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Abstract. An even-cycle decomposition of a graph G is a partition of E(G)

into cycles of even length. Evidently, every Eulerian bipartite graph has an
even-cycle decomposition. Seymour (1981) proved that every 2-connected

loopless Eulerian planar graph with an even number of edges also admits an
even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with

no K5-minor.

Our main theorem gives sufficient conditions for the existence of even-cycle
decompositions of graphs in the absence of odd minors. Namely, we prove

that every 2-connected loopless Eulerian odd-K4-minor-free graph with an

even number of edges has an even-cycle decomposition.
This is best possible in the sense that ‘odd-K4-minor-free’ cannot be

replaced with ‘odd-K5-minor-free.’ The main technical ingredient is a

structural characterization of the class of odd-K4-minor-free graphs, which
is due to Lovász, Seymour, Schrijver, and Truemper.

1. Introduction

A graph G is even-cycle decomposable if its edge set can be partitioned into
even cycles. Note that if G is even-cycle decomposable, then necessarily G is
Eulerian, loopless, and |E(G)| is even. For bipartite graphs, these conditions are
also sufficient, since every cycle is even.

Proposition 1.1 (Euler). Every Eulerian bipartite graph is even-cycle
decomposable.

One motivation to study even-cycle decompositions is their connection to the four
colour theorem [1, 9]. For example, as noted by Seymour [11], one consequence of
the four colour theorem is that every 2-connected cubic planar graph has a set of
even cycles in which each edge occurs exactly twice. In the same paper, Seymour
also proves that planar graphs (which satisfy the obvious necessary conditions) are
always even-cycle decomposable.

Theorem 1.2 (Seymour [11]). Every 2-connected Eulerian loopless planar graph
with an even number of edges is even-cycle decomposable.
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Note that the 2-connected condition is with little loss of generality, since a
graph G is even-cycle decomposable if and only if each block of G is even-cycle
decomposable.

Later, Zhang [15] generalized Theorem 1.2 to graphs with no K5-minor.

Theorem 1.3 (Zhang [15]). Every 2-connected Eulerian loopless K5-minor-free
graph with an even number of edges is even-cycle decomposable.

In this paper we consider sufficient conditions for the existence of even-cycle
decompositions in graphs with no odd-Kt-minor (definitions are deferred until the
next section). For further information on even-cycle decomposable graphs and
related results we refer the reader to the surveys of Jackson [7] or Fleischner [3].

Our main result is the following.

Theorem 1.4. Every 2-connected Eulerian loopless odd-K4-minor-free graph with
an even number of edges is even-cycle decomposable.

Theorem 1.4 is best possible in the sense that ‘odd-K4-minor-free’ cannot be
replaced with ‘odd-K5-minor-free.’

Theorem 1.5. There exists a 2-connected Eulerian loopless odd-K5-minor-free
graph with an even number of edges which is not even-cycle decomposable.

In a previous version of this paper, we conjectured that all 2-connected Eulerian
loopless odd-K5-minor-free graphs with an even number of edges are even-cycle
decomposable. Note that if true, this conjecture would simultaneously imply both
Proposition 1.1 and Theorem 1.3. By a celebrated theorem of Guenin [6], a signed
graph is odd-K5-minor-free if and only if it is weakly bipartite (as defined by
Grötschel and Pulleyblank [5]). See also Naserasr, Rollová, and Sopena [8] for
connections between odd-K5-minor-free signed graphs and the 4-colour theorem.

However, Cheolwon Heo disproved our conjecture. We would like to thank him
for graciously allowing us to include the proof of Theorem 1.5 in this paper. The
(graph version of the) example used in the proof of Theorem 1.5 also appears
in [11], where it is used as a counterexample to the claim that all 2-connected
Eulerian loopless graphs with an even number of edges is even-cycle decomposable.
Note that K5 is another counterexample to this claim.

For the proof of Thereom 1.4, a potentially useful inductive tool is the following
nice theorem of Conlon [2].

Theorem 1.6 (Conlon [2]). Let G be a simple 3-connected graph of minimum
degree 4. If G is not isomorphic to K5, then G contains an even cycle C such that
G \ E(C) is 2-connected.

Unfortunately the assumptions in Theorem 1.6 are much too strong for our
purposes. Instead, our result relies on a structural description of the signed graphs
with no odd-K4-minor. According to Gerards [4], this structure theorem is due to
Lovász, Seymour, Schrijver, and Truemper. The proof of the structure theorem
makes use of the regular matroid decomposition theorem of Seymour [10]. It is also
a special instance of a decomposition theorem for binary matroids with no F7-minor
using a fixed element due to Truemper and Tseng [12, 13] (F7 denotes the Fano
matroid).

Our strategy for proving Theorem 1.4 is to first prove it for the two basic
classes given by the structure theorem. We then show how to combine even-cycle
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decompositions across low order separations. This last step contains some technical
difficulties. Indeed, we end up having to apply the structure theorem twice (once
on the original graph and then also on an auxiliary graph).

The graphs we consider are not necessary simple, and we do not know an easy
proof of our theorem for simple graphs. For example, the decomposition step will
introduce parallel edges even if the original graph is simple. Our proof would be
slightly shorter if we used Theorem 1.2, but we do a bit of extra work so that we
avoid using Theorem 1.2.

The rest of the paper is organized as follows. In Section 2, we define signed
graphs and prove Theorem 1.5. In Section 3, we present the structure theorem
for signed graphs with no odd-K4-minor. In Section 4 and Section 5 we prove our
main theorem for the two basic classes of signed graphs appearing in the structure
theorem. Finally, in Section 6, we prove our main theorem.

2. Signed graphs, re-signing, and odd minors

A signed graph is a pair (G,Σ) consisting of a graph G together with a signature
Σ ⊆ E(G). The edges in Σ are negative and the other edges are positive. A cycle
(or path) is balanced if it contains an even number of negative edges; otherwise it
is unbalanced. We say that a signed graph (G,Σ) is balanced-cycle decomposable, if
E(G) can be partitioned into balanced cycles of (G,Σ).

