
Lfm 0 0 0 · · · 0 0 I Ctfm−1

· · · 0 0

Lfm−1
0 0 0 · · · 0 0 0 I 0 0

...
...

. . .
...

. . .
...

Lf2 0 0 0 · · · 0 0 0 0 · · · I Ctf1
Lf1 Ctf0 0 0 · · · 0 0 0 0 · · · 0 I

.

It is enough to show that Ce0Ce1 . . . Cen−1MCtfm−1
Ctfm−2

. . . Ctf0 = A(G)(a, b).

Since M = A(G)[Uen , Ufm ] ⊆ A(G)[Uen , Ben ], by Lemma 3.7, we have

Ce0Ce1 . . . Cen−1
MCtfm−1

Ctfm−2
. . . Ctf0

= Ce0Ce1 . . . Cen−1A(G)[Uen , Ufm ]Ctfm−1
Ctfm−2

. . . Ctf0

= A(G)[Ue0 , Ufm ]Ctfm−1
Ctfm−2

. . . Ctf0

= (Cf0Cf1 . . . Cfm−1A(G)[Ufm , Ue0 ])t

= A(G)[Uf0 , Ue0 ]t = A(G)(a, b).

So, det(A(H)[E(P )]) = A(G)(a, b), as claimed. Therfore, ab ∈ E(H ∧ EI(T )) if
and only if ab ∈ E(G). We conclude that a rank-expansion of G has a pivot-minor
isomorphic to G. �

In the next proposition, we show that a rank-expansion has tree-width at most
2k when rw(G) ≤ k.
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e

f1
f2

vw

w1

w2

Ue = {a4, a5, a7}
Uf1 = {a4, a5}
Uf2 = {a6, a7}

(a7, e, w)

(a5, e, w)

(a4, e, w)

(a7, e, v)

(a5, e, v)

(a4, e, v)

(a4, f1, v) (a5, f1, v)

(a7, f2, v)

(a6, f2, v)

e f2

f1

Re Le

Figure 4. A rank-expansion of the graph G in Figure 2. By the
construction of a rank-expansion, every vertex in Le has exactly
one neighbor in Rf1 ∪Rf2 \ {(a6, f2, v)} in the subgraph H[Sv].

Proposition 3.10. Let k ≥ 1. Let G be a connected graph with |V (G)| ≥ 3. If G
has rank-width k, Then G has a rank-expansion of tree-width at most 2k. Moreover,
if G has linear rank-width k, then G has a rank-expansion of path-width at most
k + 1.

Proof. Let (T, L) be a rank-decomposition of G of width k. We fix a leaf x ∈ V (T )
and orient each edge f away from x. For each f ∈ E(T ), if m is the width of f ,

we choose a basis Uf = {uf1 , u
f
2 , . . . , u

f
m} ⊆ Af of rows in the matrix A(G)[Af , Bf ]

such that (Ue ∩ Af ) ⊆ Uf if the head of an edge e is the tail of f . Since G is
connected, |Uf | ≥ 1. Let H be a rank-expansion R(G,T, L, x, {Uf}f∈E(T )) of a
graph G.

Let T ′ be a tree obtained from T [VI(T )] by replacing each edge from w to v
with a path wzv1z

v
2 . . . z

v
|Ue|p

v
1p
v
2 . . . p

v
|Ue|v. Let y be the neighbor of x in T and

let B(y) = Sy. For v ∈ VI(T ) \ {y}, let e = vw be the edge incoming to v and
f1, f2 be edges outgoing from v. Let Rv = {(a, f, v) ∈ Rf1 ∪ Rf2 : a /∈ Ue}.
Since (Ue ∩ Afi) ⊆ Ufi for each i ∈ {1, 2}, each vertex in Le has exactly one
neighbor in Rf1 ∪ Rf2 \ Rv. Let B(v) = Rf1 ∪ Rf2 and B(zv1 ) = Re ∪ {(ue1, e, v)},
B(pv1) = Rv ∪ Le ∪ {(a, f, v) ∈ Rf1 ∪ Rf2 : a = ue1}. And for each 2 ≤ i ≤ |Ue|, we
define

B(zvi ) = B(zvi−1) \ {(uei−1, e, w)} ∪ {(uei , e, v)}
B(pvi ) = B(pvi−1) \ {(uei−1, e, v)} ∪ {(a, f, v) ∈ Rf1 ∪Rf2 : a = uei}.

