GRAPHS OF SMALL RANK-WIDTH ARE PIVOT-MINORS OF
GRAPHS OF SMALL TREE-WIDTH

O-JOUNG KWON AND SANG-IL OUM

ABSTRACT. We prove that every graph of rank-width & is a pivot-minor of a
graph of tree-width at most 2k. We also prove that graphs of rank-width at
most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of
trees, and graphs of linear rank-width at most 1 are precisely vertex-minors
of paths. In addition, we show that bipartite graphs of rank-width at most 1
are exactly pivot-minors of trees and bipartite graphs of linear rank-width at
most 1 are precisely pivot-minors of paths.

1. INTRODUCTION

Rank-width is a width parameter of graphs, introduced by Oum and Seymour [6],
measuring how easy it is to decompose a graph into a tree-like structure where the
“easiness” is measured in terms of the matrix rank function derived from edges
formed by vertex partitions. Rank-width is a generalization of another, more
well-known width parameter called tree-width, introduced by Robertson and Sey-
mour [§]. It is well known that every graph of small tree-width also has small
rank-width; Oum [7] showed that if a graph has tree-width k, then its rank-width
is at most k + 1. The converse does not hold in general, as complete graphs have
rank-width 1 and arbitrary large tree-width.

Pivot-minor and vertex-minor relations are graph containment relations such
that rank-width cannot increase when taking pivot-minors or vertex-minors of a
graph [6]. Our main result is that for every graph G with rank-width at most k
and |V(G)| > 3, there exists a graph H having G as a pivot-minor such that H has
tree-width at most 2k and |V (H)| < (2k 4+ 1)|V(G)| — 6k. Furthermore, we prove
that for every graph G with linear rank-width at most & and |V(G)| > 3, there
exists a graph H having G as a pivot-minor such that H has path-width at most
k+1and |[V(H)| < (2k+ 1)|V(G)| — 6k.

As a corollary, we give new characterizations of two graph classes: graphs with
rank-width at most 1 and graphs with linear rank-width at most 1. We show that a
graph has rank-width at most 1 if and only if it is a vertex-minor of a tree. We also
prove that a graph has linear rank-width at most 1 if and only if it is a vertex-minor
of a path. Moreover, if the graph is bipartite, we prove that a vertex-minor relation
can be replaced with a pivot-minor relation in both theorems. Table [1| summarizes
our theorems.
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G has rank-width < k = G is a pivot-minor of
a graph of tree-width < 2k
G has linear rank-width < &k = G is a pivot-minor of

a graph of path-width < k+ 1
G has rank-width <1 & (G is a vertex-minor of a tree
G has linear rank-width <1 < (G is a vertex-minor of a path
G is bipartite and has rank-width <1 <« G is a pivot-minor of a tree
G is bipartite has linear rank-width <1 <« G is a pivot-minor of a path

TABLE 1. Summary of theorems

To prove the main theorem, we construct a graph having G as a pivot-minor,
called a rank-expansion. Then we prove that a rank-expansion has small tree-width.

The paper is organized as follows. We present the definition of rank-width and
related operations in the next section. In Section 3, we define a rank-expansion
of a graph and prove the main theorem. In Section 4, using a rank-expansion, we
present new characterizations of graphs with rank-width at most 1 and graphs with
linear rank-width at most 1.

2. PRELIMINARIES

In this paper, all graphs are simple and undirected. Let G = (V, E) be a graph.
For v € V, let N(v) be the set of vertices adjacent to v and deg(v) := |N(v)|. And
let 6(v) be the set of edges incident with v. For S C V', G[S] denotes the subgraph
of G induced on S. For two sets A and B, AAB = (AU B)\(AN B).

A wvertex partition of a graph G is a pair (A, B) of subsets of V' such that AUB =
Vand ANB = 0. A vertex v € V is a leaf if deg(v) = 1; Otherwise we call it
an inner vertex. An edge e € E is an inner edge if e does not have a leaf as an
end. Let Vi(G) and E;(G) be the set of inner vertices of G and inner edges of G,
respectively.

For an X x Y matrix M and subsets A C X and B C Y, M[A, B] denotes
the A x B submatrix (m; ;)icajep of M. If A = B, then M[A] = M[A, 4] is
called a principal submatriz of M. The adjacency matrix of a graph G, which is a
(0, 1)-matrix over the binary field, will be denoted by A(G).