For a signed graph (H,Σ) define graph(H,Σ) to be the graph obtained from H
by subdividing every positive edge once. Then it is easy to observe the following
lemma, because a cycle in (H,Σ) is balanced if and only if the corresponding cycle
in graph(H,Σ) is even. This lemma will be used later as we will frequently reduce
signed graphs to graphs.

Lemma 2.1. A signed graph (H,Σ) is balanced-cycle decomposable if and only if
graph(H,Σ) is even-cycle decomposable.

For X ⊆ V (G), we let δG(X) be the set of edges with exactly one end in X.
We say that δG(X) is the cut induced by X. Two signatures Σ1,Σ2 ⊆ E(G) are
equivalent if their symmetric difference is a cut. The operation of changing to an
equivalent signature is called re-signing. A key observation is that if Σ1,Σ2 ⊆ E(G)
are equivalent signatures, then (G,Σ1) and (G,Σ2) have exactly the same set of
balanced cycles. Thus, for equivalent signatures Σ1 and Σ2, (G,Σ1) is balanced-
cycle decomposable if and only if (G,Σ2) is balanced-cycle decomposable.

We will require the following well-known lemma, first proved by Zaslavsky [14].

Lemma 2.2 (Zaslavsky [14]). Let (G,Σ) be a signed graph. For every forest F
which is a subgraph of G, there exists a signature which is disjoint from E(F ) and
equivalent to Σ.

A minor of a signed graph (G,Σ) is a signed graph that can be obtained from
(G,Σ) by any of the following operations: re-signing, deleting edges or vertices, and
contracting positive edges. For a graph H, odd-H is the signed graph (H,E(H)).
A signed graph is odd-H-minor-free if it has no minor that is isomorphic to an
odd-H. A graph G is odd-H-minor-free if the odd-G is odd-H-minor-free.

Now that our terms have been defined, we restate our main theorem.

Theorem 2.3. Every 2-connected Eulerian loopless odd-K4-minor-free signed
graph with an even number of negative edges is balanced-cycle decomposable.
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Figure 1. A 2-connected Eulerian signed graph with no odd-K5-
minor and no balanced-cycle decompositions. (Solid lines denote
negative edges.)

As we discussed in Section 1, K4 cannot be replaced with K5 in the above
theorem. For that, we state an equivalent formulation of Theorem 1.5 and present
a proof which is due to Cheolwon Heo.

Theorem 2.4. There exists a 2-connected Eulerian loopless odd-K5-minor-free
signed graph with an even number of negative edges which is not balanced-cycle
decomposable.

Proof. We claim that the signed graph (G,Σ) in Figure 1 is such a signed graph.
Evidently, G is 2-connected, Eulerian and loopless. We claim that (G,Σ) is not
balanced-cycle decomposable. Let C be an arbitrary cycle in a balanced-cycle
decomposition of (G,Σ). Note that G only contains cycles of length 2, 5, 6, 8, or 9.
Since all 2-cycles are unbalanced, C has length 5, 6, 8, or 9. On the other hand, it is
easy to check that if C has length 5 or 6, then some block of (G \E(C),Σ \E(C))
is an unbalanced 2-cycle, which is a contradiction. Thus, C has length 8 or 9. But
|E(G)| = 20 and 8a+ 9b 6= 20 for all non-negative integers a, b.

It remains to show that (G,Σ) does not contain an odd-K5-minor. By degree
considerations, the only way to obtain a K5-minor from the Petersen graph is to
contract a perfect matching. Thus, to obtain odd-K5 from (G,Σ) we must delete
exactly one edge from each 2-cycle and then contract a perfect matching M . Let
C be the balanced 5-cycle 57968. It is easy to see that |M ∩E(C)| ∈ {0, 2}. Thus,
our odd-K5-minor either contains a balanced 5-cycle or a balanced 3-cycle, which
is a contradiction. �

3. Structure theorem for signed graphs with no odd-K4-minor

In this section we describe the structure of signed graphs with no odd-K4-minor.
We begin by describing the basic building blocks in the decomposition theorem.

Almost balanced. A signed graph is balanced if every cycle is balanced. Note
that Lemma 2.2 easily implies the following alternate definition of balanced signed
graphs.

Lemma 3.1. A signed graph is balanced if and only if we can re-sign so that all
its edges are positive.
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Figure 2. The signed graphs K̃2
3 , K̃2

2 · K̃2
2 , and K̃2

2 . (Solid lines
denote negative edges.)

Since re-signing an Eulerian signed graph (G,Σ) does not change the parity
of |Σ|, it follows that balanced Eulerian signed graphs always contain an even
number of negative edges. We say that a signed graph is almost balanced if there
exists a vertex whose deletion yields a balanced signed graph. Since balanced signed
graphs have no odd-K3-minors, it follows that almost balanced signed graphs have
no odd-K4-minors.

Planar with two unbalanced faces. A signed graph (G,Σ) is planar if the
underlying graph G is planar. A face F of a planar embedding of (G,Σ) is balanced
if the facial walk corresponding to F contains an even number of negative edges,
otherwise F is unbalanced. We say that (G,Σ) is planar with at most two unbalanced
faces if (G,Σ) has a planar embedding with at most two unbalanced faces. Notice
that if every face of a planar embedding of (G,Σ) is balanced, then (G,Σ) is
balanced.

Observe that the property of being planar with at most two unbalanced faces
is preserved under taking minors and that odd-K4 does not have this property.
Therefore, signed graphs that are planar with at most two unbalanced faces do not
have odd-K4-minors.

The signed graph K̃2
3 . We define K̃2

3 to be the signed graph (G,Σ) where G is
a triangle with doubled edges and Σ is the edge-set of a triangle (see Figure 2).

Evidently, K̃2
3 has no odd-K4-minor, but it is neither almost balanced nor planar

with two unbalanced faces. Two more small signed graphs that turn up in our proofs
are K̃2

2 (two vertices connected by a positive and a negative edge) and K̃2
2 ·K̃2

2 (two

K̃2
2 ’s joined at a vertex). See Figure 2 for pictures of K̃2

3 , K̃
2
2 · K̃2

2 , and K̃2
2 .