Now we show that the pair (T ′, {B(v)}v∈V (T ′)) is a tree-decomposition of H.
Note that for each v ∈ VI(T ) \ {y} with the incoming edge e,

⋃
iE(H[B(zvi )]) =

E(H[e]) and
⋃
iE(H[B(pvi )]) = E(H[Sv]). Therefore all vertices and all edges in

H are covered by B(v) for some v ∈ V (T ′). So the first and second axioms of a
tree-decomposition are satisfied.

For the third axiom, it suffices to show that for every t ∈ V (H), T ′[{z : B(z) 3 t}]
is a subtree of T ′. Let t = (uej , e, v) ∈ V (H) for some e = vw ∈ E(T ) and
1 ≤ j ≤ |Ue|. If v is the head of e, T ′[{z : B(z) 3 t}] = T ′[{zvj , . . . , zv|Ue|, p

v
1, . . . , p

v
j}],

and it forms a path. Suppose v is the tail of e. Let f be the edge incoming to v,

and if a ∈ Uf , then let h be the integer such that a = ufh, if otherwise, let h = 1.
Then T ′[{z : B(z) 3 t}] = T ′[{pvh, . . . , pv|Ue|, v, z

w
1 , . . . , z

w
j }]. It also forms a path,

thus (T ′, {B(v)}v∈V (T ′)) is a tree-decomposition of H.
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a7
a5
a4

a7
B(zv1 )

a5
a4

a7
a5

B(zv2 )

a4

a7
a5
a4

B(zv3 )

a7
a5
a4

a7
a6

B(pv1)

a5
a4

a7
a6

a5

B(pv2)

a4

a7
a6

a5a4

B(pv3)
a7
a6

a5a4

B(v)

B(zw1
1 )

B(zw2
1 )

Figure 5. Tree-decomposition of a rank-expansion in Figure 4.
The vertex sets B(zvi ) and B(pvi ), defined in Proposition 3.9, are
bags which decompose H[e] and H[Sv], respectively.

Since |B(y)| ≤ 2k + 1 and for each v ∈ VI(T ) \ {y} with the incoming edge
e, |B(zvi )| = |B(zv1 )| = |Re| + 1 ≤ k + 1, |B(pvi )| = |B(pv1)| = |Rv| + |Le| + 1 ≤
(2k − |Ue|) + |Ue| + 1 = 2k + 1 and |B(v)| ≤ 2k, the resulting tree-decomposition
has width at most 2k.

Suppose that G has linear rank-width at most k. Here, we choose x ∈ V (T ) such
that x is an end of a longest path in T , and let y be the neighbor of x. For v ∈ VI(T )
with outgoing edges f1 and f2, |Uf1 | = 1 or |Uf2 | = 1 because every inner vertex
of T is incident with a leaf. Therefore, for each v ∈ VI(T ) \ {y} and 1 ≤ i ≤ |Ue|,
|B(pvi )| ≤ (k + 1− |Ue|) + |Ue|+ 1 = k + 2 and |B(v)| ≤ k + 1, and |B(y)| ≤ k + 2.
Moreover, since T [VI(T )] is a path, T ′ is also a path. Therefore (T ′, {B(v)}v∈V (T ′))
is a path-decomposition of H with path-width at most k + 1. �

Proof of Theorem 3.1. If k = 0, then it is trivial. We assume that k ≥ 1. We
proceed by induction on the number of vertices.

Suppose G is connected. Since G has rank-width at most k and |V (G)| ≥ 3,
by Proposition 3.10, there is a rank-expansion H of G such that tw(H) ≤ 2k, and
|V (H)| ≤ (2k+1)|V (G)|−6k. By Proposition 3.9, H has a pivot-minor isomorphic
to G.