X V\X
Pivoting matrices. Let M = X A B be a symmetric or skew-
VAX \C D

symmetric V' x V matrix over a field F. If A = M[X] is nonsingular, then we
define

X VX
Uex— X Al AT'B
V\Xx \-cA-! D-CA"'B

This operation is called a pivot. Tucker showed the following theorem.

Theorem 2.1 (Tucker [9]). Let M[X] be a nonsingular principal submatriz of
a square matriz M. Then M x X[Y] is nonsingular if and only if M[XAY] is
nonsingular.
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G G AN uv b G A uv A uc

FIGURE 1. Pivoting an edge uv. Note that G A uv A uc = G A ve.

Vertex-minors and pivot-minors. The graph obtained from G = (V| E) by
applying local complementation at a vertex v is G xv = (V, EA{zy : zv,yv €
E,z # y}). The graph obtained from G by pivoting an edge wv is defined by
GAuv=Gx*ux*vx*u.

To see how we obtain the resulting graph by pivoting an edge uv, let V) =
N(u) N N(v), Vo = Nw)\N(v)\{v} and V5 = N(v)\N(u)\{u}. One can easily
verify that G A uv is identical to the graph obtained from G by complementing
adjacency of vertices between distinct sets V; and V; and swapping the vertices u
and v [6]. See Figure [1] for example.

In fact, if wv € E, then A(G A uwv) = A(G) * {u,v}. Since det (A(G)[{u,v}]) =
A(G)(u,v), Theorem is useful for dealing with a sequence of pivoting. In Fig-
ure [l we can easily check that G A uv Auc = G Ave. For X C V, if A(G)[X]
is nonsingular, then we denote G A X as the graph having the adjacency matrix
AG) x X.

A graph H is a vertex-minor of G if H can be obtained from G by applying a
sequence of vertex deletions and local complementations. A graph H is a pivot-
minor of G if H can be obtained from G by applying a sequence of vertex deletions
and pivoting edges. From the definition, every pivot-minor of a graph is a vertex-
minor of the graph. Note that every pivot-minor of a bipartite graph is bipartite.

Rank-width and linear rank-width. The cut-rank function cutrkg : 2V — Z
of a graph G is defined by

cutrkg (X) = rank(A(G)[X, V\X]).

A tree is subcubic if it has at least two vertices and every inner vertex has
degree 3. A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic
tree and L is a bijection from the vertices of G to the leaves of T'. For an edge e
in T, T\e induces a partition (X, Y;) of the leaves of T. The width of an edge
e is defined as cutrkg(L~1(X.)). The width of a rank-decomposition (T, L) is the
maximum width over all edges of T. The rank-width of G, denoted by rw(G), is
the minimum width of all rank-decompositions of G. If |V| < 1, then G admits no
rank-decomposition and rw(G) = 0.

A subcubic tree is a caterpillar if it contains a path P such that every vertex of
a tree has distance at most 1 to some vertex of P. A linear rank-decomposition of
a graph G is a rank-decomposition (T, L) of G, where T is a caterpillar. The linear
rank-width of G is defined as the minimum width of all linear rank-decompositions
of G. If |V| < 1, then G admits no linear rank-decomposition and lrw(G) = 0.
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Note that if a graph H is a vertex-minor or a pivot-minor of a graph G, then
rw(H) <rw(G) and Irw(H) < lIrw(G) [6]. Trivially, rw(G) < lIrw(G).

Tree-width and path-width. Let T be a tree, and let B = {B;},cv (1) be a
family of vertex sets B, C V indexed by the vertices t € V(T), called bags. The
pair (T, B) is called a tree-decomposition of G if it satisfies the following three
conditions.

(T].) V= UUEV(T) Bt~

(T2) For every edge uv € E, there exists a vertex ¢ of T such that u, v € B;.

(T3) For ty, ty and t3 € V(T'), By, N By, C By, whenever t3 is on the path from

tl to t3.

The width of a tree-decomposition (T, B) is max{|B;| —1:t € V(T)}. The tree-
width of G, denoted by tw(G), is the minimum width of all tree-decompositions
of G. A path-decomposition of a graph G is a tree-decomposition (7, B) where T
is a path. The path-width of G, denoted by pw(G), is the minimum width of all
path-decompositions of G.

3. RANK-EXPANSIONS AND PIVOT-MINORS OF GRAPHS WITH SMALL TREE-WIDTH

In this section, for a graph G with rank-width k, we construct a graph having
tree-width at most 2k such that it has G as a pivot-minor.