These turn out to be essentially the only signed graphs with no odd-K4-minor.
To define what we mean by ‘essentially’, we introduce the notion of separations.
A separation of a graph G is a pair (G1, G2) where G1 and G2 are edge-disjoint
subgraphs of G, such that G1∪G2 = G. The boundary of (G1, G2) is V (G1)∩V (G2),
and its order is |V (G1) ∩ V (G2)|. We say that (G1, G2) is a proper separation if
both V (G1) \ V (G2) and V (G2) \ V (G1) are non-empty. A separation of order k is
called a k-separation. A separation of a signed graph (G,Σ) is simply a separation
of G.

We can now state the structure theorem.

Theorem 3.2 (Lovász, Seymour, Schrijver, and Truemper in Gerards [4, Theorem
3.2.4]). Let (G,Σ) be a signed graph with no odd-K4-minor. Then at least one of
the following holds.
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(i) (G,Σ) is almost balanced, or planar with two unbalanced faces, or isomorphic

to K̃2
3 .

(ii) (G,Σ) is not 2-connected.
(iii) (G,Σ) has a 2-separation (G1, G2) where each (Gi, E(Gi) ∩ Σ) is connected

and not a signed subgraph of K̃2
2 .

(iv) (G,Σ) has a 3-separation (G1, G2) where (G2, E(G2) ∩ Σ) is balanced,
connected, and has at least 4 edges.

4. Almost balanced signed graphs

We begin by proving Theorem 2.3 for almost balanced signed graphs. We require
the following lemma.

Lemma 4.1. If G is a connected graph and X is a set of 2k vertices of G, then
there is a collection of k pairwise edge-disjoint paths in G whose set of ends is
precisely X.

Proof. Let (G,X) be a counterexample with |E(G)| minimum. Note that G must
be a tree, since every spanning tree of G is also a counterexample. Next, observe
that each leaf of G is in X, otherwise deleting such a leaf contradicts minimality. Let
` be a leaf and let w be the unique neighbour of `. If w ∈ X, then (G−`,X \{`, w})
is a smaller counterexample since we can link ` and w via the edge `w. On
the other hand, if w /∈ X, then deleting ` and adding w to X yields a smaller
counterexample. �

Proposition 4.2. Every 2-connected Eulerian loopless almost balanced signed
graph with an even number of negative edges is balanced-cycle decomposable.

Proof. Let (H,Σ) be a 2-connected Eulerian loopless almost balanced signed graph
with an even number of negative edges. Call a graph G almost bipartite if G− v is
bipartite for some v ∈ V (G). By replacing (H,Σ) with graph(H,Σ), it suffices to
show that every 2-connected Eulerian loopless almost bipartite graph with an even
number of edges is even-cycle decomposable. Let G be such a graph and let v be
a vertex of G such that G− v is bipartite. We may assume that there are at most
two parallel edges between every pair of vertices, else we can remove a 2-cycle and
apply induction.

Let (A,B) be a bipartition of G − v. Let X be the set of neighbours of v in A
and partition X as X1 ∪X2, where x ∈ Xi if and only if there are i edges between
x and v. Since |E(G)| is even, it follows that |X1| is even because

|E(G)| =
∑
u∈B

degG(u) + 2|X2|+ |X1|.

Now, since G is 2-connected, the graph G − v is connected. Therefore, by
Lemma 4.1 there is a collection P of |X1|/2 pairwise edge-disjoint paths in G − v
whose set of ends is precisely X1. Note that each path P ∈ P has even length since
G− v is bipartite. Thus we may combine the paths in P with edges between v and
X1 to obtain a family C1 of |X1|/2 pairwise edge-disjoint even cycles. Evidently,
the edges between v and X2 can be partitioned into a family C2 of 2-cycles. Let E
be the set of edges in C1 ∪ C2. Observe that the graph G − E is bipartite since in
G − E , the vertex v is only adjacent to vertices in B. Hence, G − E is even-cycle
decomposable and we are done. �
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5. Planar signed graphs with two unbalanced faces

We now prove that planar signed graphs with two unbalanced faces are balanced-
cycle decomposable. Note that this follows from Theorem 1.2, but we give a short
proof in order to keep our proof of Theorem 2.3 self-contained.

Proposition 5.1. Every 2-connected Eulerian loopless planar signed graph with an
even number of negative edges and exactly two unbalanced faces is balanced-cycle
decomposable.

Proof. Let (H,Σ) be a 2-connected Eulerian loopless planar signed graph with an
even number of negative edges and exactly two unbalanced faces. By passing to
graph(H,Σ), it suffices to show that every 2-connected Eulerian loopless planar
graph with an even number of edges and exactly two odd-length faces is even-cycle
decomposable. Let G be such a graph and let F1 and F2 be the two odd-length
faces of G. Since G is Eulerian, the dual graph G∗ of G is bipartite. Let (A,B) be
a bipartition of V (G∗). Since G (and hence also G∗) has an even number of edges,
F1 and F2 must be on the same side of the bipartition, say F1, F2 ∈ A. Since B is
both an independent set and a vertex cover of G∗, the faces in G corresponding to
the vertices in B form an even-cycle decomposition of G. �

6. Proof of Theorem 2.3

In this section we prove Theorem 2.3, thus proving our main theorem,
Theorem 1.4. We start with a simple parity lemma.

Lemma 6.1. Let G be an Eulerian graph and let (G1, G2) be a separation. Then∑
v∈V (G1)∩V (G2)

degG1
(v) ≡

∑
v∈V (G1)∩V (G2)

degG2
(v) ≡ 0 (mod 2).

Proof. Observe that∑
v∈V (G1)

degG(v) = 2|E(G1)|+
∑

v∈V (G1)∩V (G2)

degG2
(v).

The lemma then follows easily from the above equation. �

A 2-separation (G1, G2) of an Eulerian graph G is odd if degG1
(v) is odd for

all vertices v ∈ V (G1) ∩ V (G2). It is even if degG1
(v) is even for for all vertices

v ∈ V (G1) ∩ V (G2). By Lemma 6.1, every 2-separation of an Eulerian graph is
either odd or even.

Our next lemma asserts that 2-connected Eulerian graphs with at least one even
2-separation can be decomposed into a ‘necklace structure’ of Eulerian subgraphs.