If G is disconnected, then we choose a largest component Y of G. Since k ≥ 1,
the component Y has at least 2 vertices. If |V (Y )| = 2, then G has rank-width 1
and tree-width 1, and |V (G)| ≤ (2 + 1)|V (G)| − 6 since |V (G)| ≥ 3. We assume
that |V (Y )| ≥ 3. Then by induction hypothesis, there is a graph H1 such that
Y is isomorphic to a pivot-minor of H1 and tw(H1) ≤ 2k and |V (H1)| ≤ (2k +
1)|V (Y )| − 6k.

If G \ V (Y ) has tree-width at most 1, then G is isomorphic to a pivot-minor
of the disjoint union of two graphs H1 and G \ V (Y ), and the tree-width of it is
equal to the tree-width of H1. Since |V (H1)|+ |V (G) \ V (Y )| ≤ (2k + 1)|V (Y )| −
6k + |V (G) \ V (Y )| ≤ (2k + 1)|V (G)| − 6k, we obtain the result. If tree-width of
G\V (Y ) is at least 2, then |V (G)\V (Y )| ≥ 3. Therefore, by induction hypothesis,
there is a graph H2 such that G \ V (Y ) is isomorphic to a pivot-minor of H2 and
tw(H2) ≤ 2k and |V (H2)| ≤ (2k + 1)|V (G) \ V (Y )| − 6k. So G is isomorphic to a
pivot-minor of the disjoint union of two graphs H1 and H2, and the tree-width of
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it is at most 2k, and |V (H1)|+ |V (H2)| ≤ (2k + 1)|V (G)| − 6k. Thus, we conclude
the theorem. �

Proof of Theorem 3.2. We can easily obtain the proof of Theorem 3.2 from the
proof of Theorem 3.1. �

4. Graphs with rank-width or linear rank-width at most 1

Distance-hereditary graphs are introduced by Bandelt and Mulder [2]. A graphG
is distance-hereditary if for every connected induced subgraph H of G and vertices
a, b in H, the distance between a and b in H is the same as in G. Oum [6]
showed that distance-hereidtary graphs are exactly graphs of rank-width at most
1. Recently, Ganian [5] obtain a similar characterization of graphs of linear rank-
width 1. In this section, we obtain another characterization for these classes in
terms of vertex-minor relation.

Note that every tree has rank-width at most 1 and every path has linear rank-
width at most 1.

Theorem 4.1. Let G be a graph. The following are equivalent:

(1) G has rank-width at most 1.
(2) G is distance-hereditary.
(3) G has no vertex-minor isomorphic to C5.
(4) G is a vertex-minor of a tree.

Proof. ((1)⇔ (2)) is proved by Oum [6], and ((2)⇔ (3)) follows from the Bouchet’s
theorem [3, 4]. Since every tree has rank-width at most 1, ((4) ⇒ (1)) is trivial.
We want to prove that (1) implies (4).

Let G be a graph of rank-width at most 1. We may assume that G is connected.
If |V (G)| ≤ 2, then G itself is a tree. So we may assume that |V (G)| ≥ 3. Let (T, L)
be a rank-decomposition of G of width 1. From Proposition 3.9, a rank-expansion
H with the rank-decomposition (T, L) has G as a pivot-minor.

The width of each edge in T is 1. Thus for v ∈ VI(T ), the subgraph H[Sv] is
a path of length 2 or a triangle because G is connected. Also for e ∈ EI(T ), H[e]
consists of an edge. Therefore H is connected and does not have cycles of length
at least 4.

Let Q be a tree obtained from H by replacing each triangle abc with K1,3 by
adding a new vertex d, making d adjacent to a, b, c and deleting ab, bc, ca. Clearly
H is a vertex-minor of the tree Q because we can obtain the graph H from Q by
applying local complementation on those new vertices and deleting them. Therefore
G is a vertex-minor of a tree, as required. �

We also obtain a characterization of graphs with linear rank-width at most 1.
Obstructions sets for graphs of linear rank-width 1 are C5, N and Q [1], depicted
in Figure 6.

Lemma 4.2. Every subcubic caterpillar is a pivot-minor of a path.