Theorem 3.1. Let k be a non-negative integer. Let G be a graph of rank-width
at most k and |V(G)| > 3. Then there exists a graph H having a pivot-minor
isomorphic to G such that tree-width of H is at most 2k and |V(H)| < (2k +
D|IV(G)| — 6k.

Theorem 3.2. Let k be a non-negative integer. Let G be a graph of linear rank-
width at most k and |V(G)| > 3. Then there exists a graph H having a pivot-
minor isomorphic to G such that path-width of H is at most k + 1 and |V (H)| <
(2k + 1)|V(G)| — 6k.

We need the following lemma.

Lemma 3.3. Let G be a graph and (A1, B1), (Aa, B2) be two vertex partitions
such that A5 C Ay. Let S C Ay be a set corresponding to a basis of row vectors in
A(G)[A1, B1]. Then there exists a subset of Ay representing a basis of row vectors
in A(G)[Az, Bs] containing SN As.

Proof. Because As C Ay, rows in A(G)[S N Ag, Bs] are independent. Therefore we
can extend SN As to a basis of rows in A(G)[Az, Ba). O

To prove Theorems and we construct a rank-expansion of a graph. Let
G be a connected graph and (7, L) be a rank-decomposition of G. We fix a leaf
x € V(T). For e € E(T), let T, be the component of T\ e which does not contain
x, and let A, = L=Y(V(T.)), B. = V(G) \ A. and M, = A(G)[A., Be]. For each
a € A, let RS = M,.[{a}, B.] the row vector of M..

First, for each edge e = uv € E(T), we orient the edge towards v if v € V(T¢).
We choose a vertex set U, C A, such that {RS },ecp, forms a basis of row vectors
in M, and (U.N Ay) C Uy if the tail of an edge f is the head of e. Since R¢ can be
uniquely expressed as a linear combination of vectors of { RS },ev. for each a € A,
there exists a unique A, x U, matrix P, such that P.A(G)[U., B.] = A(G)[Ae, Be].
If the tail of an edge f is the head of an edge e, then let Cy = P.[Uy, U.].
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L(as)  Lfas)

ay as

a2 ae

as ay x = L(az) L(ar)

FIGURE 2. A graph G and a rank-decomposition (T, L) of G with
a fixed leaf € V(T'). Note that the edge e € F(T) has width 3
and e is directed from w to v.

Let H be a rank-expansion R(G,T, L,x,{Uys}tepr)) of a graph G such that
vid)= |J U U x{e} x {v})

VEVI(T) e€d(v)
E(H) ={{(a,e,v),(a,e,w)} :e=vw € E;(T),a € U}
U{{(a,e,v), (b, f,v)} :v e Vi(T),e, f € E(T),v is the head of e and the tail of f,
a€Us,be U, and C¢(a,b) # 0}
U {{(a, f1,v), (b, f2,v)} : v is the tail of both f; and f, € E(T),
acUy,be Uy and ab € E(G)}.

For v € VI(T), let Sy = U,cs) Ue X {e} x {v} C V(H). For e =vw € EI(T)Llet
e ={(a,e,v),(a,e,w) :a € U} CV(H) and for W C E[(T), let W = Uy f C
V(H). If e € E{(T) is directed from w to v, let L, = S, Ne and R, = S,, Ne.
For a vertex a in V(G) and e = {L(a),v} € E(T), let @ be the unique vertex in
U. x {e} x {v} and let e =a.

We discuss the number of vertices in the rank-expansion H. We easily observe
that |Er(T)| = |[V(G)| — 3. So if rw(G) < k, then [e| < 2k for each e € Ef(T),
and we deduce that |V (H)| < 2k|E[(T)| + |V(G)| = 2k(|[V(G)| — 3) + |[V(G)| =
(2k + 1)|V(G)| — 6k.

First, we prove that every rank-expansion of a graph has the given graph as a
pivot-minor. To obtain G as a pivot-minor of H, we will pivot UeEEI(T) €to H.

Lemma 3.4. Let G be a graph and wv € E(G). Ifdeg(u) = 1, then GAuv\{u,v} =

G\ {u,v}.

Proof. 1t is clear from the definition. ([l
For convenience, let det(A(H)[0]) = 1.

Lemma 3.5. Let W C E((T). Then A(H)[W] is nonsingular.