Lemma 6.2. Let G be a 2-connected Eulerian loopless graph having an even 2-
separation (G1, G2) such that G1 and G2 are connected. Then there exist pairwise
edge-disjoint connected Eulerian subgraphs B1, B2, . . ., Bn of G with n ≥ 2
satisfying the following.

(i)
⋃n

i=1E(Bi) = E(G).
(ii) For each i, either Bi is 2-connected or Bi has two vertices.
(iii) (a) Either n = 2 and (B1, B2) is a 2-separation of G,
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B1

BnB2

Figure 3. A necklace decomposition into beads B1, . . . , Bn.

(b) or n ≥ 3 and for all 1 ≤ i < j ≤ n,

|V (Bi) ∩ V (Bj)| =

{
1 if i− j ≡ ±1 (mod n),

0 otherwise.

(iv) There exists k such that B1 ∪B2 ∪ · · ·Bk = G1 and Bk+1 ∪ · · · ∪Bn = G2.

Proof. We choose pairwise edge-disjoint connected Eulerian subgraphs B1, B2, . . .,
Bn with n ≥ 2 satisfying (i), (iii), and (iv) so that n is maximized. Such a
choice must exist because the sequence G1, G2 satisfies (i), (iii), and (iv). Let
Bn+1 = B1 and B0 = Bn. Note that |V (Bi)| > 1 because otherwise either
V (Bi−1) ∩ V (Bi+1) 6= ∅ when n > 2 or |V (B1) ∩ V (B2)| ≤ 1 when n = 2.

Suppose that (ii) is false. By symmetry, we may assume that |V (B1)| ≥ 3 and
B1 has a 1-separation (F1, F2) such that both F1 and F2 have at least two vertices.
Let v be the vertex on the boundary of (F1, F2).

Suppose that n = 2. Since v is not a cut vertex of G, v /∈ V (B1) ∩ V (B2) and
|V (B2) ∩ V (F1)| = |V (B2) ∩ V (F2)| = 1. Since B1 is an Eulerian subgraph, both
F1 and F2 are Eulerian. Then a sequence F1, F2, B2 satisfies (i), (iii), and (iv) and
therefore it contradicts our assumption that n is maximum.

Thus n > 2. If F2 meets both Bn and B2, then v is a cut vertex of G,
contradicting the assumption that G is 2-connected. Thus F2 meets at most one
of Bn and B2. Similarly F1 meets at most one of Bn and B2. Since each Bi is
Eulerian, (F1, F2 ∪

⋃n
i=2Bi) is an even 2-separation and therefore F1 is Eulerian.

Similarly F2 is Eulerian because (F2, F1 ∪
⋃n

i=2Bi) is an even 2-separation.
We may assume that F1 meets Bn and F2 meets B2. Then we consider a sequence

F1, F2, B2, . . ., Bn of edge-disjoint connected Eulerian subgraphs satisfying (i), (iii),
and (iv). This contradicts the assumption that n is chosen to be maximum. �

We call any B1, . . . , Bn given by Lemma 6.2 a necklace decomposition of (G,Σ)
(See Figure 3). Each Bi is called a bead of the necklace decomposition.
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Figure 4. K̃2
2 · K̃2

2 · K̃2
2 . (Solid lines denote negative edges.)

We now proceed to prove a sequence of lemmas concerning a counterexample
(G,Σ) to Theorem 2.3 with |E(G)| minimum.

Lemma 6.3. A minimum counterexample (G,Σ) cannot have an odd 2-separation

(G1, G2) where each (Gi, E(Gi)∩Σ) is connected and not a signed subgraph of K̃2
2 .

Proof. Suppose that (G,Σ) has an odd 2-separation (G1, G2) such that each

(Gi, E(Gi)∩Σ) is connected and not a signed subgraph of K̃2
2 . Let u and v be the

vertices on the boundary of (G1, G2). By assumption, degG1
(u) and degG1

(v) are
odd.

We first handle the subcase that one of the (Gi, E(Gi)∩Σ), say (G2, E(G2)∩Σ)
is balanced. In this case, by Lemma 3.1, we may assume that all edges in G2

are positive and thus Σ ⊆ E(G1). Let (G′1,Σ) be the signed graph obtained
from (G1,Σ) by adding a positive edge between u and v. Note that G′1 is 2-
connected since G is 2-connected. Moreover, (G′1,Σ) is a proper minor of (G,Σ)
since there is a balanced path between u and v in (G2, ∅). (Note that every path
in (G2, ∅) is balanced because no edge is negative.) By assumption, (G′1,Σ) is
not a counterexample and therefore (G′1,Σ) has a balanced-cycle decomposition. It
follows that E(G1) can be decomposed as C1∪{P1}, where C1 is a family of balanced
cycles and P1 is a balanced path between u and v. Since (G2, ∅) has no negative
edges, and u and v are the only odd degree vertices in G2, we can decompose E(G2)
as C2 ∪ {P2} where C2 is a family of balanced cycles, and P2 is a balanced path
between u and v. Therefore C1 ∪ C2 ∪ {P1 ∪ P2} is a balanced-cycle decomposition
of (G,Σ).

The other subcase is if neither (G1, E(G1)∩Σ) nor (G2, E(G2)∩Σ) is balanced.
Let (G′i,Σi) be the signed graph obtained from (Gi, E(Gi)∩Σ) by adding a positive
edge between u and v if |Σ ∩ E(Gi)| is even, and adding a negative edge between
u and v if |Σ ∩ E(Gi)| is odd. Since (G1, E(G1) ∩ Σ) and (G2, E(G2) ∩ Σ) are
not balanced and G is 2-connected, by Menger’s theorem we can find two vertex-
disjoint paths from u and v to an unbalanced cycle in (Gi, E(Gi) ∩ Σ) for each
i ∈ {1, 2}. Therefore, both (G′1,Σ1) and (G′2,Σ2) are proper minors of (G,Σ). By
the minimality assumption, E(Gi) can be decomposed into Ci ∪ {Pi} where Ci is a
family of balanced cycles and Pi is a path between u and v. Again, C1∪C2∪{P1∪P2}
is a balanced-cycle decomposition of (G,Σ). �

We call a signed subgraph (H,Γ) of (G,Σ) an albatross if (H,Γ) ∼= K̃2
2 · K̃2

2 (see
Figure 2) and the degree-4 vertex in H also has degree 4 in G.