Proof. Let H be a subcubic caterpillar. By the definition of a caterpillar, there is
a path P in H such that every vertex in V (H) \ V (P ) is a leaf. We choose such
path P = p1p2 . . . pm in H with maximum length. We construct a path Q from P
by replacing each edge pipi+1 with a path piaibipi+1. We can obtain a pivot-minor
of P isomorphic to Q by pivoting each edge aibi and deleting all ai and deleting bi
if pi is not adjacent to a leaf in H. �



GRAPHS OF SMALL RANK-WIDTH ARE PIVOT-MINORS 13

s
s

s

s
s�

�
�

A
A
A �

�
�
@
@
@

C5

s s

s
s s s

�
�

@
@

�
�A
A

N

s s ss
s s��@@
��@@

Q

Figure 6. The graphs C5, N and Q.
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Figure 7. A rank-expansion H of a graph with linear rank-width
1. The graph H can be obtained from a path P by applying local
complementation on u and pivoting xv and deleting x.

Theorem 4.3. Let G be a graph. The following are equivalent:

(1) G has linear rank-width at most 1.
(2) G has no vertex-minor isomorphic to C5, N or Q.
(3) G is a vertex-minor of a path.

Proof. ((1) ⇔ (2)) is proved by Adler, Farley and Proskurowski [1]. Since every
path has linear rank-width at most 1, ((3) ⇒ (1)) is trivial. Let us prove that (1)
implies (3).

Let G be a graph of linear rank-width at most 1. We may assume that G is
connected and |V (G)| ≥ 3. Let H be a rank-expansion of G with a linear rank-
decompostion (T, L) of width 1. Note that T is a caterpillar.

Since (T, L) is a linear rank-decomposition of width 1, for each triangle in H,
one of those vertices is of degree 2 in H. Let P be a caterpillar obtained from H
by replacing each triangle with a path of length 2 whose internal vertex has degree
2 in H. We can obtain H from P by applying local complementation on the inner
vertex of those paths of length 2, H is a vertex-minor of P . And by Lemma 4.2, P
is a pivot-minor of a path. Therefore G is a vertex-minor of a path. �

In Theorems 4.1 and 4.2, if a given graph is bipartite, we do not need to apply
local complementation at some vertices. To prove it, we need the following lemma.

Lemma 4.4. Let G be a connected bipartite graph with rank-width 1 and |V (G)| ≥
3. Let (T, L) be a rank-decomposition of width 1. Then a rank-expansion of G with
respect to (T, L) is a tree.

Proof. Let x ∈ V (T ) be a leaf and H be a rank-expansion R(G,T, L, x, {Uf}f∈E(T ))
of G.

Suppose that H has a triangle. Then there exists a vertex v ∈ VI(T ) such that
H[Sv] is the triangle. Let e1, e2 and e3 be edges incident with v and assume that e1
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is the incoming edge. Let Ue1 = {a}, Ue2 = {b} and Ue3 = {c}. By the construction
of a rank-expansion, bc ∈ E(G) and Re1a = Re1b = Re1c . Since Re1a is a non-zero
vector, there is a vertex x ∈ V (G) such that x is adjacent to all of a, b and c.
Therefore xbc is a triangle in G, contradiction. �

Theorem 4.5. Let G be a graph. Then G is bipartite and has rank-width at most
1 if and only if G is a pivot-minor of a tree.

Proof. We may assume that G is connected. Since every tree has rank-width at
most 1, backward direction is trivial. If G is bipartite and has rank-width at most
1, then by Lemma 4.4, we have a rank-expansion of G which is a tree. Hence, G is
a pivot-minor of a tree. �

Theorem 4.6. Let G be a graph. Then G is bipartite and has linear rank-width 1
if and only if G is a pivot-minor of a path.

Proof. We may assume that G is connected. Similarly, backward direction is trivial.
Suppose G is bipartite and has linear rank-width 1. Let H be a rank-expansion of
G with a linear rank-decomposition (T, L) of width 1. By Lemma 4.4, the graph
H is a tree, and since T is a caterpillar, H is also a caterpillar. By Lemma 4.2, H
is a pivot-minor of a path, and so is G. �
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