Proof. We proceed by induction on |W|. If W is empty, then it is trivial. If |W]| > 1,
then W induces a forest in T', and therefore there must be an edge f € W which

has a leaf in T[W]. By induction hypothesis, A(H)[W \ {f}] is nonsingular. Since
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aq as
Ua = {as, a5}
Ue = {a47 0’57 a7}
Uy, = {as, a5} _
Uf2 = {a6,a7} as (4] as fl
R. L.
_ (104 [] _
a1 a4 as ae a6
as N | a7 a7
az(as) d e fa ar

FIGURE 3. A rank-expansion of the graph G in Figure

every edge in H[f] is incident with a leaf in H[W], by Lemma pivoting all

edges in f does not change the graph H[W \ {f}]. So, A(H[W] A f)[W \ {f} =

A(H)[W \ {f}] and therefore, by Theorem AH)[fAW N\ {f}] = A(H)[W] is
nonsingular. ([l

Lemma 3.6. Let a, b € V(G) and let P be a path from L(a) to L(b) in T. Then
for E(P)NE(T) CW C Ef(T), A(H)[W U {a,b}] is nonsingular if and only if
A(H)[E(P)] is nonsingular.

Proof. We use induction on |W|. If W = E(P) N E(T), then it is trivial, because
WU {a,b} = E(P). So we may assume that |W| > |E(P) N E((T)|. Since P
is a maximal path in 7', the subgraph of T' having the edge set W U E(P) must
have at least 3 leaves. Thus there is an edge f in W \ E(P) incident with a
leaf in T[W U E(P)] other than L(a) and L(b). Since every edge in f is incident
with a leaf in H[W], by Lemma AH[W U {a,b}] A HIW\ {f} U {a@,b}] =
A(H)[W \ {f}U{a,b}]. By induction hypothesis and Theorem [2.1} we deduce that

A(H)[E(P)] is nonsingular < A(H)[W \ {f} U {@,b}] is nonsingular

& A(HW U {a,b}] A f)[W \ {f} U {@,b}] is nonsingular
& A(H)[W U {@,b}] is nonsingular. O

Lemma 3.7. Let P = (ept1,€n,...,€1) be the directed path from w to v in T.
Then C¢,C., ...C., A(G)[U. B = AG)U.,,B

€n+17 en+1] en+1]'

Proof. We proceed by induction on n. If n = 1, then by definition, Ce, A(G)[Ue,, Be,| =
P.,[Ue,, Uey JA(G)[Uey, Be,y] = A(G)[Ue,, Be,]. We may assume that n > 2. By in-

duction hypothesis, Ce,C, ...Ce, A(G)[Ue,,,, Be,,,] = A(G)[Ue,,Be,_.,]. Since
CelA(G)[U€27B€2] = A(G) [Uel ) B€2] and B€n+1 g B€2’ CelA(G) [U€27 B€n+1] -
A(G)[Ue,, Be,,]. Therefore, we conclude that Ce, Ce, ...Ce, A(G)[Ue,.,,Be,.,]

CelA(G)[Uez ’ Ben+l] = A(G) [Ue1 ; Ben+l]' U
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Lemma 3.8.

/ 0 cC; 0 0 0 0\
0 I Cy 0 0 O
0 0 I (3 0 O
0 0o 0 I 0 O
det i . 3 = (—1)” det(Cng...C’n+1).
0 0o 0 O I n
Chy1| 0 O 0 I
Proof. By elementary row operation,
/ 0 cCi 0 O 0 0\
0 I Cy O 0 O
0 0 I (3 0 O
0 0 0 I 0 O
det
0 0 0 O I C,
Cn+1 | O 0 O 0 I
/ 0 0 *6102 0 0 0 \
0 1 Cy 0 0 O
0 0 I Cs 0 0
0 0 0 I 0 O
=det| )
0 0 0 0 I C,
Cny1 | O 0 0 0 I
/ 0 0 0 (—1)2610203 0 0 \
0 I Cy 0 0 O
0 0 I Cs 0 O
0 0 0 I 0 O
= det )
0 0 0 0 I n
Cny1 |0 O 0 0
/(—1)“6102...Cn+1 0 0 0 0 0 \
0 I Cy 0 0 O
0 0 I (3 0 O
0 0o o0 I 0 O
= det .
0 0 0 O I C,
Chi1 0 0 O 0 I

= (—1>nd€t<0102 e Cn+1).
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Proposition 3.9. Let k > 1. Let G be a connected graph with rank-width k and
|[V(G)| > 3. Then a rank-expansion of G has a pivot-minor isomorphic to G.