Lemma 6.4. In a minimum counterexample (G,Σ), all albatrosses are edge-
disjoint. Moreover, if G has maximum degree 4, then all albatrosses are vertex-
disjoint.

Proof. Towards a contradiction, let (H1,Σ1) and (H2,Σ2) be distinct albatrosses
of (G,Σ) that are not edge-disjoint. Since G is 2-connected, it is not possible that

(H1∪H2,Σ1∪Σ2) ∼= K̃2
3 (see Figure 2). Thus (H1∪H2,Σ1∪Σ2) ∼= K̃2

2 ·K̃2
2 ·K̃2

2 (see
Figure 4) and H1∪H2 attaches to the rest of G at the degree-2 vertices of H1∪H2.
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u

v

B1

Figure 5. A Bermuda triangle. Note that the right half is an
albatross. (Solid lines denote negative edges.)

Let (G′,Σ′) be the signed graph obtained from (G,Σ) by replacing (H1∪H2,Σ1∪Σ2)

with a single K̃2
2 . Note that (G′,Σ′) is a 2-connected proper minor of (G,Σ). By the

minimality assumption, we have that (G′,Σ′) has a balanced-cycle decomposition
C′, which we can lift to a balanced-cycle decomposition C of (G,Σ). The second
part of the lemma follows in the same way. �

We call (G,Σ) a Bermuda triangle if all necklace decompositions B1, . . . , Bn of

(G,Σ) satisfy n = 3 with two (Bi, E(Bi) ∩ Σ) isomorphic to K̃2
2 , see Figure ??.

Note that every Bermuda triangle contains an albatross.

Lemma 6.5. A minimum counterexample (G,Σ) cannot have an even 2-separation

(G1, G2) such that each (Gi, E(Gi) ∩ Σ) is connected and not isomorphic to K̃2
2 ,

unless (G,Σ) is a Bermuda triangle.

Proof. Suppose that (G,Σ) has an even 2-separation (G1, G2) such that each

(Gi, E(Gi) ∩ Σ) is connected and not isomorphic to K̃2
2 and that (G,Σ) is not a

Bermuda triangle. By Lemma 6.2, (G,Σ) has a necklace decomposition B1, . . . , Bn.
If each bead Bi contains an even number of negative edges, we contradict the fact
that (G,Σ) is a minimum counterexample. Therefore, there are at least two beads
with an odd number of negative edges. Call such a bead an odd bead. Moreover,
since (G,Σ) is not a Bermuda triangle, we may assume that n 6= 3 or n = 3 and at

most one (Bi, E(Bi)∩Σ) ∼= K̃2
2 . It follows that we may choose an even 2-separation

(H1, H2) of (G,Σ) such that both (H1, E(H1)∩Σ) and (H2, E(H2)∩Σ) contain an

odd bead and are not isomorphic to K̃2
2 . This also implies that |E(H1)|, |E(H2)| > 2

because odd beads that are not isomorphic to K̃2
2 contain at least three edges.

Let x and y be the vertices on the boundary of (H1, H2). We first handle
the subcase that H1 and H2 contain an odd number of negative edges. In this
case we define (H ′i,Σi) to be the signed graph obtained from (Hi, E(Hi) ∩ Σ)
by adding a positive edge and a negative edge between x and y. Since each Hi

contains an odd bead, there exist an unbalanced x-y-path and a balanced x-y-path
in (Hi, E(Hi) ∩ Σ). Therefore, (H ′i,Σi) is odd-K4-minor-free and 2-connected. By
the minimality assumption, E(Hi) can be decomposed as Ci ∪ {Ei} ∪ {Oi}, where
Ci is a family of balanced cycles, Ei is a balanced x-y-path and Oi is an unbalanced
x-y-path. But then C1∪C2∪{E1∪E2}∪{O1∪O2} is a balanced-cycle decomposition
of (G,Σ).

The other remaining subcase is when (H1, E(H1) ∩ Σ) and (H2, E(H2) ∩ Σ)
contain an even number of negative edges. In this case we let (H ′i,Σi) be the
graph obtained from (Hi, E(Hi) ∩ Σ) by adding two positive edges between x
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and y. Again note that (H ′i,Σi) is 2-connected and odd-K4-minor-free. By the
minimality assumption, (H ′i,Σi) is balanced-cycle decomposable. Moreover, since
(Hi, E(Hi) ∩ Σ) is not balanced-cycle decomposable (by virtue of containing an
odd bead), the balanced 2-cycle formed by the two newly added edges cannot
be used as a cycle in the decomposition. Therefore, E(Hi) can be decomposed
as Ci ∪ {Ei,1, Ei,2} where Ci is a family of balanced cycles and Ei,1 and Ei,2 are
balanced x-y-paths. But then C1∪C2∪{E1,1∪E2,1, E1,2∪E2,2} is a balanced-cycle
decomposition of (G,Σ). �

Lemma 6.6. A minimum counterexample (G,Σ) cannot contain two parallel edges
of the same sign.

Proof. Let G2 be a connected subgraph of G having exactly two parallel edges of
the same sign. Let G1 = G \ E(G2). Since G is 2-connected, G1 is connected. By
Lemma 6.2, there is a necklace decomposition B1, B2, . . . , Bn extending the even
2-separation (G1, G2). We may assume that Bn = G2. Since |Σ| is even, G1 is not

isomorphic to K̃2
2 . Lemma 6.5 implies that G is a Bermuda triangle and therefore

n = 3 and B1, B2 are isomorphic to K̃2
2 . But then, (G,Σ) is easily seen to be

decomposable into two balanced 3-cycles. �

We say that a signed graph (G,Σ) is almost 3-connected if for all proper 2-
separations (G1, G2) of G, (G1, E(G1) ∩ Σ) or (G2, E(G2) ∩ Σ) is isomorphic to

K̃2
2 · K̃2

2 .

Lemma 6.7. A minimum counterexample (G,Σ) is almost 3-connected.