Proof. Let (T, L) be a rank decompostion of a graph G and let x be a leaf in T
We orient each edge f away from x. For each f € E(T), if m is the width of f,
we choose a basis Uy = {ul uf, .. uf} C Ay of rows in the matrix A(G)[Ay, By]
such that (U, N Ay) C Uy if the head of an edge e is the tail of f. Since G is
connected, [Us| > 1. Let H be a rank-expansion R(G,T,L,x,{Us}sep(r)) of a
graph G. By Lemma for every W C E;(T), A(H)[W] is nonsingular. We will
prove that for a, b € V(G), @b € E(H A Ef(T)) if and only if ab € E(G).

Let a, b be distinct vertices in V(G). We consider the path P from L(a) to L(b)
inT. By Lemma @ is adjacent to b in H A E7(T) if and only if @ is adjacent to
bin H[E(P)] A (E(P)N E;(T)). Therefore, by Theorem

ab € E(H N E((T)) < ab € E(H[E(P)] A (E(P)N E[(T)))
(H[E(P)] A(E(P)N EI(T))> [{@, b}] is nonsingular
H[E(P

(1

< A(H[E(P)]) is nonsingular.

s A
e A )]) [(E(P)N E;(T))A{a,b}] is nonsingular

Thus, it is enough to show that det(A(H[E(P)])) = A(G)(a,b).
If L(b) = x, then P = (en41,€n,...,€1,€p) is a directed path from L(b) to L(a).
The submatrix of A(H) induced by E(P) is

b L, L, L., , L, a Re, R, R, . R,
a 0 |Ce,q O 0 0 0 0 0 0 0
R, 0 I C 0 0 0 0 0 0 0
R, 0 0 I 0 0 0 0 0 0 0
: : 0 :
R, ., 0 0 0 1 Ce, _, 0 0 0 0 0
R., |Ce, | O 0 0 I 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 an
L, 0 0 0 0 0 C;fo I 0 0 0
L, 0 0 0 0 0 0 Cﬁl I 0 0
: 0 :
Le, 0 0 0 0 0 0 0 0o - I 0
L, 0 0 0 0 0 0 0 0o - C;H I

(52

Note that det(A(H)[E(P)]) = det(C)det(Ct) = det(C)%. By Lemma
det(C) = (=1)"det(C,C, ...C,,). Since |Ue, ,,| = |Be,,,| = 1 and rank(A(G)[Ue, B.]) =
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|U| for all edges e € E(T), A(G)[U,,,, Be,,,] = (1). By Lemma[3.7]
CorCey .. Co = CoyCor .. Co, AG)[Uer 1, Ber ]
— A(G)[U.., B
— A(G)(a,b).

en+1]

Therefore det(A(H)[E(P)]) = A(G)(a,b), as required.

Now we assume that L(a) # x and L(b) # x. Then there exists a vertex y in
V(P) such that it has a shortest distance to x. Let P, = (en,€n—1,-..,€0) be the
edges of P from y to L(a) and Py = (fm, fi—1,--., fo) be the edges of P from y to
L(b).

Let M = A(H)|R.,,Ry,]. By the construction of a rank-expansion, M =

A(G)[U.,,,Uy,,]. The submatrix of A(H) induced by E(P) is
{B} U U?:l Le, U U:il Ry, {a} U U?:l Re, U U?ll Ly,
0

‘@} U U?:l Rei U Ugl Lf'i / c ‘
{b} U U?:l L, U UZl Rfi \ 0 ct
where C' is
b Lel Lez Lenfl Len Rfm Rfm71 sz Rfl
a 0 Ce, 0 0 0 0 0 0 0
R, 0 1 Ce, 0 0 0 0 0 0
R, 0 0 I 0 0 0 0 0 0
R, 0 0 0 1 Ce, . 0 0 0 0
R, 0 0 0 0 I M 0 0 0
Lfm 0 0 0 0 0 1 C}’nz—l 0 0
Lfm—1 0 0 0 0 0 0 I 0 0
Ly, 0 0 0 s 0 0 0 0 s 1 Ctl
Lf1 C}O 0 0 e 0 0 0 0 e 0 I

It is enough to show that C¢,C, ...C,, ,MC} _ C%  ...Ch = A(G)(a,b).
Since M = A(G)[U.,,Uy,,] € A(G)[U.,, Be,], by Lemma[3.7} we have
CeoCe, ... Ce,_ ,MC;  C5 . ...C%
=Ce,Ce, ... Ce,_AGQ)[Us,,, Ufm]C’}m_lC’}m_2 e C)tco
= A(G)[er ) Uf¢yL}C},,L710;,,L72 s C}o
= (CfOCfl s Cfm—lA(G) [Ufm,’ er])t
= A(G)[Uyy, U, ) = A(G)(a, b).
So, det(A(H)[E(P)]) = A(G)(a,b), as claimed. Therfore, ab € E(H A E((T)) if
and only if ab € E(G). We conclude that a rank-expansion of G has a pivot-minor
isomorphic to G. O

In the next proposition, we show that a rank-expansion has tree-width at most
2k when rw(G) < k.
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Ue - {04, as, 0/7}

U, ={a4, a5}
Uy, ={as, a7}
wi (ag,e,w)(aq,e
fi (as, e, w f2,v)
. fs ((17,6,11)= (az7,e,v (17,]“2,11)e
w v wa fe e Le fa

FIGURE 4. A rank-expansion of the graph G in Figure[2] By the
construction of a rank-expansion, every vertex in L. has exactly

one neighbor in Ry, U Ry, \ {(as, f2,v)} in the subgraph H[S,].

Proposition 3.10. Let k > 1. Let G be a connected graph with |V (G)| > 3. If G
has rank-width k, Then G has a rank-expansion of tree-width at most 2k. Moreover,
if G has linear rank-width k, then G has a rank-expansion of path-width at most
k+1.

Proof. Let (T, L) be a rank-decomposition of G of width k. We fix a leaf z € V(T
and orient each edge f away from x. For each f € E(T), if m is the width of f,
we choose a basis Uy = {ul uf, .. uf} C Ay of rows in the matrix A(G)[Ay, By]
such that (U. N Ay) C Uy if the head of an edge e is the tail of f. Since G is
connected, [Us| > 1. Let H be a rank-expansion R(G,T,L,x,{Us}sep(r)) of a
graph G.

Let 7”7 be a tree obtained from T[V;(T)] by replacing each edge from w to v
with a path w2723 . ..zr’Uc‘p’l’pg .. 'p\valw' Let y be the neighbor of x in T and
let B(y) = Sy. For v € Vi(T) \ {y}, let e = vw be the edge incoming to v and
f1, f2 be edges outgoing from v. Let R = {(a, f,v) € Ry, URy, : a ¢ U.}.
Since (U N Ay,) C Uy, for each i € {1,2}, each vertex in L. has exactly one
neighbor in Ry, URy, \ R". Let B(v) = Ry, URy, and B(z}) = R U {(uf,e,v)},
B(p}) = R*UL.U{(a, f,v) € Ry, URy, : a = u$}. And for each 2 < i < |U,|, we
define

B(z) = B(z_1) \ {(ui_1,e;w)} U{(uf, e, v)}
B(pi) = Bpi_1) \{(wi_1,e,0)} U{(a, f,v) € Ry, U Ry, 1 a = ui}.

Now we show that the pair (T, {B(v)},ev (1)) is a tree-decomposition of H.
Note that for each v € Vi(T) \ {y} with the incoming edge e, |, E(H[B(z})]) =
E(H[e]) and U, E(H[B(py)]) = E(H[S,]). Therefore all vertices and all edges in
H are covered by B(v) for some v € V(T”). So the first and second axioms of a
tree-decomposition are satisfied.

For the third axiom, it suffices to show that for every t € V(H), T'[{z : B(z) 3 t}]
is a subtree of 7". Let t = (uf,e,v) € V(H) for some e = vw € E(T) and
1<j <|Ue| Ivistheheadofe, T'[{z : B(z) 3 t}] = T'[{z],.... 2}y, ,pY, .-, pj}],
and it forms a path. Suppose v is the tail of e. Let f be the edge incoming to v,
and if a € Uy, then let h be the integer such that a = u{, if otherwise, let h = 1.
Then T'[{z : B(z) > t}] = T"[{p}, ... ,p{ys., v, 21", -, 2} 1t also forms a path,
thus (7", {B(v) }yev(1v)) is a tree-decomposition of H.
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FIGURE 5. Tree-decomposition of a rank-expansion in Figure [4]
The vertex sets B(z}Y) and B(pY), defined in Proposition are
bags which decompose H|[e] and H|[S,], respectively.

Since |B(y)| < 2k + 1 and for each v € Vi(T) \ {y} with the incoming edge
e, [BE0)| = (B = (Rl +1 < k+1, [B@Y| = [BGY| = [R| + |Le| +1 <
(2k — |Ue|) + |Ue| + 1 = 2k + 1 and |B(v)| < 2k, the resulting tree-decomposition
has width at most 2k.