Proof. Let (G1, G2) be a proper 2-separation of G. Since G is 2-connected,
|E(G1)|, |E(G2)| > 2 and G1, G2 are connected. By Lemma 6.3, (G1, G2) must
be an even 2-separation. By Lemma 6.5, G is a Bermuda triangle. Let B1, B2, B3

be a necklace decomposition of G extending (G1, G2) given by Lemma 6.2. We may

assume that B1, B2 are isomorphic to K̃2
2 and G1 = B1 ∪ B2. This implies that

(G1, E(G1) ∩ Σ) is isomorphic to K̃2
2 · K̃2

2 . �

Lemma 6.8. A minimum counterexample (G,Σ) cannot have a 3-separation
(G1, G2), where (G2, E(G2) ∩ Σ) is balanced, connected, and has at least 4 edges.

Proof. Choose such a 3-separation (G1, G2) with |E(G2)|minimum. By Lemma 3.1,
we may assume that all edges in (G2, E(G2) ∩ Σ) are positive and so Σ ⊆ E(G1).

In particular, all paths contained in G2 are balanced and K̃2
2 · K̃2

2 is not a
signed subgraph of (G2, ∅). Also note that G2 does not contain parallel edges
by Lemma 6.6. Let x, y and z be the vertices on the boundary of (G1, G2).

We first prove that G2 is 2-connected. Suppose not and let (H1, H2) be a proper
1-separation of G2 with V (H1) ∩ V (H2) = {w}. If w ∈ {x, y, z} then H1 and H2

both induce 2-separations in G. Since (G,Σ) is almost 3-connected and contains
no parallel edges of the same sign, it follows that H1 and H2 are each just a single
edge. This contradicts |E(G2)| ≥ 4. Thus, w /∈ {x, y, z} and we may assume
V (H1) ∩ {x, y, z} = {x}. Thus, H1 induces a 2-separation in G and must just be
the single edge xw. Hence G2 − x induces a 3-separation in G. This contradicts
the minimality of G2 unless, G2 − x has exactly three edges. On the other hand,
recall that G2 contains no parallel edges. Furthermore, Lemma 6.7 implies that no
vertex of G has degree 2 (such a vertex gives a proper 2-separation with neither

side equal to K̃2
2 · K̃2

2 ). Since G is Eulerian, G has minimum degree at least 4.
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Since G2 contains only four edges, we conclude that V (G2) \ {x, y, z} = {w}. Since
degG2

(w) ≥ 4, G2 must contain parallel edges, which is a contradiciton.
Now by Lemma 6.1,

degG1
(x) + degG1

(y) + degG1
(z) ≡ 0 (mod 2).

There are two possibilities to consider: either two of x, y, and z have odd degree in
G1 or none of x, y, and z have odd degree in G1.

We handle the former possibility first. By symmetry, suppose that degG1
(x)

and degG1
(y) are odd. Let Ge,f

1 be the graph obtained from G1 by adding an

edge e between z and y and an edge f between z and x. We claim that Ge,f
1 is

2-connected. Suppose not and let (H1, H2) be a proper 1-separation of Ge,f
1 , with

V (H1) ∩ V (H2) = {w}. Note that {x, y, z} cannot be a subset of V (Hi), else w is
a cut-vertex of G. Now, if z ∈ V (Hi) \ {w}, then {x, y} ⊆ V (Hi), since zx and

zy are edges of Ge,f
1 , a contradiction. Hence w = z. By symmetry we may assume

x ∈ V (H1) and y ∈ V (H2). Thus, H1 \ f and H2 \ e induce 2-separations in G,
with boundary vertices {x, z} and {y, z} respectively. Each of these 2-separations
is odd since degH1\f (x) = degG1

(x) and degH2\e(y) = degG1
(y). By Lemma 6.3,

H1 \ f and H2 \ e are each just a single edge. But now, G− z is a subgraph of G2,
and is hence balanced as a signed graph. This contradicts Proposition 4.2. Thus,

Ge,f
1 is 2-connected as claimed.
Since G2 is also 2-connected, there are two internally disjoint paths P1 and P2 in

G2 from {z} to {x, y}. Let H := G1∪E(P1)∪E(P2). Observe that H is 2-connected

since it is a subdivision of Ge,f
1 . Evidently, H is Eulerian and contains an even

number of negative edges since Σ∩E(G2) = ∅. Moreover, P1∪P2 6= G2 since G has
minimum degree 4 by Lemma 6.7. Hence H 6= G. We are done since (H,Σ∩E(H))
is balanced-cycle decomposable by induction and (G\E(H),Σ\E(H)) is balanced-
cycle decomposable since it is balanced.

We now consider the second possibility that each of degG1
(x),degG1

(y), and

degG1
(z) is even. In this case we let (G∆

1 ,Σ) be the signed graph obtained from

(G1,Σ) by adding three positive edges e = xy, f = yz, and g = xz. Evidently, G∆
1

is Eulerian, 2-connected and contains an even number of negative edges.
We claim that (G∆

1 ,Σ) is a minor of (G,Σ). First observe that G2 contains
a cycle C as it is Eulerian. Recall that G2 contains no parallel edges; hence C
is not a 2-cycle. Next notice that G has no proper 2-separation (H1, H2) with
V (H1)∩ V (H2) ⊆ V (G2) because G is almost 3-connected and G2 has no negative
edges. By Menger’s theorem, there are three vertex-disjoint paths from {x, y, z}
to V (C). Now it is easy to obtain (G∆

1 ,Σ) as a minor of (G,Σ); we begin by
contracting edges in those three paths.

By the minimality assumption, (G∆
1 ,Σ) has a balanced-cycle decomposition C∆.

If {e, f, g} ∈ C∆, then (G1,Σ) is balanced-cycle decomposable. But (G2, ∅) is also
balanced-cycle decomposable since it is Eulerian and balanced. Thus, (G,Σ) is
balanced-cycle decomposable.