Suppose that G has linear rank-width at most k. Here, we choose € V(T') such
that « is an end of a longest path in T', and let y be the neighbor of z. For v € V(T
with outgoing edges fi and fa, |Us,| = 1 or |Uy,| = 1 because every inner vertex
of T is incident with a leaf. Therefore, for each v € V;(T) \ {y} and 1 < i < |U,|,
IB(p?)| < (k+1—|Ue]) +|U| +1 =k +2and |B(v)| < k+1, and |B(y)| < k + 2.
Moreover, since T'[V;(T')] is a path, T” is also a path. Therefore (", {B(v) }vev (1))
is a path-decomposition of H with path-width at most k& + 1. O

Proof of Theorem[3.. If k = 0, then it is trivial. We assume that k& > 1. We
proceed by induction on the number of vertices.

Suppose G is connected. Since G has rank-width at most k& and |V (G)| > 3,
by Proposition there is a rank-expansion H of G such that tw(H) < 2k, and
\V(H)| < (2k+1)|V(G)|—6k. By Proposition[3.9 H has a pivot-minor isomorphic
to G.

If G is disconnected, then we choose a largest component Y of G. Since k > 1,
the component Y has at least 2 vertices. If |V (Y)| = 2, then G has rank-width 1
and tree-width 1, and |[V(G)| < (2 + 1)|V(G)| — 6 since |V (G)| > 3. We assume
that |V(Y)| > 3. Then by induction hypothesis, there is a graph H; such that
Y is isomorphic to a pivot-minor of H; and tw(H;) < 2k and |V(Hy)| < (2k +
DIV(Y)| — 6k.

If G\ V(Y) has tree-width at most 1, then G is isomorphic to a pivot-minor
of the disjoint union of two graphs Hy and G\ V(Y), and the tree-width of it is
equal to the tree-width of H;. Since |V(Hy)|+ |[V(G)\V(Y)| < 2k + 1)|V(Y)| —
6k + |[V(G)\V(Y)| < (2k 4+ 1)|V(G)| — 6k, we obtain the result. If tree-width of
G\V(Y) is at least 2, then |[V(G)\ V(Y)| > 3. Therefore, by induction hypothesis,
there is a graph Hs such that G\ V(Y) is isomorphic to a pivot-minor of Hs and
tw(Hz) < 2k and |V (H2)| < (2k+ 1)|[V(G) \ V(Y)| — 6k. So G is isomorphic to a
pivot-minor of the disjoint union of two graphs H; and Hs, and the tree-width of
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it is at most 2k, and |V (H1)| + |V (H2)| < (2k +1)|V(G)| — 6k. Thus, we conclude

the theorem. (]
Proof of Theorem[3.3. We can easily obtain the proof of Theorem from the
proof of Theorem [3.1 O

4. GRAPHS WITH RANK-WIDTH OR LINEAR RANK-WIDTH AT MOST 1

Distance-hereditary graphs are introduced by Bandelt and Mulder [2]. A graph G
is distance-hereditary if for every connected induced subgraph H of G and vertices
a, b in H, the distance between a and b in H is the same as in G. Oum [0]
showed that distance-hereidtary graphs are exactly graphs of rank-width at most
1. Recently, Ganian [5] obtain a similar characterization of graphs of linear rank-
width 1. In this section, we obtain another characterization for these classes in
terms of vertex-minor relation.

Note that every tree has rank-width at most 1 and every path has linear rank-
width at most 1.

Theorem 4.1. Let G be a graph. The following are equivalent:

(1) G has rank-width at most 1.

(2) G is distance-hereditary.

(3) G has no vertex-minor isomorphic to Cs.
(4) G is a vertex-minor of a tree.

Proof. ((1) & (2)) is proved by Oum [6], and ((2) < (3)) follows from the Bouchet’s
theorem [3| [4]. Since every tree has rank-width at most 1, ((4) = (1)) is trivial.
We want to prove that (1) implies (4).

Let G be a graph of rank-width at most 1. We may assume that G is connected.
If [V(G)| < 2, then G itself is a tree. So we may assume that |V (G)| > 3. Let (T, L)
be a rank-decomposition of G of width 1. From Proposition [3.9] a rank-expansion
H with the rank-decomposition (T, L) has G as a pivot-minor.

The width of each edge in T is 1. Thus for v € V;(T), the subgraph HI[S,] is
a path of length 2 or a triangle because G is connected. Also for e € Er(T), H]e]
consists of an edge. Therefore H is connected and does not have cycles of length
at least 4.