If e ∈ C1 ∈ C∆ and {f, g} ⊂ C2 ∈ C∆ for C1 6= C2, then it suffices to find
two edge-disjoint x-y paths in G2, at least one of which avoids z. Since G2 is 2-
connected, G− z is connected, so there does exist an x-y path P in G2 that avoids
z. But now the second path exists since x and y are the only odd degree vertices
in G2 \ E(P ).
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By symmetry, the only remaining possibility is if e, f , and g are in different
cycles of C∆. In this case it suffices to show that there are pairwise edge-
disjoint paths Qx,y, Qy,z, and Qx,z, where Qi,j is an i-j-path in G2 such that
|V (Qi,j) ∩ {x, y, z}| = 2. We may assume that G2 has no cycle containing x, y,
and z, else we are done. Since G2 is 2-connected, G2 has a cycle C containing
y and z. Since G2 has no cycles containing x, y, and z, there do not exist
three vertex-disjoint paths from the neighbours of x in G2 to V (C). By Menger’s
theorem, there is a proper 2-separation (H1, H2) of G2 such that x ∈ V (H1)\V (H2)
and y, z ∈ V (C) ⊆ V (H2). Since H1 induces a 3-separation in G, we have that
|E(H1)| ≤ 3. In particular, x has degree 2 in H1 (and hence also in G2). Since G2

is 2-connected, we can find two vertex-disjoint paths Qx,y and Qx,z. Note that in
G2 \E(Qx,y ∪Qx,z), y and z are the only vertices of odd degree and x is an isolated
vertex. Thus, G2 \ E(Qx,y ∪ Qx,z) has a path Qy,z from y to z avoiding x. This
completes the proof. �

We are now ready to prove our main theorem.

Theorem 2.3. Every 2-connected Eulerian loopless odd-K4-minor-free signed
graph with an even number of negative edges is balanced-cycle decomposable.

Proof. Suppose not. Let (G,Σ) be a counterexample with |E(G)| minimum. By
Lemma 6.6, there are at most two parallel edges between every pair of vertices. If
x is a degree-2 vertex, we can contract an edge incident with x, if necessary by
re-signing, to obtain a smaller counterexample. Thus, G has minimum degree at
least 4.

By Theorem 3.2, one of the following holds.

(i) (G,Σ) is almost balanced or planar with two unbalanced faces.
(ii) (G,Σ) has a 2-separation (G1, G2) where each (Gi, E(Gi) ∩ Σ) is connected

and not a signed subgraph of K̃2
2 .

(iii) (G,Σ) has a 3-separation (G1, G2) where (G2, E(G2) ∩ Σ) is balanced,
connected, and has at least 4 edges.

By Propositions 4.2 and 5.1, (i) is not possible. Lemma 6.8 implies that (iii) is
impossible.

Thus (ii) holds and let (G1, G2) be such a 2-separation. By Lemma 6.3, (G1, G2)
is an even separation. By Lemma 6.5, (G,Σ) is a Bermuda triangle. Let B1, B2, B3

be a necklace decomposition of G with (B2, E(B2) ∩ Σ) ∼= (B3, E(B3) ∩ Σ) ∼= K̃2
2 .

If B1 has only two vertices, then B1 is just two edges of the same sign, which
contradicts Lemma 6.6. So B1 is 2-connected. Since B1 contains an even
number of negative edges, by the minimality assumption, B1 has a balanced-cycle
decomposition C.

We first claim that G is 4-regular. Let u and v be the vertices in V (B1)∩(V (B2)∪
V (B3)). Choose a shortest chain of balanced cycles C1, C2, . . ., Ck (k ≥ 1) in C such
that u ∈ V (C1), v ∈ V (Ck) and V (Ci) ∩ V (Ci+1) 6= ∅ for all i ∈ {1, 2, . . . , k − 1}.
Since this chain is shortest, V (Ci) ∩ V (Cj) = ∅ whenever j > i + 1. Let

W = E(B1) −
⋃k

i=1E(Ci). If W is nonempty, then C − {C1, C2, . . . , Ck} is a

balanced-cycle decomposition of (B1 −
⋃k

i=1E(Ci),W ∩ Σ). Moreover by the
minimality assumption, the signed graph (G0,Σ0) = (G − W, (E(G) − W ) ∩ Σ)
must have a balanced-cycle decomposition D. Then (C − {C1, C2, . . . , Ck}) ∪ D is
a balanced-cycle decomposition of (G,Σ), which is a contradiction. Therefore W
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is empty and hence B1 =
⋃k

i=1 Ci. Consequently, every vertex of G has degree
at most 4 (and hence exactly 4). Since |V (B1)| > 2, we have k > 1 and u is not
adjacent to v in G.

Let (G′,Σ′) be the signed graph obtained from (G,Σ) by replacing each albatross

with a K̃2
2 . Since all albatrosses are vertex-disjoint by Lemma 6.4, (G′,Σ′) is well-

defined. By applying Theorem 3.2 again we conclude that one of the following
holds.

(1) (G′,Σ′) is almost balanced.
(2) (G′,Σ′) is planar with two unbalanced faces.
(3) (G′,Σ′) has a 2-separation (G′1, G

′
2) where each (G′i, E(G′i)∩Σ′) is connected

and not a signed subgraph of K̃2
2 .

(4) (G′,Σ′) has a 3-separation (G′1, G
′
2) where (G′2, E(G′2) ∩ Σ′) is balanced,

connected, and has at least 4 edges.

By Lemma 6.7, (G,Σ) is almost 3-connected, and hence (G′,Σ′) is 3-connected.
Let x, y, z be the vertices of an arbitrary albatross A in (G,Σ), where degA(y) = 4.
Note that x and z are not adjacent in G since (G,Σ) is almost 3-connected.
Therefore, since (G,Σ) does not contain any parallel edges of the same sign, (G′,Σ′)
also does not contain any parallel edges of the same sign. It follows that (3) is
impossible.

We next exclude possibility (1). By re-signing in G′, we may assume that there
exists a vertex t ∈ V (G′) such that all edges of G′ are positive except possibly
those incident with t. Since all albatrosses of (G,Σ) are vertex-disjoint, it follows
that B2 ∪ B3 is the only albatross of (G,Σ), and that t ∈ {u, v}. Thus, (G′,Σ′) is

obtained from (G,Σ) by replacing B2 ∪ B3 with a K̃2
2 between u and v. Let w be

the vertex of B2 ∪ B3 not in {u, v}. By performing the same re-signings in G as
we performed in G′ we may assume that all edges in G are positive except possibly
those incident with t or w.