Let @ be a tree obtained from H by replacing each triangle abc with K 3 by
adding a new vertex d, making d adjacent to a, b, ¢ and deleting ab, bec, ca. Clearly
H is a vertex-minor of the tree ) because we can obtain the graph H from ) by
applying local complementation on those new vertices and deleting them. Therefore
G is a vertex-minor of a tree, as required. O

We also obtain a characterization of graphs with linear rank-width at most 1.
Obstructions sets for graphs of linear rank-width 1 are C5, N and @ [1], depicted
in Figure [6]

Lemma 4.2. Every subcubic caterpillar is a pivot-minor of a path.

Proof. Let H be a subcubic caterpillar. By the definition of a caterpillar, there is
a path P in H such that every vertex in V(H) \ V(P) is a leaf. We choose such
path P = pips...pp in H with maximum length. We construct a path @ from P
by replacing each edge p;p;+1 with a path p;a;b;p;+1. We can obtain a pivot-minor
of P isomorphic to @ by pivoting each edge a;b; and deleting all a; and deleting b;
if p; is not adjacent to a leaf in H. O
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A

FIGURE 6. The graphs C5, N and Q.

a b c d
H

FIGURE 7. A rank-expansion H of a graph with linear rank-width
1. The graph H can be obtained from a path P by applying local
complementation on v and pivoting zv and deleting x.

Theorem 4.3. Let G be a graph. The following are equivalent:

(1) G has linear rank-width at most 1.
(2) G has no vertex-minor isomorphic to Cs, N or Q.
(3) G is a vertex-minor of a path.

Proof. ((1) & (2)) is proved by Adler, Farley and Proskurowski [I]. Since every
path has linear rank-width at most 1, ((3) = (1)) is trivial. Let us prove that (1)
implies (3).

Let G be a graph of linear rank-width at most 1. We may assume that G is
connected and |[V(G)| > 3. Let H be a rank-expansion of G with a linear rank-
decompostion (T, L) of width 1. Note that T is a caterpillar.

Since (T, L) is a linear rank-decomposition of width 1, for each triangle in H,
one of those vertices is of degree 2 in H. Let P be a caterpillar obtained from H
by replacing each triangle with a path of length 2 whose internal vertex has degree
2 in H. We can obtain H from P by applying local complementation on the inner
vertex of those paths of length 2, H is a vertex-minor of P. And by Lemma [£.2] P
is a pivot-minor of a path. Therefore GG is a vertex-minor of a path. O

In Theorems and if a given graph is bipartite, we do not need to apply
local complementation at some vertices. To prove it, we need the following lemma.

Lemma 4.4. Let G be a connected bipartite graph with rank-width 1 and |V(G)| >
3. Let (T, L) be a rank-decomposition of width 1. Then a rank-ezpansion of G with
respect to (T, L) is a tree.

Proof. Let x € V(T') be aleaf and H be a rank-expansion R(G, T, L,z,{Uy} rcg (1))
of G.

Suppose that H has a triangle. Then there exists a vertex v € V;(T') such that
H|[S,] is the triangle. Let e, e and e3 be edges incident with v and assume that e;
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is the incoming edge. Let U., = {a}, U., = {b} and U,, = {c}. By the construction
of a rank-expansion, bc € E(G) and R = R;' = RS'. Since RS is a non-zero
vector, there is a vertex z € V(G) such that x is adjacent to all of a, b and c.
Therefore zbc is a triangle in G, contradiction. O

Theorem 4.5. Let G be a graph. Then G is bipartite and has rank-width at most
1 if and only if G is a pivot-minor of a tree.

Proof. We may assume that G is connected. Since every tree has rank-width at
most 1, backward direction is trivial. If G is bipartite and has rank-width at most
1, then by Lemma [£.4] we have a rank-expansion of G which is a tree. Hence, G is
a pivot-minor of a tree. (Il

Theorem 4.6. Let G be a graph. Then G is bipartite and has linear rank-width 1
if and only if G is a pivot-minor of a path.

Proof. We may assume that G is connected. Similarly, backward direction is trivial.
Suppose G is bipartite and has linear rank-width 1. Let H be a rank-expansion of
G with a linear rank-decomposition (7, L) of width 1. By Lemma the graph
H is a tree, and since T is a caterpillar, H is also a caterpillar. By Lemma |4.2] H
is a pivot-minor of a path, and so is G. (]
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