As G is 4-regular and contains an even number of negative edges, exactly 1 or
3 edges incident with t are negative. By re-signing at t in G, we may assume that
exactly one edge incident with t is negative. This negative edge is also necessarily
incident with w. Therefore, G−w is balanced as a signed graph, which contradicts
Proposition 4.2.

We next handle possibility (4). Let (G′1, G
′
2) be such a 3-separation. Since

(G′2, E(G′2)∩Σ′) is balanced, it evidently cannot contain any K̃2
2 subgraphs. Thus,

by putting back the albatrosses, we obtain a 3-separation (G1, G2) of (G,Σ) where
(G2, E(G2)∩Σ) is balanced, connected, and has at least 4 edges. This is impossible
by Lemma 6.8.

We finish by ruling out possibility (2). In this case, we claim (G′,Σ′) has a
balanced Eulerian signed subgraph (H ′,Σ′ ∩ E(H ′)) such that E(H ′) 6= ∅ and
G′ \ E(H ′) is 2-connected after removing isolated vertices. We can then lift
(H ′,Σ′ ∩ E(H ′)) to a balanced Eulerian signed subgraph (H,Σ ∩ E(H)) of (G,Σ)

as follows. Suppose that an albatross A in (G,Σ) has been replaced with K = K̃2
2

in (G′,Σ′). Note that H ′ cannot use both edges of K, since (H ′,Σ′ ∩ E(H ′) is
balanced. If H ′ uses a positive edge e of K, we replace e by a balanced path in A.
If H ′ uses a negative edge e of K, we replace e by an unbalanced path in A. If H ′

uses no edges of K, then H uses no edge of A.
Note that G \ E(H) is 2-connected after removing isolating vertices, since

G′ \ E(H ′) is 2-connected after removing isolated vertices. By Lemma 3.1, H
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G1
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w

G2

G1 C

y

Figure 6. On the left, G1 6∼= K̃2
2 and shares at least two vertices

with C. On the right, G1
∼= K̃2

2 and shares at least one vertex with
C.

(and hence G \E(H)) has an even number of negative edges. We are then finished
since (G \E(H),Σ \E(H)) is balanced-cycle decomposable by induction. We now
proceed to show that such an H ′ exists.

We again avoid using Theorem 1.2 to keep our proof self-contained. Consider a
fixed planar embedding of (G′,Σ′) with at most two unbalanced faces. Note that

each K̃2
2 must bound a face of (G′,Σ′), else its two vertices would form a vertex-cut

of size two. Since (G′,Σ′) contains no parallel edges of the same sign, it follows
that G′ contains at most two pairs of parallel edges.

Recall that u and v are the vertices of a contracted albatross in (G′,Σ′). Let
F and F ′ be the two faces adjacent to the unbalanced face given by u and v. We
may assume F is the outer face and balanced. Let C be the boundary cycle of F .
Let G′′ = G′ \ E(C), and {G1, ..., Gk} be its set of blocks. We may assume k ≥ 2,
else let H ′ = C. Note that each Gi is an Eulerian plane subgraph of G′, and is
2-connected unless it is a K̃2

2 . We may further assume at least one Gi, say G1, is
not balanced else let H ′ = G′′.

Since each (Gi,Σ
′ ∩ E(Gi)) inherits all of its finite faces from (G′,Σ′), and C

contains an edge from a finite unbalanced face of (G′,Σ′), there is at most one
finite unbalanced face left in (G′′,Σ′ ∩ E(G′′)). Therefore, for i ≥ 2, every finite
face of (Gi,Σ

′ ∩ E(Gi)) is balanced and hence (Gi,Σ
′ ∩ E(Gi)) is balanced. We

may assume for i ≥ 2, (Gi,Σ
′ ∩E(Gi)) is a balanced cycle of length at least three,

else let H ′ = Gi \ E(Ci) where Ci is the boundary cycle of the outer face of Gi.
Since G′ is 3-connected, every face of G′ is bounded by a non-separating chordless

cycle. Moreover G1 has an unbalanced finite face and therefore no edge of C has
a parallel edge except the edge joining u and v. As C is non-separating, G′′ is
connected, so its block graph T is a tree. Let Gi be a leaf in T for some i 6= 1.
Let x be the cut vertex of G′′ belonging to Gi. Since Gi is a cycle, every vertex in
V (Gi) \ {x} must belong to C because G′ is 4-regular. Since C is chordless, every
edge of Gi − x must have endpoints u and v. In particular, Gi must be a triangle
and Gi is the only leaf in {G2, . . . , Gk}. Thus, T is a path with leaves G1 and Gi.
We re-label so that the Gj ’s are labelled according to their order in T . Let w be
the cut-vertex of G′′ belonging to G1.

Suppose (G1,Σ
′∩E(G1)) 6∼= K̃2

2 . Since G1 has at least three vertices and G′ is 3-
connected, G1 must share at least two vertices with C, otherwise (V (G1)∩V (C))∪
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{w} is a vertex-cut in G′ of size at most two. Therefore G1 ∪C is 2-connected, see
Figure 6. We are done since we may take H ′ = G2 ∪ ... ∪Gk.

So we may assume (G1,Σ
′∩E(G1)) ∼= K̃2

2 . Since the two cut-vertices of G′′ in G2

cannot be a vertex-cut in G′, G2 shares at least one vertex y with C. Also, y 6= w,
since G′ is 4-regular. Hence, G1∪G2∪C has an ear decomposition starting from G2

(see Figure 6), and is thus 2-connected. We are finished by letting H ′ = G3∪...∪Gk,

unless k = 2. If k = 2, then (G1,Σ
′ ∩ E(G1)) ∼= K̃2

2 and G2 and C are triangles.
Hence G′ is obtained from K4 by doubling a pair of independent edges. Since
each set of parallel edges is a K̃2

2 , there is a balanced 4-cycle which passes through
both sets of parallel edges. Let H ′ be such a balanced 4-cycle. We are done since
G′ \ E(H ′) is just a 4-cycle and evidently 2-connected. �
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